Universality and Scaling in Shallow Bound States

Mario Gattobigio

Seattle, 13 May 2014

Outline

Efimov Physics

Efimov Effect Discrete Scale Invariance

Finite-range Effect

3-Body Bound States Scattering Length Recombination Measured energies

N-body Universality N-Body States Universality

Outline

Efimov Physics

Efimov Effect Discrete Scale Invariance

Finite-range Effect

3-Body Bound States Scattering Length Recombination Measured energies

N-body Universality N-Body States Universality Efimov Effect

Efimov Effect

Polar coordinates

$$(H)^2 = (E_3 + E_2)/(\hbar^2/m)$$

tan² $\xi = E_3/E_2$

Polar coordinates

$$(H)^2 = (E_3 + E_2)/(\hbar^2/m)$$

tan² $\xi = E_3/E_2$

Polar coordinates

 $(H)^2 = (E_3 + E_2)/(\hbar^2/m)$ tan² $\xi = E_3/E_2$

For each ξ

$$H^{n+1}/H^n \rightarrow 1/22.7$$

Polar coordinates $(H)^2 = (E_3 + E_2)/(\hbar^2/m)$ $\tan^2 \xi = E_3/E_2$

For each ξ

$$H^{n+1}/H^n \rightarrow 1/22.7$$

 $(H)^2 = (E_3 + E_2)/(\hbar^2/m)$ $\tan^2 \xi = E_3/E_2$

$$H^{n+1}/H^n \rightarrow 1/22.7$$

$$1^{\circ}/11^{\circ} \rightarrow 1/22.1$$

$$=\frac{\hbar^2\kappa_*^2}{m^2}e^{-2(n-n^*)\pi/s_0}e^{\Delta(\xi)/s_0}$$

$$\begin{cases} E_3^n/(\hbar^2/ma^2) = \tan^2 \xi \\ \kappa_* a = e^{(n-n^*)\pi/s_0} \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} \end{cases}$$

DSI ⇒ Universal form of observables Log-periodic functions (cfr. Sornette)

DSI ⇒ Universal form of observables Log-periodic functions (cfr. Sornette)

• Zero-range interaction ($\ell = 0$)

 DSI ⇒ Universal form of observables Log-periodic functions (cfr. Sornette)

• Zero-range interaction ($\ell = 0$)

Particle-Dimer Scattering Length

$$a_{AD}/a = d_1 + d_2 \tan[s_0 \ln(\kappa_* a) + d_3]$$

• d₁, d₂, d₃ Universal Constants

 DSI ⇒ Universal form of observables Log-periodic functions (cfr. Sornette)

• Zero-range interaction ($\ell=0$)

Particle-Dimer Scattering Length

 $a_{AD}/a = d_1 + d_2 \tan[s_0 \ln(\kappa_*a) + d_3]$

• d₁, d₂, d₃ Universal Constants

Recombination Rate at the threshold

$$K_{3} = \frac{128\pi^{2}(4\pi - 3\sqrt{3})}{\sinh^{2}(\pi s_{0}) + \cosh^{2}(\pi s_{0})\cot^{2}[s_{0}\ln(\kappa_{*}a) + \gamma]} \frac{\hbar a^{4}}{m}$$

v Universal Constant

Outline

Efimov Physics

Efimov Effect Discrete Scale Invariance

Finite-range Effect

3-Body Bound States Scattering Length Recombination Measured energies

N-body Universality N-Body States Universality

Finite-range Calculations

• N-body calculation using Schrödinger Equation

Finite-range Calculations

- N-body calculation using Schrödinger Equation
- Finite-range potential

$$V(r) = V_0 e^{-r^2/r_0^2}$$

Finite-range Calculations

- N-body calculation using Schrödinger Equation
- Finite-range potential

$$V(r) = V_0 \ e^{-r^2/r_0^2}$$

• Tuning of the Scattering Length

$$\begin{cases} E_3^n/(\hbar^2/ma^2) = \tan^2 \xi \\ \kappa_* a = e^{(n-n^*)\pi/s_0} \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} \end{cases}$$

$$\begin{cases} E_{3}^{n}/(\hbar^{2}/ma^{2}) = \tan^{2}\xi \\ \kappa_{*}e^{-(n-n^{*})\pi/s_{0}} a = \frac{e^{-\Delta(\xi)/2s_{0}}}{\cos\xi} \end{cases}$$

$$\begin{cases} E_3^n/(\hbar^2/ma^2) = \tan^2 \xi \\ \kappa_*^n a = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} \end{cases}$$

$$\begin{cases} E_3^n/(\hbar^2/ma^2) = \tan^2 \xi \\ \kappa_*^n a = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} \end{cases}$$

$$\begin{cases} E_3^n/(\hbar^2/ma^2) = \tan^2 \xi \\ \kappa_*^n a = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} \end{cases}$$

$$\begin{cases} E_3^n/(\hbar^2/ma^2) = \tan^2 \xi \\ \kappa_*^n a = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} \end{cases}$$

$$\begin{cases} E_3^n / (\hbar^2 / m a_B^2) = \tan^2 \xi \\ \kappa_*^n a_B = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} - \Gamma_n^3 & \frac{\hbar^2}{m a_B^2} = \begin{cases} \text{Bound State} & a > 0 \\ \text{Virtual State} & a < 0 \end{cases} \end{cases}$$

$$\begin{cases} E_3^n / (\hbar^2 / m a_B^2) = \tan^2 \xi \\ \kappa_*^n a_B + \Gamma_n^3 = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} & \frac{\hbar^2}{m a_B^2} = \begin{cases} \text{Bound State} & a > 0 \\ \text{Virtual State} & a < 0 \end{cases} \end{cases}$$

$$\begin{cases} E_3^n / (\hbar^2 / m a_B^2) = \tan^2 \xi \\ \kappa_*^n a_B + \Gamma_n^3 = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi} & \frac{\hbar^2}{m a_B^2} = \begin{cases} \text{Bound State} & a > 0 \\ \text{Virtual State} & a < 0 \end{cases} \end{cases}$$

 $a_{AD}/a = d_1 + d_2 \tan[s_0 \ln(\kappa_* a) + d_3]$

 $a_{AD}/a = d_1 + d_2 \tan[s_0 \ln(\kappa_* a) + d_3]$

 $a_{AD}/a_B = d_1 + d_2 \tan[s_0 \ln(\kappa_* a_B + \Gamma_*) + d_3]$

 $a_{AD}/a_B = d_1 + d_2 \tan[s_0 \ln(\kappa_* a_B + \Gamma_*) + d_3]$

$$\frac{K_3}{\hbar a^4/m} = \frac{128\pi^2(4\pi - 3\sqrt{3})}{\sinh^2(\pi s_0) + \cosh^2(\pi s_0)\cot^2[s_0\ln(\kappa_*a) + \gamma]}$$

 $\frac{K_3}{\hbar a_B{}^4/m} = \frac{128\pi^2(4\pi - 3\sqrt{3})}{\sinh^2(\pi s_0) + \cosh^2(\pi s_0)\cot^2[s_0\ln(\kappa_*a_B + \Gamma_+) + \gamma]}$

 $\frac{K_3}{\hbar a_B{}^4/m} = \frac{128\pi^2(4\pi - 3\sqrt{3})}{\sinh^2(\pi s_0) + \cosh^2(\pi s_0)\cot^2[s_0\ln(\kappa_*a_B + \Gamma_+) + \gamma]}$
Experimental data

Olga Machtey, Zav Shotan, Noam Gross, and Lev Khaykovich Phys. Rev. Lett. 108, 210406 (2012)

Experimental data

Olga Machtey, Zav Shotan, Noam Gross, and Lev Khaykovich Phys. Rev. Lett. 108, 210406 (2012)

Outline

Efimov Physics

Efimov Effect Discrete Scale Invariance

Finite-range Effect

3-Body Bound States Scattering Length Recombination Measured energies

N-body Universality N-Body States Universality

N-body Efimov Plot

N-body Efimov Plot

• Two four-body states for each three-body state

N-body Efimov Plot

- Two four-body states for each three-body state
- Two five-body states for each four-body state

N-body Efimov Plot

- Two four-body states for each three-body state
- Two five-body states for each four-body state
- Two six-body states for each five-body state

N-body Efimov Plot

- Two four-body states for each three-body state
- Two five-body states for each four-body state
- Two six-body states for each five-body state

Universal Formula

$$E_N^n/E_2 = an^2 \xi$$
 $\kappa_n^N a_B + \Gamma_n^N = rac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$

Universal Formula

$$E_N^n/E_2 = \tan^2 \xi$$
$$\kappa_n^N a_B + \Gamma_n^N = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$$

Efimov Straighteners

.

Data on Efimov curve

$$y = \sin \xi \qquad y/x = \tan \xi$$

$$x = \cos \xi \qquad \Rightarrow \qquad x = \cos \xi(x, y) \qquad \qquad E_3^0/E_2 = \tan^2 \xi$$

$$\kappa_0^3 a_B + \Gamma_0^3 = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$$

Data on Efimov curve

$$y = \sin \xi \qquad y/x = \tan \xi$$
$$x = \cos \xi \qquad x = \cos \xi(x, y)$$

$$E_3^0/E_2 = \tan^2 \xi$$

 $\kappa_0^3 a_B + \Gamma_0^3 = rac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$

$$\gamma(\xi) \stackrel{\text{def}}{=} \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$$

 $y = \sin \xi \qquad y/x = \tan \xi$ $x = \cos \xi \qquad x = \cos \xi(x, y)$

Data on Efimov curve

$$E_3^0/E_2 = \tan^2 \xi$$

 $\kappa_0^3 a_B + \Gamma_0^3 = rac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$

$$\mathbf{y}(\xi) \stackrel{\text{def}}{=} \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$$

$$V(r) = V_0 \ e^{-r^2/r_0^2}$$

Universality up to N = 16

 $\kappa_4=2.147\kappa_3$ - Deltuva, Few-Body Syst 54, 569 (2013)

References and Collaborators

 $(1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 2)^{-1} = (1 + 1)^{-1} = (1 +$

References and Collaborators

 $(1 + 1)^{-1} = (1 + 1)^{-1} = (1 + 2)^{-1} = (1 + 1)^{-1} = (1 + 2)^{-1} = (1 + 1)^{-1} = (1 + 1)^{-1}$

References and Collaborators

References and Collaborators

Finite-Range corrections A. Kievsky, M.G. Phys. Rev. A 87, 052719 (2013)

Recombination at the threshold E. Garrido, M.G., A. Kievsky Phys. Rev. A 88, 032701 (2013) Universality and Scaling M.G., A. Kievsky arXiv:1309.1927 [cond-mat.quant-gas]

References and Collaborators

Finite-Range corrections A. Kievsky, M.G. Phys. Rev. A 87, 052719 (2013)

Recombination at the threshold E. Garrido, M.G., A. Kievsky Phys. Rev. A 88, 032701 (2013) Universality and Scaling M.G., A. Kievsky arXiv:1309.1927 [cond-mat.quant-gas]

A. Kievsky, N.K. Timofeyuk, M.G. arXiv:1405.2371 [cond-mat.quant-gas]

References and Collaborators

Finite-Range corrections A. Kievsky, M.G. Phys. Rev. A 87, 052719 (2013)

Recombination at the threshold E. Garrido, M.G., A. Kievsky Phys. Rev. A 88, 032701 (2013) Universality and Scaling M.G., A. Kievsky arXiv:1309.1927 [cond-mat.quant-gas]

Study up to N = 16 A. Kievsky, N.K. Timofeyuk, M.G. arXiv:1405.2371 [cond-mat.quant-gas]

Thanks!