
Influence of trap anisotropy and dimensionality on 
perturbative effective 2- and 3-body interactions 

 
Collaborators 
 
Eite Tiesinga JQI of NIST and University of Maryland,  
Doerte Blume and Xiangyu (Desmond) Yin Washington State University 
Khan Mahmud, Lei Jiang JQI and NIST 
 

Funded by U.S. Army Research Office 

Phil Johnson   
American University (AU), Washington DC  

Universality in Few-Body Systems 
Institute for Nuclear Theory (INT), University of Washington 

April 16, 2014 (Day after taxes are due…)  



Outline 
• Many-body physics in optical lattices 
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• Effective interactions in harmonic traps 
• Effective interactions in anisotropic harmonic traps 
• Effective interactions in 1D, 2D, (4D?) 
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1D optical lattice 

Laser 

Mirror 

Stack of 2D BEC pancakes 

z direction potential 

• Quasi-1D, z motion frozen in ground state: T < Tz ~ 
10 µK  (fz = 10 - 100 kHz) 

•  r0 ~ as ~ reff << lz << lx ~ ly 

Optical Lattices 



A 2D array 

3D optical lattice 

Counter-propagating beams in 
all three dimensions. 

3D Optical Lattice 

Typically assume atoms in lowest band, 
although higher-band physics  can be very 
important. 

Optical Lattices 



Superfluid 

Mott Insulator 
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Equilibrium Lattice States 

Quantum Phase Transition at s = sc (Zero Temperature Phase Transition) 
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Bose-Hubbard Hamiltonian: single-
mode per lattice site 

Tunneling Interactions 

, i = lattice site index 

•Shallow lattice 
•n/site unknown, phase defined 

•Deep lattice  
•e.g., 1 atom per lattice site, random phase 

Many-body Physics in Optical Lattices 

Each atom is in a superposition 
over all lattice sites. 



Atom density measurement after release and expansion from lattice 
gives the momentum distribution at the instant of release. 

Absorption imaging after 
release and expansion 

≈ 10 mm Laser 

Ca
m
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Distribution when atoms in  𝑘 = 0 quasi-
momentum at moment  of release  

Superfluid in 
optical lattice 

Expansion 
of cloud Not to scale! 

Many-body Physics in Optical Lattices 



Quenching from shallow to deep lattice 
• Start with superfluid in shallow lattice 

• Quickly increase lattice well depth (by increasing lattice laser intensities) 

• Fast enough atoms don’t have time to interact/tunnel (avoid Mott transition). 
Quantum field at each lattice site “frozen” in place.  

• Atom number in each site remains unknown; each atom in superposition over 
all lattice sites. 

• Slow enough that vibrational excitation from ground band to higher bands is 
minimal. 

Coherent states 
“projected” into each well 

Many-body Physics in Optical Lattices 
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• Many-body physics in optical lattices 
• Few-body physics in optical lattices 
• Effective interactions in harmonic traps 
• Effective interactions in anisotropic harmonic traps 
• Effective interactions in 1D, 2D 
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All N atoms in 
single BEC state. 

Superposition of 
each atom in every 
lattice site 

Poissonian number statistics 
(coherent states) in each unit cell.  

Fast 
Loading 

ni = atom # in ith well 

|αi|2 = average atom # in 
ith well 

|

Coherent states 

E.g. Data (NIST, Porto/Williams group)  

~ 300 µs 
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Many-body  Few-Body Physics in Optical Lattices 
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Bose-Hubbard dynamics in deep lattice 
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3 pairs from 3 atoms 6 pairs from 4 atoms 

Predicts re-phasing every multiple of t = h/U2 
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Lattice hold time 

Visibility 

Set 1-particle ground 
state energy to zero. 

Motivation: Many-body  Few-Body Physics in Optical Lattices 

Interference pattern visibility: 



Collapse and Revival 
Lattice hold time 

Greiner et al, Nature 419, 51 (2002); similar results at NIST Strabley et al, (2006) 

Motivation: Many-body  Few-Body Physics in Optical Lattices 

(Units of time = h/U2) 

e.g. Rb87 with  
ω ~ 30 kHz,  
U2 ~ 2kHz 



“Multibody interaction interferometer” 

( )intψ
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Each number state evolves “independently” while in lattice.  They interfere after 
release and time-of-flight (TOF) expansion. 
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Input state: 

Many-body  Few-Body Physics in Optical Lattices 



Phase evolution with higher-body interactions 
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Many-body  Few-Body Physics in Optical Lattices 

With U3 = 5% x U2 

Johnson el al, NJP  (2009); Tiesinga et al, PRA (2011). 



Will et al, Nature (2009)  

Data 
Many-body  Few-Body Physics in Optical Lattices 
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Low-energy field theory 
• N particles, assume a/l << 1. 
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Effective Multibody Interactions: Isotropic Harmonic Trap 

Johnson el al, NJP  14 053037 (2012). 
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Multimode Hamiltonian 
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Expand over single well harmonic 
oscillator wavefunctions 
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Effective Multibody Interactions: Isotropic Harmonic Trap 



Single-orbital 
Bose-Hubbard 

Multi-orbital 
Bose-Hubbard 

Effective single-orbital 
Bose-Hubbard 

Higher 
orbitals 
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Effective single-mode Hamiltonian 

Effective Multibody Interactions: Isotropic Harmonic Trap 



1st order perturbation theory (“Mean field”) 
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2nd order perturbation theory 

Sum over intermediate 
excited (virtual) states 

ν  

µ  N 

N-1 

= 

Exclude µ =ν  = 0 
= atom in vibrationally excited (virtual) intermediate state 

= atom in µ = 0 state = U2  interaction vertex 
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Renormalization 
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3rd order calculations: 2-body 

Counter-term renormalization 
condition 



Renormalization 
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If w0 = zero, (perturbatively) reproduces 
Busch et al. 



Effective 3-body Interaction 
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Effective 3-body Interaction Energy 
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* The factor  n(n-1)(n-2)/6  counts the number of distinct 
triples. 

The shift in energy is a 3-body effect. 

Exact leading order, 
isotropic harmonic trap 



Isotropic case 
3rd order, 3-body 

3rd order, 4-body 

Johnson el al, NJP  14 053037 (2012). 



“Running” interaction energies 
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1D limit (cigar) 

2D limit 
(pancake) 

Anisotropic harmonic potential 

z-axis 
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Anisotropy 

Fix ,  vary . All energies in units of fixed .zω ω ω⊥ ⊥

The perturbation theory breaks down before 
reaching 1D, 2D limits; work for the future… 



Effective 3-body anistropic H.O. 
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Can be reduced to infinite sum over single index. 

𝑛 



Cylindrically symmetric trap 

 



Cylindrically symmetric trap 

 



Cylindrical trap: Two-body energy 

Z. Idziaszek and T. Calarco, Phys. Rev. A, 74, 022712 (2006). 

Agrees perturbatively with result of Idziaszek and Calarco 



Summary of Results 
• Our new 3D results for anisotropic 2-body energy agree 

(perturbatively) with previous exact results for isotropic and 
anisotropic harmonic traps. 

 
• Our new 3D results for anisotropic 3-body agree with our 

previous 3-body results in isotropic limit. 
 
• The quasi-1D limit of our 3D, 3-body anisotropic results agree 

with true 1D model prediction. The 1D model also agrees 
perturbatively with Busch et al predictions for for 2-body 
energy in 1D. 

 
• The quasi-2D limit of our 3D, 3-body anisotropic results agree 

with the true 2D model prediction. 
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