Nuclear few- and many-body systems in a discrete variable representation basis

Jeremy W. Holt* Department of Physics University of Washington

*<u>with</u>

A. Bulgac, M. M. Forbes

L. Coraggio, N. Itaco, R. Machleidt, L. Marcucci, F. Sammarruca

A. Bulgac, S. Moroz, K. Roche, G. Wlazłowski

INT program: Universality in few-body systems, 03/31/2014

Motivation:

Consistent nuclear structure calculations at N³LO in chiral EFT Dialogue with lattice QCD

Lattice methods for nuclear few- and many-body systems

Discrete variable representation (DVR) basis

Construction of consistent chiral nuclear potentials

Applications to light nuclei

Applications to infinite neutron matter

Chiral effective field theory and nuclear forces

SEPARATION OF SCALES + SYMMETRIES

Chiral effective field theory and nuclear forces

SEPARATION OF SCALES + SYMMETRIES

Chiral effective field theory and nuclear forces

SEPARATION OF SCALES + SYMMETRIES

Pauli principle consistency

Strength of nuclear four-body forces

Nucleons on a lattice

Chiral nuclear potentials naturally represented in **plane-wave basis**

- Finite set of single-particle basis states... but how to choose "L" and "a"?
- Lattice spacing defines resolution scale (develop consistent "low-momentum" chiral nuclear potentials)
- Formal description with "discrete variable representation" (DVR) basis

"Low-momentum" chiral nuclear potentials

Traditionally constructed via RG-evolution [Bogner, Furnstahl, Kuo, Schwenk,...]

"Good"

Desirable convergence properties in **perturbation theory** Desirable convergence properties in **finite model spaces**

"Bad"

Induced many-body forces and currents

Analytical form of potential is lost

- Certain ab-initio many-body methods more convenient if analytical form of potential is known
 - Construct nuclear potentials at different cutoff scales

Fit c_i LEC's to peripheral NN phase shifts

Coraggio, Holt, Itaco, Machleidt, Sammarruca, PRC 2013

Perturbative features: neutron matter equation of state

Scale dependence of neutron matter EOS

Determination of c_D and c_E low-energy constants

Symmetric nuclear matter: determination of c_D

Fit c_D to triton lifetime [A Gårdestig and D R Phillips, PRL (2006); D. Gazit et al., PRL (2009)]

Nuclear matter equation of state

K _f = 1.33 fm ⁻¹	414	450	500
HF contribution	-28.792	-25.688	-19.503
2nd order pp diagram	-7.388	-11.273	-13.511
3rd order pp diagram	0.563	0.745	1.642
3rd order hh diagram	-0.010	-0.008	-0.008
3rd order <i>ph</i> diagram	0.581	0.152	-1.516

Consistent 3rd-order calculation of equation of state

Nuclear matter equation of state

Discrete Variable Representation

Discrete variable representation (DVR) basis

Widely used method for discretizing the Schrödinger equation

- Maintains the locality of operators (e.g., potential energy)
- Rapid (exponential) convergence for appropriate potentials and boundary conditions
- Direct-product DVR's typically lead to sparse-matrix representation of Hamiltonian in multidimensional problems
- Easily coupled to iterative techniques (e.g., Lanczos) to find lowest eigenvalues of the Hamiltonian matrix

Discrete variable representation (DVR) basis

- The DVR is a quasi-local (in coordinate space) but discrete representation
- Start with finite set of energy eigenstates defining projector $P = \sum_i |\phi_i\rangle\langle\phi_i|$

E.g., plane waves:
$$P = \sum_{ert ec k ert < k_c} ert ec k
angle \langle ec k ert
angle$$

• Look for grid points $\{x_i\}$ such that $|\Delta_j\rangle \equiv P|x_j\rangle = \sum_i |\phi_i\rangle \phi_i^*(x_j)$ satisfy

$$\langle \Delta_{\alpha} | \Delta_{\beta} \rangle = \langle x_{\alpha} | P | x_{\beta} \rangle = \Delta_{\beta}(x_{\alpha}) = N_{\alpha} \delta_{\alpha\beta}$$

(nontrivial requirement)

- Basis functions have nodes at all other lattice points
- Quasi-locality: $\langle \Delta_i | V | \Delta_j
 angle \simeq \delta_{ij} N_i V(x_i)$

Plane-wave basis

• Sinc function basis: $\frac{1}{\sqrt{N_i}}\Delta_i(x) = \operatorname{sinc}(k_c(x-x_i)) = \frac{\sin(k_c(x-x_i))}{k_c(x-x_i)}$

Dependence on lattice spacing

• Sinc function basis:
$$rac{1}{\sqrt{N_i}}\Delta_i(x) = \mathrm{sinc}(k_c(x-x_i)) = rac{\mathrm{sin}(k_c(x-x_i))}{k_c(x-x_i)}$$

Function interpolation

To express a function in the basis, simply evaluate it at the abscissa:

$$f(x) = \sum_{i} \frac{1}{N_i} f(x_i) \Delta_i(x)$$

Phase-space coverage

For convergence must at least cover the same semi-classical phase space

R. G. Littlejohn et al., J Chem Phys 2002

Convergence of 1D harmonic oscillator

Convergence of 1D harmonic oscillator

Convergence of 1D harmonic oscillator

IR and UV convergence in shell model calculations

Maximum momentum associated with filling the highest available single-particle state

$$\Lambda = \sqrt{m_N(N+3/2)\hbar\omega}$$

Minimum momentum associated with inverse rms radius of highest single-particle state

$$\lambda_{sc} = \sqrt{m_N \hbar \omega / (N + 3/2)}$$

Exponential convergence

For appropriate basis functions and boundary conditions

• Example (analytically solvable): $V(x) = \frac{a + b \sinh(x)}{\cosh^2(x)}$

Convergence of deuteron (realistic NN potential)

Solve Schrödinger equation in 3D (no partial-wave decomposition)

Argonne potential requires resolution scale of $\Delta x = 0.5 \text{ fm}$

Chiral potentials should have significantly better UV convergence properties

Finite-volume corrections to energy

Exponential convergence [S. Beane et al., PLB 2004]

[S. Kreuzer & H.-W. Hammer, PLB 2011]

Application to "light nuclei"

- Distinguishable spinless particles
- Lowest energies from Lanczos
 - $a=0.5-1.5\,{\rm fm}$
 - $\Lambda_{UV} = 400 1200 \,\mathrm{MeV}$
- "Triton": $N^6 = 8^6 16^6$
 - Up to 10⁷ elements in Hilbert space
- "Alpha": $N^9 = 4^9 8^9$

Up to 10⁸ elements in Hilbert space

Neutron matter from quantum Monte Carlo

Nuclear ground states

- Consider an arbitrary trial wavefunction: Energy eigenstates $\psi(x_1, x_2, \dots, x_n) = \sum_i c_i \phi_i(x_1, x_2, \dots, x_n)$
- Propagate system in imaginary time:

Hamiltonian $\hat{H} = \hat{T} + \hat{V}_{2N} + \cdots$

Imaginary-time evolution operator $\hat{U}(au) = e^{-\hat{H} au}$

filter out ground state)
$$e^{-\hat{H}\tau}|\psi\rangle = \sum_{i} c_{i}e^{-E_{i}\tau}|\phi_{i}\rangle \xrightarrow{\tau \to \infty} |\phi_{0}\rangle$$

$$e^{-\frac{1}{2}A(\psi_N^{\dagger}\psi_N)^2} = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} d\sigma e^{-\frac{1}{2}\sigma^2 + \sqrt{-A\sigma}\psi_N^{\dagger}\psi_N} \bigvee_{N \to --\frac{\sigma}{N}}$$

Monte Carlo evaluation

- Nucleons interact with auxiliary background field
- Propagate in small time steps
- Evaluate stochastically with Monte Carlo methods

- Current implementations: limited to light nuclei
- But: certain interactions exhibit no sign problem
- Our (ambitious) goal: simulate several hundred nucleons

Evolution potential

1

Chiral N3LO 2N interaction + N2LO 3N interaction

$$H = T + V_{\chi} = (T + V_{ev}) + (V_{\chi} - V_{ev})$$

$$V_{
m ev}(q^2) = rac{V_{\pi}}{m_{\pi}^2 + q^2} + rac{V_{\sigma}}{m_{\sigma}^2 + q^2} + rac{V_{\omega}}{m_{\omega}^2 + q^2} \quad (0)$$

(Constrained by phase shifts and perturbative equation of state)

Imaginary-time evolution

Neutrons: 38 to 342

 10^3 Lattice

 $\Delta x = 1.5\,\mathrm{fm} \rightarrow \Lambda = 414\,\mathrm{MeV}$

Occupation probabilities

Neutron matter equation of state

Consistency at N3LO: three- and four-body forces currently a challenge

Lattice techniques a promising path forward: formally developed in the framework of the discrete variable representation (DVR) basis

Compatible low-momentum chiral NN interactions: Improved convergence in perturbation theory (and finite model-space calculations)

Simple IR and UV convergence properties

Light nuclei and nuclear matter:

(1) Direct diagonalization (Lanczos) for light nuclei

(2) Auxiliary-field quantum Monte Carlo for neutron matter and finite nuclei