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Outline of the talk

Topic 1: Critical analysis of the NN force

• quality of the description in the 2N system: χ2 per datum ≈ 1

Potentials with charge dependence (1995):

AV18 [0-350 MeV], χ2/dat . ≈ 1 (≈ 40 parameters)

Nijmegen[0-350 MeV], χ2/dat . ≈ 1

CD Bonn [0-350 MeV], χ2/dat . ≈ 1

Chiral potentials (2004)

N2LO-BO [0-125 MeV], χ2/dat . ≈ 10

N3LO-EM [0-290 MeV], χ2/dat . ≈ 1→ 29 parameters

N2LO-opt [0-125 MeV], χ2/dat . ≈ 1→ 15 parameters (2013)
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A = 3, 4 Systems

The A = 3, 4 systems with NN interactions

• 2N system: χ2 per datum ≈ 1
• 3N and 4N systems using a NN interaction: χ2 per datum >> 1

The A = 3, 4 systems with NN and NNN forces
Urbana IX→ 2 parameters

Tucson-Melbourne→ 1 parameter

3N-N2LO→ 2 parameters

The parameters are fixed to reproduce:

The 3H and 4He binding energies

The (2)and scattering length or the triton half life

• 3N and 4N systems using a NN+NNN interaction:
χ2 per datum >> 1
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3H and 4He Bound States and n − d scattering length
Potential(NN) Method 3H[MeV] 4He[MeV] 2and [fm]
AV18 HH 7.624 24.22 1.258

FE/FY Bochum 7.621 24.23 1.248
FE/FY Lisbon 7.621 24.24

CDBonn HH 7.998 26.13
FE/FY Bochum 8.005 26.16 0.925
FE/FY Lisbon 7.998 26.11
NCSM 7.99(1)

N3LO-EM HH 7.854 25.38 1.100
FE/FY Bochum 7.854 25.37
FE/FY Lisbon 7.854 25.38
NCSM 7.852(5) 25.39(1)

Potential(NN+NNN)
AV18/UIX HH 8.479 28.47 0.590

FE/FY Bochum 8.476 28.53 0.578
CDBonn/TM HH 8.474 29.00

FE/FY Bochum 8.482 29.09 0.570
N3LO-EM/3N-N2LO HH 8.474 28.37 0.675

NCSM 8.473(5) 28.34(2)
N2LO-opt/3N-N2LO 8.469 28.42
Exp. 8.48 28.30 0.645±0.010
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Benchmark calculations for 3 + 1 scattering states
N3LO (n−3H and p−3He)

En(MeV) 1S0
3P0

3S1
3D1 ǫ1+

1P1
3P1 ǫ1−

1.0 -38.10 4.15 -33.32 -0.09 -0.23 5.99 9.63 9.44 AGS
-38.02 4.10 -33.25 -0.08 -0.20 5.59 9.44 8.85 HH
-38.31 4.00 -33.56 -0.11 -0.24 6.13 10.13 FY

2.0 -51.93 10.54 -45.66 -0.36 -0.44 13.13 24.18 9.15 AGS
-51.98 10.50 -45.71 -0.33 -0.39 12.87 23.90 9.09 HH
-52.34 10.54 -45.99 -0.39 -0.50 13.55 25.15 FY

3.5 -65.54 20.31 -57.99 -0.91 -0.72 20.74 40.94 9.45 AGS
-65.67 20.21 -58.20 -0.92 -0.67 20.90 40.98 9.57 HH
-66.15 20.62 -58.40 -0.91 -0.79 21.17 41.50 FY

Ep(MeV) 1S0
3P0

3S1
3D1 ǫ1+

1P1
3P1 ǫ1−

2.25 -40.64 8.04 -35.00 -0.24 -0.53 10.64 17.29 8.61 AGS
-40.87 7.67 -35.31 -0.30 -0.43 10.08 16.88 8.47 HH
-41.57 7.74 -35.49 -0.28 -0.58 10.84 17.75 FY

4.05 -58.23 17.94 -50.79 -0.94 -0.84 18.90 35.50 8.73 AGS
-58.65 17.84 -51.25 -0.97 -0.74 19.05 35.54 8.84 HH
-59.12 18.12 -51.15 -0.96 -0.94 19.26 35.78 FY

5.54 -68.28 25.41 -60.02 -1.45 -1.08 23.05 44.54 9.28 AGS
-68.50 25.08 -60.15 -1.53 -1.08 23.07 44.46 9.30 HH

5.51 -69.00 25.81 -60.03 -1.40 -1.18 23.16 44.13 FY
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Some Remarks

In the 3N system χ2 ≈ 100 using NN+NNN forces

High quality NN potentials are unable to describe polarization
observables with high acuracy

Including NNN forces the description slightly improves (in some
cases is worst)

But

The singlet and triplet scattering lenghts are:
a0 ≈ −23 fm and a1 ≈ 5 fm

The NN force range r0 ≈ 1.5 fm, therefore r0/a0 < 1 and r0/a1 < 1
and also Ed ≈ −~

2/ma2
1

To which extend a0 and a1 are control parameters of the
few-nucleon dynamics? → Efimov physics

In this contex the 3H bining energy appears as a scale parameter
(the three-body parameter)
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LO (pionless) description
The 2N sector: Low energy data
Ed = −2.2245 MeV
a1 = 5.424± 0.003 fm reff

1 = 1.760± 0.005 fm
a0 = −23.740± 0.020 fm reff

0 = 2.77± 0.05 fm

Constructing the LO 2N potential
Two parameters corresponding to the ℓ = 0 partial waves with S = 0, 1:
V0(r) = −V0e−r2/r2

0 , V1(r) = −V1e−r2/r2
1

V0[MeV] r0[fm] a0[fm] reff
0 [fm] V1[MeV] r1[fm] a1[fm] reff

1 [fm]
53.255 1.40 −23.741 2.094 79.600 1.40 5.309 1.622
42.028 1.57 −23.745 2.360 65.750 1.57 5.423 1.776
40.413 1.60 −23.745 2.407 63.712 1.60 5.447 1.802
37.900 1.65 −23.601 2.487 60.575 1.65 5.482 1.846
33.559 1.75 −23.745 2.644 55.036 1.75 5.548 1.930
30.932 1.82 −23.746 2.756
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The 3N sector

V0[MeV] r0[fm] V1[MeV] r1[fm] E0
3 [MeV] E1

3 [MeV] 2and [fm]
53.255 1.40 79.600 1.40 −12.40 −2.191 −2.175
42.028 1.57 65.750 1.57 −10.83 −2.199 −1.236
40.413 1.60 63.712 1.60 −10.59 −2.197 −1.097
37.900 1.65 60.575 1.65 −10.22 −2.199 −0.860
33.559 1.75 55.036 1.75 −9.584 −2.201
30.932 1.82 65.750 1.57 −9.715 −2.200 −0.285
Exp. −8.482 0.645± 0.010

Introducing a Three-Body Force
We choose a simple (two-parameter) form:

W (ρ) = W0e−ρ2/ρ2
0

with ρ2 = 2
3(r2

12 + r2
23 + r2

31)

•W0 fixed to describe E(3H)
• The dependence in ρ0 is analyzed using 2and
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Summary of the (optimized) LO potential
LO Ed B(3H) B(4He) B(4He∗) 2and

-2.225 -8.480 -28.41 -8.29 0.652
Exp. -2.225 -8.482 -28.296 -8.10 0.645
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LO potential
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A=3 low energy scattering

No bad for a 4-parameter 2N potential + 2-parameter 3N potential!
next step (in progress)→ 6He and 6Li ground states
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Prelimar study up to A = 6 using a central potential

The Volkov Potential: V (r) = E1 e−r2/R2
1 + E2 e−r2/R2

2 with
E1 = 144.86 Mev, R1 = 0.82 fm, E2 = −83.34 Mev, R2 = 1.6 fm

No three-body force

A = 2: Ed = −0.546 MeV, a = 10.08 fm

A = 3: E(3H) = −8.43 MeV, E(3He) = −7.72 MeV

S-wave potential – only acts when lij = 0

M. Gattobigio, A.K. and M. Viviani, PRC83, 024001 (2011)
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All-waves Volkov for A = 6, Lπ
= 0+

Kmax NHH E0 (MeV) E1 (MeV) E2 (MeV) E3 (MeV)
[6] [6] [5 1] [4 2]

2 15 117.205 64.701 62.513 61.142
4 120 118.861 69.450 64.277 62.015
6 680 120.345 70.544 66.268 63.377
8 3045 121.738 71.443 67.280 64.437

10 11427 122.317 71.923 68.371 65.354
12 37310 122.597 72.477 69.029 65.886
14 108810 122.711 72.822 69.531 66.201
16 288990 122.752 73.101 69.842 66.360
18 709410 122.768 73.284 70.051 66.437
20 1628328 122.774 73.407 70.189 66.474
22 3527160 122.776 73.485 70.283 66.491

SVM∗ 66.25

∗ K. Varga and Y. Suzuki, Phys. Rev. C 52, 2885 (1995)
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S-wave Volkov
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Topic 2: Use the Subleading contributions to the 3N
contact interaction to improve the 3N continuum
description

At LO there is one 3N contact interaction. The local form used is

VLO(3N) =
1
2

∑

j 6=k

Eτj · τk → cE

∑

j 6=k

τj · τk Z0(rji)Z0(rki )

with

Z0(r) =

∫

dp
(2π)3 eip·r FΛ(p)

In Topic 1 we have used: W0e−ρ2/ρ2
0 and we have identified the cutoff Λ

with ρ0
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The NLO contact interaction
The NLO 3N contact Lagrangian contain two spatial derivatives. The
space-structures are of the form

X+
A,ij = (N†←→∇ i N)(N†←→∇ j N)(N†N)

X+
B,ij = ∇i(N†N)∇j(N†N)(N†N)

X−
C,ij = i∇i(N†N)(N†←→∇ j N)(N†N)

X+
D,ij = (N†←→∇ i

←→
∇ j N)(N†N)(N†N),

The relevant isospin structures are

T + = 1, τ1 · τ2, τ1 · τ3, τ2 · τ3, T− = τ1 × τ2 · τ3,

Even (odd) combinations of X ⊗ T structures under time-reversal have
to be associated with spin structures containing even (odd) numbers of
σ matrices.
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A local form of the NLO 3N potential
The NLO 3N contact Lagrangian contain two spatial derivatives. Its
local form has been derived in L. Girlanda, A. K. and M. Viviani,
PRC84, 014001 (2011).

VNLO(3N) =
∑

i 6=j 6=k

(E1 + E2τi · τj + E3σi · σj + E4τi · τjσi · σj)

[

Z ′′
0 (rij) + 2

Z ′
0(rij)

rij

]

Z0(rik )

+(E5 + E6τi · τj)Sij

[

Z ′′
0 (rij)−

Z ′
0(rij)

rij

]

Z0(rik )

+(E7 + E8τi · τk )(L · S)ij
Z ′

0(rij)

rij
Z0(rik )

+(E9 + E10τj · τk )σj · r̂ijσk · r̂ik Z ′
0(rij)Z

′
0(rik )

It contains 10 LEC
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A = 3 calculations

The A = 3 Hamiltonian is

H = T + V (2N) + VLO(3N) + VNLO(3N)

For V (2N) we use AV18

VLO(3N) has one LEC→ cE

VNLO(3N) has 10 LEC→ [E1, . . . , E10]

To determine the LECs we use B(3H), 2and and scattering observables
at Elab = 3 MeV

Using AV18 or AV18+UR, at Elab = 3 MeV the χ2/datum ≈ 100
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Some hints to perform the minimization

The A = 3 Hamiltonian can be written as

H = T + V (2N) + cE ∗ V0(3N) +
∑

i=1,10

Ei ∗ Vi(3N)

Using the HH basis it can be transformed to matrices

Hnn′ = [T + V (2N)]nn′ +
∑

i=0,10

Ei ∗ [Vi(3N)]nn′

The maximum size of the basis is fixed (accuracy below 0.5%)

The [T + V (2N)]nn′ matrix is constructed (no free parameters)

For each operator [Vi ] the matrix is constructed (11 matrices)

For each set [Ei ] the Hamiltonian is diagonalized (bound state)

Different cutoffs are used
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For the continuum
The matrices are calculated for the different Jπ states

At low energies the 3N force is active up to J± = 5/2

To calculate the S matrix we use the KVP
∑

n′

[Hnn′ − E Nnn′]Ai
n′ = F i

n′ ;
∑

n′

[Hnn′ − E Nnn′]Bi
n′ = Gi

n′

where F i
n′ =< φn|H − E |FLSJ > and Gi

n′ =< φn|H − E |GLSJ > are
the asymptotic driving terms. The S matrix is
[Sij ]

2nd = A−1B
with Aij =< Ψi |H − E |Fi > and Bij =< Ψi |H − E |Gi >

The F i
n are:

F i
n = F i

n(2N) +
∑

k=0,10 Ek ∗ F i
n(k)

This coefficients are calculated for each term and for each energy

The matrix operations are linear in the coefficients [Ek ] and the
minimization can be implemented efficiently
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The A = 4 system

The LO 4N potential
The obtained 3N interaction has to be used in the 4N system

We expect a good description of the polarization observables

However the E(4He) has to be tuned

At present this could be too difficult

Alternatively, we can use the LO 4N potential:

V4N = F
∑

i 6=j 6=k 6=l

Z0(rij)Z0(rik )Z0(ril)

The LEC F can be fixed to reproduce the E(4He)
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Summary Topics 1 and 2

We have studied the role of a0 and a1 as control parameters

The few-nuceon dynamics is to a large extent universal and fits
inside the Efimov Physics

A (pionless) potential up to two derivatives can be constructed.
It should have χ2 ≈ 1 in the range [0, 100] MeV (to be done).

It has to be supplemented with a three-body force.

This three-body force contains a leading term and subleading
terms

Probably with this NN+NNN interaction the χ2 per datum in the
low energy sector of the 3N and 4N systems can be reduced by
two order of magnitude (from 100→ 1)

Work in progress:
low energy N −4He scattering states
6He and 6Li binding energies
determination of the NLO(3N) potential
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