Universality in Four-Boson Systems

M. R. Hadizadeh

INPP, Department of Physics & Astronomy, Ohio University hadizadm@ohio.edu

Work done in collaboration with: M.T. Yamashita & L. Tomio (UNESP), A. Delfino (UFF), T. Frederico (ITA)

INT Program: Universality in few-body systems: theoretical challenges and new directions Institute for Nuclear Theory, University of Washington, 9 Apr. 2014

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction

Formalism: 4B bound state in Faddeev-Yakubovsky scheme

Numerical solution

- Computational approach
- Tetramer binding energies
- 3B & 4B scaling plots
- Four-atom resonances

On the range corrections

- 2B scattering amplitude
- 3B & 4B scaling functions
- Position of the 4-atom resonances

5 The stability of numerical results

- Numerical convergence
- Yakubovsky components & 4B wave function
- Momentum distribution functions

Conclusion

- Introduction

Outline

Introduction

Formalism: 4B bound state in Faddeev-Yakubovsky scheme

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

3 Numerical solution

- Computational approach
- Tetramer binding energies
- 3B & 4B scaling plots
- Four-atom resonances

On the range corrections

- 2B scattering amplitude
- 3B & 4B scaling functions
- Position of the 4-atom resonances
- 5 The stability of numerical results
 - Numerical convergence
 - Yakubovsky components & 4B wave function
 - Momentum distribution functions
- 6 Conclusion

- Introduction

Main Goal

 Very accurate solution for the 4B problem - scaling and universality

Motivation: why are weakly bound state problems interesting?

- Short-range interactions & large quantum systems
- Universality & model independence
- Reality: Cold atom physics close to a Feshbach resonance!

Different techniques for few-body bound state calculations

- NCSM (Navratil et al. PRC62),
- HH (Viviani et al. PRC71) and EIHH (Barnea et al. PRC67)
- GFMC (Viringa et al. PRC62),
- CRCGV (Hiyama et al. PRL85),
- SV (Usukura et al. PRB59),
- FY (Hadizadeh et al. FBS40, EPJA201, PTP120, PRC83)

-Introduction

Efimov Physics (1970): Nuclear Physics

- an infinite sequence of weakly bound 3-body states as $a \to \pm \infty$
- Unitary limit $(a \rightarrow \pm \infty)$: $E_3^{n+1}/E_3^n \approx 1/22.7^2$ \implies discrete scaling with scaling factor 22.7

Vitaly Efimov

• For finite *a*: discrete scaling is exact when range $\rightarrow 0$

- Etimov effect: If two bosons interact in such a way that a two-body bound state is exactly on the verge of being formed, then in a three-boson system one should observe an infinite number of bound states. This phenomenon appears in a three-dimensional formalism for the three-body systems, and does not exist in one or two dimensions.
- This effect, predicted by Vitaly Efimov in 1970 (Phys. Lett. B 33 (1970) 563; Sov. J. Nucl. Phys. 12 (1971) 589], have been recently verified in ultracold atom laboratories, with the increasing number of three-body bound-state levels, as the two-body scattering length goes to infinity.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The observation of Efimov effect

The observation of this effect, first reported by Kraemer et al. in an ultracold gas of Cesium atoms [Nature 440 (2006) 315], was confirmed by several other atomic experimental groups, which are looking for the properties of such states.

- Zaccanti et al., Nature Phys. 5 (2009) 586
- Ferlaino et al, PRL 102 (2009) 140401
- Pollack et al., Science 326 (2009) 1683

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Recent studies on four-boson system - Theory

The addition of one more particle to the quantum three-body system has long challenged the Efimov picture. The need of an independent four-body parameter is discussed, considering the observational possibilities in cold-atom experiments.

- L. Platter et al., PRA70 (2004); H.-W. Hammer and L. Platter, EPJA32 (2007)
 - Four-boson system with short-range interactions
 - Universal properties of the four-body system with large scattering length
- M. T. Yamashita et al., EpL75 (2006) Four-boson scale near a Feshbach resonance.
- R. Lazauskas and J. Carbonell, PRA 73 (2006) Description of ⁴He tetramer bound and scattering states
- J. von Stecher et al., Nature Physics 5 (2009); J. von Stecher, JPB43 (2010)
 - Signatures of universal four-body phenomena and their relation to the Efimov physics.
 - Weakly bound cluster states of Éfimov character
- Y. Wang, B. D. Esry, PRL102 (2009) Efimov trimer formation via ultracold four-body recombination
- A. Deltuva, PRA82 (2010) Efimov physics in bosonic atom-trimer scattering
- M. R. Hadizadeh et al., PRL107 (2011) Scaling properties of universal tetramers
- Gattobigio et al., PRA86 (2012) Energy spectra of small bosonic clusters having a large two-body scattering length
- Hiyama et al. PRA85 (2012) Linear correlations between ⁴He trimer and tetramer energies calculated with various realistic ⁴He potentials

- Introduction

- Hammer et al., EPJA32 (2007) [5, 1.01]
- Deltuva, PRA82 (2010) [4.61, 1.00227]
- Gattobigio et al., PRA86 (2012) [4.5, 1.020]

We address this point with high-precision calculations using a zero-range model and searching the excited tetramer states and their dependences on short-range parameters.

No independent four-body parameter!

- Formalism: 4B bound state in Faddeev-Yakubovsky scheme

Outline

Introductio

Formalism: 4B bound state in Faddeev-Yakubovsky scheme

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 3 Numerical solution
 - Computational approach
 - Tetramer binding energies
 - 3B & 4B scaling plots
 - Four-atom resonances
- On the range corrections
 - 2B scattering amplitude
 - 3B & 4B scaling functions
 - Position of the 4-atom resonances
- 5 The stability of numerical results
 - Numerical convergence
 - Yakubovsky components & 4B wave function
 - Momentum distribution functions
- 6 Conclusion

Formalism: 4B bound state in Faddeev-Yakubovsky scheme

$$|K_{12,34}^{4}\rangle = G_{0}t_{12}\tilde{P}\left[\left(1+P_{34}\right)|K_{12,3}^{4}\rangle + |H_{12,34}\rangle\right]$$
$$|H_{12,34}\rangle = G_{0}t_{12}\tilde{P}\left[\left(1+P_{34}\right)|K_{12,3}^{4}\rangle + |H_{12,34}\rangle\right]$$

$$|\Psi
angle = \left(1+P+P_{34}P+ ilde{P}
ight) \left[\left(1+P_{34}
ight)|K_{12,3}^{4}
angle+|H_{12,34}
angle
ight]$$

$$P = P_{12}P_{23} + P_{13}P_{23}$$
 $\tilde{P} = P_{13}P_{24}$

Kamada et al., NPA548 (1992)

Formalism: 4B bound state in Faddeev-Yakubovsky scheme

Definition of 4B basis states

$$\begin{cases} \mathbf{u}_1 = \frac{1}{2} (\mathbf{k}_1 - \mathbf{k}_2) \\ \mathbf{u}_2 = \frac{2}{3} (\mathbf{k}_3 - (\mathbf{k}_1 + \mathbf{k}_2)) \\ \mathbf{u}_3 = \frac{3}{4} (\mathbf{k}_4 - \frac{1}{3} (\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)) \end{cases} \quad \begin{cases} \mathbf{v}_1 = \frac{1}{2} (\mathbf{k}_1 - \mathbf{k}_2) \\ \mathbf{v}_2 = \frac{1}{2} (\mathbf{k}_1 + \mathbf{k}_2) - \frac{1}{2} (\mathbf{k}_3 + \mathbf{k}_4) \\ \mathbf{v}_3 = \frac{1}{2} (\mathbf{k}_3 - \mathbf{k}_4) \end{cases}$$

- Formalism: 4B bound state in Faddeev-Yakubovsky scheme

Explicit representation of Yakubovsky equations

$$\langle \mathbf{A}_{10}, \mathbf{A}_{3}, \mathbf$$

Hadizadeh and Bayegan, FBS40 (2007)

Formalism: 4B bound state in Faddeev-Yakubovsky scheme

Two-body transition amplitude for zero-range interaction

$$V(\mathbf{r}) = (2\pi)^3 \,\lambda \,\delta(\mathbf{r})$$

$$\langle \mathbf{p} | \mathbf{V} | \mathbf{p}'
angle = \lambda \langle \mathbf{p} | \chi
angle \langle \chi | \mathbf{p}'
angle; \quad \langle \mathbf{p} | \chi
angle = \int d^3 r \ e^{i \mathbf{p} \cdot \mathbf{r}} \ \delta(\mathbf{r}) = 1$$

$$\tau(\epsilon) = \left[\lambda^{-1} - \int d^3 p \, \frac{1}{\epsilon - p^2}\right]^{-1}$$
$$\lambda^{-1} = \int d^3 p \, \frac{1}{B_2 - p^2}$$

$$\tau(\epsilon) = \frac{1}{2\pi^2} \left(\sqrt{-B_2} - \sqrt{-\epsilon} \right)^{-1} = \frac{1}{2\pi^2} \left(\frac{1}{a} - \sqrt{-\epsilon} \right)^{-1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Amorim et al., PRC46 (1992)

Formalism: 4B bound state in Faddeev-Yakubovsky scheme

Coupled Yakubovsky integral equations

$$\begin{split} \mathcal{K}(u_{2},u_{3}) &= 4\pi \,\tau(\epsilon) \int du_{2}^{\prime} u_{2}^{\prime 2} \int dx \\ &\times \left[G_{0}^{(3)} \left(\Pi(u_{2}^{\prime},u_{2}), u_{2}^{\prime}, u_{3} \right) \mathcal{K} \left(u_{2}^{\prime}, u_{3} \right) \\ &+ \frac{1}{2} \int dx^{\prime} \, G_{0}^{(4)} \left(\Pi(u_{2}^{\prime},u_{2}), \Pi_{2}(u_{2}^{\prime},u_{3},x^{\prime}), \Pi_{3}(u_{2}^{\prime},u_{3},x^{\prime}) \right) \mathcal{K} \left(\Pi_{2}(u_{2}^{\prime},u_{3},x^{\prime}), \Pi_{3}(u_{2}^{\prime},u_{3},x^{\prime}) \right) \\ &+ \frac{1}{2} \int dx^{\prime} \, G_{0}^{(4)} \left(\Pi(u_{2}^{\prime},u_{2}), \Pi_{4}(u_{2}^{\prime},u_{3},x^{\prime}), \Pi_{5}(u_{2}^{\prime},u_{3},x^{\prime}) \right) \mathcal{H} \left(\Pi_{4}(u_{2}^{\prime},u_{3},x^{\prime}), \Pi_{5}(u_{2}^{\prime},u_{3},x^{\prime}) \right) \right] \\ \mathcal{H}(v_{2},v_{3}) &= 4\pi \,\tau(\epsilon^{*}) \int dv_{3}^{\prime} v_{3}^{\prime 2} \\ &\times \left[\int dx \, G_{0}^{(4)} \left(v_{3}, \Pi_{6}(v_{2},v_{3}^{\prime},x), \Pi_{7}(v_{2},v_{3}^{\prime},x) \right) \mathcal{K} \left(\Pi_{6}(v_{2},v_{3}^{\prime},x), \Pi_{7}(v_{2},v_{3}^{\prime},x) \right) \\ &+ G_{0}^{(4)} \left(v_{3},v_{2},v_{3}^{\prime} \right) \mathcal{H} \left(v_{2},v_{3}^{\prime} \right) \right] \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hadizadeh et al., PRA85 (2012)

- Formalism: 4B bound state in Faddeev-Yakubovsky scheme

Subtracted Green's Functions: $G_0^{(N)} = \frac{1}{E - H_0} - \frac{1}{-\mu_N^2 - H_0}$ with μ_3 (RED): 3B scale & μ_4 (BLUE): 4B scale

Outline

Formalism: 4B bound state in Faddeev-Yakubovsky scheme

Numerical solution

- Computational approach
- Tetramer binding energies
- 3B & 4B scaling plots
- Four-atom resonances
- On the range corrections
 - 2B scattering amplitude
 - 3B & 4B scaling functions
 - Position of the 4-atom resonances
- 5 The stability of numerical results
 - Numerical convergence
 - Yakubovsky components & 4B wave function
 - Momentum distribution functions
- 6 Conclusion

- Computational approach

Numerical solution algorithm

$$|K\rangle = G_0 t_{12} P \left[\left(1 + P_{34} \right) |K\rangle + |H\rangle \right]$$
$$|H\rangle = G_0 t_{12} \tilde{P} \left[\left(1 + P_{34} \right) |K\rangle + |H\rangle \right]$$

standard eigenvalue problem

$$\lambda(E).\psi = K(E).\psi; \quad \psi = \begin{pmatrix} K \\ H \end{pmatrix}$$

Searching E to get the solution of coupled Yakubovsky integral equations with $\lambda = 1$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Integration: Gaussian quadrature

- Jacobi momenta: 80-160 mesh points; tricky mapping
- polar angles: 40 mesh points

Dimension of Kernel after discretization: $120\times120\times120\times40\times40\sim10^9$

Eigenvalue problem: Lanczos type method

- Iterative orthogonal vectors (IOV) (Stadler PRC44 2319)
- ARPACK Fortran library (http://www.caam.rice.edu/software/ARPACK/)

Dimension of eigenvalue problem after using Lanczos technique: # of iterations-1 \sim 10!

Multidimensional interpolations: Cubic-Hermit Splines

high computational speed and accuracy (Huber FBS22 107)

- Numerical solution

Tetramer binding energies

Tetramer ground and excited state binding energies for $B_2 = 0$

Within a renormalized zero-range model, where the relevant three- and four-body momentum scales (μ_3 and μ_4) are introduced in a subtractive regularization procedure, we have the following results:

μ_4/μ_3	$B_{4}^{(0)}/B_{3}$	$B_4^{(1)}/B_3$	$B_4^{(2)}/B_3$	$B_4^{(3)}/B_3$
1	3.10			
1.6	4.70	1.00071		
5	12.5	1.531		
10	24.6	2.44		
21	63.5	4.62	1.00032	
40	184	8.65	1.203	
⇒ 70	5.20×10 ²	13.9	1.629	
100	1.04×10 ³	21.5	2.17	
200	4.06×10 ³	51.8	3.86	
240			pprox 4.6	pprox 1
300	9.11×10 ³	103	5.53	
400	1.62×10 ⁴	154	7.28	

Tetramer binding energies

μ_4/μ_3	$B_4^{(0)}/B_3$	$B_4^{(1)}/B_3 - 1$
1	2.66	
1.76	4.24	9.8×10 ⁻⁴
5	10.0	0.421
20	45.9	2.77
40	139	6.10
80	506	13.0
200	2.86×10 ³	39.5
300	6.00×10 ³	69.3
400	9.81×10^{3}	104

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Tetramer ground and excited state binding energies for $B_2 = 0.02 B_3$

L Tetramer binding energies

Tetramer ground and excited state binding energies for $B_2^{\textit{virtual}}=0.02~B_3$

μ_4/μ_3	$B_4^{(0)}/B_3$	$B_4^{(1)}/B_3-1$
1	3.62	
1.7	5.91	0.014
5	15.4	0.658
20	74.8	4.18
40	236	9.46
80	873	20.6
200	5.02×10 ³	64.5
300	1.06×10 ⁴	115
400	1.73×10 ⁴	174

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- Numerical solution

- Tetramer binding energies

Three- and Four-body Binding Energies

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Universality in Four-Boson Systems

- Numerical solution
 - B & 4B scaling plots

3B Scaling Plot *Yamashita et al., PRA66 (2002)*

•
$$\frac{B_3^{(N)}}{B_2} \simeq 6.61 \Rightarrow B_3^{(N+1)} \simeq B_2$$

• $\frac{B_3^{(N)}}{B_2} \approx 1385 \Rightarrow \frac{B_3^{(N+1)}}{B_2} \simeq 6.61 \Rightarrow B_3^{(N+2)} \simeq B_2$
• $B_2 = 0 \Rightarrow \frac{B_3^{(N)}}{B_3^{(N+1)}} = 515$
• $\frac{B_3^{(N)}}{B_2^{virtual}} \approx 1084 \Rightarrow B_3^{(N+1)} = 0$ $\left[a_-^{(N)}/a_-^{(N+1)} = 22.7\right]$

Universality in Four-Boson Systems

- Numerical solution

- 3B & 4B scaling plots

- Numerical solution

- 3B & 4B scaling plots

4B Scaling Plot

For $\sqrt{\frac{B_3}{B_4^{(N)}}} > \frac{1}{22.7} = 0.044$, at most three tetramers fit between two consecutive Efimov trimers.

- Numerical solution

- Four-atom resonances

4-atom recombination losses

Locations of four-atom loss features $(a_{4b1}, a_{4b2} < 0)$ where two successive tetramers become unbound (blue-solid line for $r_0 \rightarrow 0$).

Outline

Introduction

2) Formalism: 4B bound state in Faddeev-Yakubovsky scheme

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

3 Numerical solution

- Computational approach
- Tetramer binding energies
- 3B & 4B scaling plots
- Four-atom resonances

On the range corrections

- 2B scattering amplitude
- 3B & 4B scaling functions
- Position of the 4-atom resonances
- 5 The stability of numerical results
 - Numerical convergence
 - Yakubovsky components & 4B wave function
 - Momentum distribution functions
- **Conclusion**

Our goal:

- Derive range corrections to the tetramer scaling functions calculated with the zero-range model
- Compare with potential models results
- Extract the effective range from cold atom experiments for the four-body recombination data close to a Feshbach resonance.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

On the range corrections

-2B scattering amplitude

LO range correction in the two-body scattering amplitude:

• Two-body scattering amplitude:

$$\tau(\epsilon) = -\frac{1/(2\pi^2)}{k\cot(\delta_0) - ik}$$

• effective range expansion @ low energies: $k \cot(\delta_0) = -\frac{1}{a} + \frac{r_0}{2}k^2 + O(r_0^3k^4)$

• pole @ the bound (+) or virtual states (-): $\frac{1}{a} = \pm \sqrt{|\epsilon_2|} - \frac{r_0}{2} |\epsilon_2|$

• Up to first order in r₀,

$$au(\epsilon) pprox rac{(2\pi^2)^{-1}}{-\sqrt{-\epsilon} \pm \sqrt{-\epsilon_2}} \left[1 + rac{r_0}{2} \left(\sqrt{-\epsilon} \pm \sqrt{-\epsilon_2}
ight)
ight] \,.$$

 The subtracted form of the STM and FY are able to consider the higher momentum power in the effective range expansion.

Range Correction to 3B Scaling Plot

• Cornelius and Glöckle, JCP85 (1986) - realistic HFDHE2 interatomic potential of Aziz et al.

- On the range corrections

- 3B & 4B scaling functions

Range correction to 4B Scaling Plot

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

On the range corrections

- 3B & 4B scaling functions

Comparison to other calculations

Even at unitary limit, a very small value of range parameter can shift the scaling plot to right.

On the range corrections

Position of the 4-atom resonances

Range correction to the scaling function for the positions of successive 4-atom resonances:

$$\frac{a_{1,2}^{T}}{a_{1}^{-}} = \mathcal{A}(x,y) = \sum_{0 \le m+n \le 2} c_{mn} (x - 0.45)^{m} y^{n}; \quad m,n \ge 0$$

where $x \equiv a_{1,1}^{T}/a_{1}^{-}, y \equiv r_{0}/|a_{1}^{-}|.$
Coefficients of the parametrization
$$\frac{\overline{c_{00} \quad c_{10} \quad c_{01}}{0.932 \quad 0.724 \quad -0.144}}{\underline{c_{11} \quad c_{20} \quad c_{02}}{0.347 \quad -0.645 \quad 0.001}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- On the range corrections
 - Position of the 4-atom resonances

Range correction to the position of 4-atom resonance;

Hadizadeh et al PRA 87, 013620 (2013)

・ コット (雪) (小田) (コット 日)

- von Stecher (priv. comm.) 0.38 vs. \sim 0.36
- Deltuva (priv. comm.) 0.33 vs. ~0.29

r_0 from the shift of the peaks of the four-atom losses

Ref.	$a_{1,1}^{T}/a_{1}^{-}$	$a_{1,2}^{T}/a_{1}^{-}$	$a_1^- [R_{\rm vdW}]$	r ₀ [R _{vdW}]
Ferlaino et al PRL'09	0.47	0.84	-8.7(1)	> 5
Berniger et al PRL'11	0.465(34)	0.903(31)	-9.54(28)	2.5 ± 1.7
Ferlaino et al FBS'11	0.47(1)	0.87(1)	-8.71	4.8 ± 1.0
Ferlaino et al FBS'11	0.46(2)	0.91(3)	-9.64	2 ± 2

•
$$\bar{a}^{Cs_2} \simeq 0.955978 \, R_{VdW}^{Cs_2} = 96.5 \, a_0$$

- $3.5 < r_0 < 4.3 R_{VdW}$
- Weighted average for the fitted r₀ values: 3.9±0.8 R_{vdW}

$$r_0 \simeq 2.9179 \,\bar{a} \left[\left(\frac{\bar{a}}{a} \right)^2 + \left(\frac{\bar{a}}{a} - 1 \right)^2 \right]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

Introduction

- 2) Formalism: 4B bound state in Faddeev-Yakubovsky scheme
- 3 Numerical solution
 - Computational approach
 - Tetramer binding energies
 - 3B & 4B scaling plots
 - Four-atom resonances
- On the range corrections
 - 2B scattering amplitude
 - 3B & 4B scaling functions
 - Position of the 4-atom resonances

5 The stability of numerical results

- Numerical convergence
- Yakubovsky components & 4B wave function
- Momentum distribution functions
- Conclusion

- Numerical convergence

Example

Convergence of 1st and 2nd exited tetramer energies for $\frac{\mu_4}{\mu_3} = 300$:

$$u_{i} = \frac{1 + x_{i}}{c_{1}(1 - x_{i}) + c_{2}x_{i}}; \quad c_{1} \equiv \frac{\mu_{4}}{\mu_{3}}, c_{2} = 0.4$$
$$x_{i} \in [-1, +1] \implies u_{i} \in [0, 0.003] + [0.003, 5]$$

Universality in Four-Boson Systems

The stability of numerical results

- Yakubovsky components & 4B wave function

Example

$$\Psi(0, u_2, u_3)$$
 for $\frac{\mu_4}{\mu_3} = 50$: where $\beta_N = \sqrt{E_4^{(N)}}$, $N = 0, 1, 2$

- Momentum distribution functions

$$n(u_i) = u_i^2 \int du_j \, u_j^2 \int du_k \, u_k^2 \, \Psi^2(u_i, u_j, u_k); \quad (i, j, k) \equiv (1, 2, 3)$$

Example

 $n(u_1), n(u_2)$ and $n(u_3)$ for $\frac{\mu_4}{\mu_3} = 50$:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Universality in Four-Boson Systems

- The stability of numerical results

- Momentum distribution functions

Universal momentum distribution functions at unitary ($B_2 = 0$)

- Conclusion

Outline

Introduction

2) Formalism: 4B bound state in Faddeev-Yakubovsky scheme

3 Numerical solution

- Computational approach
- Tetramer binding energies
- 3B & 4B scaling plots
- Four-atom resonances

On the range corrections

- 2B scattering amplitude
- 3B & 4B scaling functions
- Position of the 4-atom resonances
- 5 The stability of numerical results
 - Numerical convergence
 - Yakubovsky components & 4B wave function
 - Momentum distribution functions

Conclusion

- Conclusion

Conclusion & Summary

- In our study on a general four-boson problem, within a renormalized zero-range model, we verify that it is not enough only two parameters (which determines trimer properties) to describe the the four-boson system.
- Four-body scale moving two successive tetramers below a given trimer
- Model independence of the limit cycle comparison with other models
- No more than 3 tetramers between successive Efimov trimers for $a
 ightarrow \pm \infty$
- range correction $r_0 > 0$: widens the 3B and 4B scaling functions
- range correction shifts the position of the four-atom losses
- Shift of the four-atom loss peaks found in a trapped cold Cesium gas close to a FB resonance can be associated with range effects
- Interwoven trimer-tetramer states?
- Scattering atom-trimer, dimer-dimer ...?
- More bosons?

- Conclusion

- More bosons

Six-body problem in Yakubovsky scheme

Few-Body Systems July 2011, Volume 51, Issue 1, pp 27-44

The Six-Nucleon Yakubovsky Equations for [°] *He*

W. Glöckle, H. Witała

- 5 coupled Yakubovsky integral equations for 6 identical particles
- 5 Jacobi momenta for each Yakubovsky component

First attempt for solution of 6B Yakubovsky equations: two-neutron Halo nucleus ⁶He

- Two coupled equations for the halo structure of the two loosely bound neutrons with respect to the core nucleons
- separable s-wave nucleon-nucleon interaction

Work in progress in collaboration with E. Ahmadi Pouya, M. Harzchi and S. Bayegan (Tehran few-body group)

Thank you :)¹

Three- and Four-body scaling plots

- Supporting slides

4B limit cycle: scaling plot

4B Limit Cycle: Scaling Plot

▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

4B limit cycle: scaling plot

3B and 4B Interwoven Cycles

The fate of tetramers: cross the trimers thresholds...

- Supporting slides

- 4B limit cycle: scaling plot

New analysis of the peaks of the four-atom losses for ⁷Li

Dike, Pollack, Hulet arxiv:1302.0281; Pollack, Dries, Hulet, Science (2009)

- ⁷Li resonance is not open-channel dominated;
- Effective range expansion in lowest order fails for coupled-channels
- Relative change of the three- and four-body short-range scales (induced few-body forces from the coupled-channel potential).