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Three-boson wave function:   

Weakly bound system wave function & contact interaction (3d) 

+   (1à2)  +  (1à3) 

q1 

R1 

(1) 

(2) (3) 



Zero-range 3-boson  equation: Thomas-Efimov effect (3d) 
Skorniakov and Ter-Martirosian equations (1956)  
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  Method: Hamiltonian for Subtracted 3B equations (3d) 
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The choice of n is made by requiring the minimal number of subtractions which gives a finite T -matrix by solving of
Eq. (48). By counting the momentum powers in the loop integrals from the iteration of the T -matrix equation, one can
determine n for different singular terms in potentials like (47). The transition matrix has a parametric dependence on
µ, which can be moved without changing the T -matrix, as long as the driven term runs with µ, as a solution of a RG
equation [165].

Applications to NN scattering [166,167] with potentials at next-to-next-to-leading-order (N2 LO) in chiral effective
theory [45], shows the practical use of the subtractive renormalization method. The construction of the driven term by
the recursive formula (49) is discussed in detail in [166,167] up to d-waves. In particular, the one-pion exchange plus
a contact interaction in the 3S1–3D1 coupled waves has been renormalized with one subtraction [161] and the problem
presents a limit cycle [231]. Further implementations of subtractive renormalization to treat the scattering amplitude in
chiral effective theory is found in [232,233]. Applications of contact interactions tomodel one-neutron halowere performed
for s-waves [11] and in p-waves [117], and in Section 3.2 the method of subtracted equations for the scattering amplitudes
with contact potentials is reviewed for both the cases.

3.1.1. Renormalized Hamiltonian
The renormalized Hamiltonian (fixed point) should have the property to be stationary in the parametric space of

Hamiltonians, as a function of the subtraction point [228]. At the arbitrary subtraction point the T -matrix is known as
input to fix the Hamiltonian. A sensible theory of singular interactions exists if and only if the subtraction point can move
without affecting the physics of the renormalized theory [229]. This property is realized through the vanishing derivative
of the renormalized Hamiltonian, in respect to the renormalization scale, which in our context is the subtraction point. This
implies in the independence of the T -matrix in respect to the arbitrary subtraction scale, and in the renormalization group
equations for the scattering amplitude.

The renormalized Hamiltonian is build starting from the subtracted T -matrix equation (48), which is composed by the
free Hamiltonian (H0) and the renormalized potential (VR) [168]:

HR = H0 + VR. (51)
The Hamiltonian HR and the potential VR should be ‘fixed-point’ operators, as they do not depend on the subtraction point
and from that the transition matrix. The T -matrix is a solution of the scattering equation corresponding to the fixed-point
Hamiltonian:

T (E) = VR + VRG(+)
0 (E)T (E), (52)

which is exactly equivalent to the subtracted form (48). The renormalized potential comes by comparing (48) with (52):

VR = [1 + V (n)G(+)
0 (E) (1 � (�1)n(µ2 + E)nGn

0(�µ2))]�1V (n). (53)
The above fixed-point interaction is not well defined for singular interactions. Nevertheless, the corresponding T -matrix is
finite, from the equivalence of the scattering equation with the n-subtracted T -matrix equation. Essentially, in addition to
the renormalization subtraction procedure that was used in Ref. [165], it is satisfactory to have at hand the renormalized
fixed-point interaction (53), with the purpose to relate to other approaches that make use of Hamiltonian diagonalization
methods to solve problems with singular potentials.

The operator VR is itself singular for contact interactions, we could also employ an ultraviolet momentum cutoff (⇤),
defining a regularized interaction, to obtain the regularized T -matrix equation. By performing the limit⇤ ! 1, the results
for observables converge to the ones obtained through the direct use of the renormalized interaction. In particular, it implies
that the eigenvalues of a renormalized Hamiltonian are stable in the limit ⇤ ! 1 (see e.g. [168]).

3.1.2. Renormalization group invariance
The subtraction point in the renormalized interaction (53) is arbitrary and can be moved without affecting the physics

of the model. The invariance under dislocations in µ requires that the driving term V (n) of subtracted equation should
be changed by a definite prescription. The coefficients that appear in the driving term V (n) have to evolve according to
the renormalization group method. The physical condition to derive the prescription to modify V (n) without altering the
predictions of the theory, corresponds to the independence of the renormalized potential VR on the subtraction point, which
reads:

@VR

@µ2 = 0 and
@HR

@µ2 = 0. (54)

This states that the renormalized Hamiltonian does not depend on µ; it is a fixed-point Hamiltonian in this respect and
therefore the T -matrix, which is a solution of the scattering equation (52), and therefore @T (E)

@µ2 = 0. The renormalization
group equation, satisfied by the driving term V (n) of the subtracted scattering equation is derived from the vanishing
derivative of the renormalized potential in respect to µ [168], and it results in:

@V (n)

@µ2 = �V (n) @G
(+)
n (E; �µ2)

@µ2 V (n), (55)
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an associated fixed-point (renormalized) Hamiltonian. The general concept of fixed-point Hamiltonians can be found in
[224–228]. The fixed-point Hamiltonian should have the property to be stationary in the parametric space of Hamiltonians,
as a function of the subtraction point [228]. The subtraction point is the scale at which the quantum mechanical scattering
amplitude is known [165]. In this context, the renormalization scale is given by an arbitrary subtraction point [229]. A
sensible theory of singular interactions exists if and only if the subtraction point slides without affecting the physics of the
renormalized theory [229]. This property is realized through the vanishing derivative of the renormalized Hamiltonian, in
respect to the renormalization scale. This implies in the independence of the T -matrix in respect to the arbitrary subtraction
scale, and in the renormalization group equations for the scattering amplitude. In one example, the discrete eigenvalues of a
renormalized two-body Hamiltonian for a contact plus a Yukawa potential has been calculated and the eigenvaluesmatches
the poles of the renormalized T -matrix in the negative energy region (see [168]).

A point-like Dirac-delta interaction in the configuration space, which is given by a constant in momentum space, i.e., the
first term of the bare interaction (47) with i = j = 0, has been used to study the s-wave three-particle problem of two-
neutrons and a core. This is the case of the halo nuclei 11Li, 14Be, 20C [11,70–72,74,75,230] and, more recently, 22C [6].
The model needs an ultraviolet scale to regularize the kernel of the correspondent three-body equations. The need of a
new parameter, beyond the two-particle scattering lengths to determine the properties of the low-energy s-wave state of
n–n–c systems in the state of maximum symmetry, is a consequence of the Thomas–Efimov effect, extensively discussed in
Section 2.

The subtraction technique was applied to regularize the three-body zero-range equations with Dirac-delta interaction
[157] and in particular to n–n–c systems [70]. The step to renormalize themodel is done after the regularization of the kernel
of the three-body equations by introducing a subtraction at an energy scale �µ2

3, as exemplified in Section 2 for the three-
boson problem. The subtraction parameter should be traded with a three-body physical observable in the renormalization
procedure and let to infinity. Then, s-wave observables are determined by the correlation with a known physical quantity
which achieves a limit cycle and the scaling function is determined (see Section 2).

The subtraction method used to regularize and renormalize the three-body zero-range model is associated with a
renormalized Hamiltonian (fixed point), which builds the subtracted form of the scattering equation resulting in a finite
three-body T -matrix. The renormalized interaction can be separated in a two-body part and a three-body part which
completely render the three-body T -matrix finite. The physical three-body scale is brought to the system by the three-body
part of the renormalized interaction. The consequences of the renormalization group invariance of the three-body theory,
like the Callan–Symanzik equation, and properties such as scale invariance and universality are discussed in this context.
Furthermore, the method developed in Ref. [155], with a three-body potential that has a strength running to a limit-cycle,
can be related to the subtraction method where the renormalized Hamiltonian interaction demands a three-body term.

There is no room for a four-body scale in the neutron-halo systems, which is expected just to be sensitive up to the
short-range effects carried by a three-body scale as the Pauli principle forbids configurations with three or more neutrons
close together. However, in general, new limit cycles are expected in the four-boson problem in s-wave with the zero-
range two-body interaction, which requires another regularization parameter and a scale. The existence of four-body limit
cycles, which aremanifested in a scaling function correlating four-body observables, was numerically demonstrated in Refs.
[172,173]. In a broad sense, in nuclear physics the sensitivity on the number of short range scales stops at the three-body
level, because the nuclear interaction is dominated by two-body forces, such that one can verify the strong correlation
between the triton the and 4He binding energy, as given by the Tjon line [140].

3.1. Subtracted T-matrix equations

A subtracted Lippmann–Schwinger equation allows to treat singular interactions of delta-type and higher derivatives, as
e.g. the potential (47) and construct the RG equations for the nth order subtracted T -matrix. The scattering equation with n
subtractions at an energy �µ2 is given by [165]:

T (E) = V (n)(E, �µ2) + (�1)n(E + µ2)nV (n)(E, �µ2)G(+)
0 (E)Gn

0(�µ2)T (E) (48)

where the free Green’s function for the two-body system, with the appropriate boundary condition, is G(+)
0 (E) = (E + i� �

H0)
�1 and the free Hamiltonian is H0. The driven term is built recursively:

V (n)(E, �µ2) = (1 + (�1)n(E + µ2)n�1V (n�1)(E, �µ2)Gn
0(�µ2))�1V (n�1)(E, �µ2). (49)

The form of the n-subtracted T -matrix equation is constructed by performing successive subtractions of the scattering
equation in �µ2, that for convenience is chosen to be negative. For a regular potential (48), it is exactly equivalent to the
Lippmann–Schwinger equation T (E) = V + VG(+)

0 (E)T (E), provided that V (0)(E, �µ2) = V .
For singular interactions, such as the one given by Eq. (47), the higher-order singularities of the two-body potential are

introduced in the driving term of the n-subtracted T -matrix through V (n)
sing(�µ2). The finite renormalized strengths of the

interaction, V (n)
sing(�µ2), are determined by physical observables. The driving term reads:

V (n)(E, �µ2) = (1 + (�1)n(E + µ2)n�1V (n�1)(E, �µ2)Gn
0(�µ2))�1V (n�1)(E, �µ2) + V (n)

sing(�µ2). (50)

n-subtracted T-matrix equation (for Dirac-delta n=1) 

Subtracted-Faddeev equations 3B:  

Invariance of T-matrix by dislocations of the subtraction point: 

Renormalized Hamiltonian: 
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where particles are labeled by i, j, k, and given cyclically as [(ijk) = (123), (231), (312)]. The argument of the two-body
T -matrix is the energy of the two-particle subsystem in the center-of-mass of the three-body system. The Jacobi relative
momentum canonically conjugated to the relative coordinate of the particle k to the center-of-mass of the pair (ij) is qk, and
the corresponding reduced mass is mij,k ⌘ (mi + mj)mk/(mi + mj + mk) with mi the mass of the particle i = 1, 2, 3. The
matrix elements in momentum space of the renormalized two-body transition operator for the zero-range interaction are
given by

hEp0|t(ij)(E)|Epi = 1
4⇡2mij(±

p
2mij|E(ij)| + i

p
2mijE)

, (77)

wheremij ⌘ mimj/(mi +mj) is the reducedmass of the two-particle subsystem (ij), with E(ij) being the bound (+) or virtual
(�) energy state.

The subtracted integral equation for the three-body T -matrix is formally given by (48) with n = 1 [160], which is enough
to avoid the Thomas collapse4:

T (E) = T (�µ2
(3)) + T (�µ2

(3)) (G(+)
0 (E) � G0(�µ2

3))T (E)

=
X

(ij)

t(ij)
✓

�µ2
3 � q2k

2mk(ij)

◆
[1 + (G(+)

0 (E) � G0(�µ2
3))T (E)]. (78)

Each term in the above sum is a Faddeev component of the three-body T -matrix. By writing the three-body T -matrix as a
sum of the three components, the Faddeev equations are derived from (78) and are given by:

Tk(E) = t(ij)
✓
E � q2k

2mij,k

◆
[1 + (G(+)

0 (E) � G0(�µ2
3)) (Ti(E) + Tj(E))]. (79)

The bound-state equation comes from (79) considering the pole of the T -matrix at the corresponding energy. One example
obtained in this form is the regularized Skorniakov and Ter-Martirosian equation for the three-boson bound state (see
Eq. (22)). The subtracted three-body scattering equation (79) leads to the Skorniakov and Ter-Martirosian original model
when naively one let µ3 ! 1. However, the scale invariance of the zero-range three-body T -matrix equation in the
ultraviolet momentum region is broken by the introduction of the finite scale µ3, which stops the Thomas collapse in the
s-wave state of maximum symmetry.

The only inputs in the Faddeev integral equations are given by ✏(ij) = E(ij)/µ
2
3. Therefore, the observables are determined

by dimensionless parameters. As µ3 ! 1, an infinite tower of three-body states appear. The correlations between three-
body observables tend to achieve a limit cycle, where the dependence onµ3 does not matter anymore and the theory in this
sense is fully renormalized.
• Renormalized three-body Hamiltonian

The renormalized three-body interaction Hamiltonian, H(3)
RI , is a solution of (53) with n = 1, where V (1) is identified with

(76) at the subtraction point �µ2
3. An integral equation can be written as:

H(3B)
RI =

X

(ij)

t(ij)
✓

�µ2
3 � q2k

2mk(ij)

◆
(1 � G0(�µ2

3)H
(3B)
RI ). (80)

It is decomposed in three-terms in straight analogy to the Faddeev decomposition of the T -matrix:

H(3B)
RI =

3X

k=1

H(3B)
RI(k), (81)

where

H(3B)
RI(k) = t(ij)

✓
�µ2

3 � q2k
2mk(ij)

◆
(1 � G0(�µ2

3)H
(3B)
RI ). (82)

To obtain the set of equations which have the Faddeev components of the renormalized Hamiltonian as solution, we make
use of the following form of the renormalized potential of the (ij) subsystem, which is given by Eq. (53) with n = 1:

V (2B)
R(ij) =


1 + t(ij)

✓
�µ2

3 � q2k
2mij,k

◆
G0(�µ2

3)

��1

t(ij)
✓

�µ2
3 � q2k

2mij,k

◆
, (83)

4 Note that for n = 1 the driving term satisfies: V (1)(E, �µ2) = T (�µ2).
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where the two-body subsystem is immersed in the three-body Hilbert space. The argument of t(ij) can be chosen arbitrarily,
as long as the two-body T -matrix is a solution of the one-subtracted equation, or it is found by evolving the appropriate RG
equation.

By algebraic manipulation of Eq. (82), one gets:

H(3B)
RI(k) = V (2B)

R(ij)[1 � G0(�µ2
(3)) (H(3B)

RI(i) + H(3B)
RI(j))]. (84)

It is recognized from (84) that the renormalized three-body interaction can be written in a way where the two-body
renormalized potential is separated out:

H(3B)
RI =

X

(ij)

V (2B)
R(ij) + V (3B)

R . (85)

The components of the three-body renormalized potential are finally defined as:

V (3B)
R =

3X

k=1

V (3B)
R(k), (86)

with each component given the integral equation:

V (3B)
R(k) = �V (2B)

R(ij)G0(�µ2
3) (H(3B)

RI(i) + H(3B)
RI(j)), (87)

and the solution of Eq. (87) is:
2

664

V (3)
R(1)

V (3)
R(2)

V (3)
R(3)

3

775 =
 

1

1 + K̂RG0(�µ2
3)

� 1

!
2

664

V (2)
R(23)

V (2)
R(31)

V (2)
R(12)

3

775 , (88)

where the three-body kernel K̂R is given by:

K̂R =

2

664

0 V (2)
R(23) V (2)

R(23)

V (2)
R(31) 0 V (2)

R(31)

V (2)
R(12) V (2)

R(12) 0

3

775 · (89)

The three-body renormalized potential (86) that carries subtraction point is the counterpart in the subtraction method of
the EFT three-body potential [155] necessary to renormalize the zero-range Skorniakov and Ter-Martirosian equations. As in
the case of the renormalization of the two-body potential, the ill-defined integrals of the three-body formalism also requires
cutoffs, if one wants to diagonalize the corresponding three-body Hamiltonian. After the diagonalization is performed, the
cutoff can be removed. The subtraction and the EFT methods to treat the three-body problem should agree in respect to the
limit-cycles which defines the scaling functions expressing correlations between three-body observables.

3.4. Effective field theory and halo nuclei

Recent reviews on effective field theory program describe in detail its application to halo and light nuclei (see e.g.
[47,111,236]). Here, we aim to discuss the relation of the EFT method with the renormalization techniques exposed in the
preceding subsection. In Section 4,we review calculations of halo nuclei that are also consistentwith EFT approach at leading
order as well.

The method of effective field theory used to investigate the nuclear force problem keeping pion exchanges and chiral
constraints (see e.g. [45,109,141]) aims for a systematic expansion of the potential, while contact terms consistent with the
symmetries of the problem are introduced to manage the short-range physics effects in the low-energy nuclear properties.
The success of this program relies on the short-range property of the nuclear interaction, which allows to identify two
well separated scales: a low-momentum and a high-momentum scales. For few-nucleon problems the nucleon–nucleon
scattering lengths and the pion range are identified with these scales. The unknown short-range part of the interaction
is expanded by contact terms, which can be encoded by an effective non-relativistic Lagrangian with local terms carrying
powers of derivatives of the fermion fields.

The two-particle interaction originated by using the field-theoretic language without pions is equivalent to the
introduction of separable potentials in an effective quantum mechanics framework (see e.g. [237]). As an example we
have the separable s-wave contact potential given by Eq. (47). Although, the matrix elements of the potential has a finite
number of momentum powers, the expansion of k cot �, Eq. (60), has an arbitrary power of k2. That happens in part because
the RG evolution introduces a parametric dependence on the energy for the four-term separable potential of (47). The
correspondent renormalized Hamiltonian (62) depends on the energy with any power of k2. Of course one can control the
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Zero-range 3-boson  equation in 2d 

2

procedure is not needed for three particles, i.e. there is
no need for a κ2D

∗
. In the universal limit in 2D this im-

plies that the three-body energies must be proportional
to the dimer energy.
In this paper, we study identical bosons in 2D with at-

tractive short-range interactions and use few-body meth-
ods to determine C2 and C3. This is achieved by com-
puting the momentum distribution for three identical
bosons, in particular its asymptotic behavior for large
momenta. We provide both analytical and numerical ev-
idence that support a universal tail behavior that is the
same for both ground and excited states. This is the
first time that C3 has been discussed in 2D to the best of
our knowledge. Moreover, we show that the sub-leading
term has a novel behavior that is radically different in
2D as compared to 3D. Based on this fact, we propose
to use the momentum distribution to measure the effec-
tive dimensionality of a quantum system in the universal
regime. Our study is thus a first step in exploring effects
of dimensional crossover on higher-order correlations in
many-body systems.

II. METHOD

We consider three identical bosons with mass m.
We use attractive two-body interactions of zero range
and parameterized by the dimer binding energy, E2.
The two-body T-matrix for energy E is thus τ(E) =
(−2πln

√

−E/E2)−1 in units where ! = m = 1 [28, 33,
34]. By using Faddeev decomposition and bosonic sym-
metry, the three-body wave function, Ψ, can be written

Ψ (q,p) =
f(q) + f

(
∣

∣p− q
2

∣

∣

)

+ f
(
∣

∣p+ q
2

∣

∣

)

E3 + p2 + 3
4q

2
, (1)

where p = 1
2 (k1 − k2) and q = 2

3k3 − 1
3 (k1 + k2) are

Jacobi momenta, ki , i = 1, 2, 3 the lab momenta, and
E3 is the three-body energy. The spectator functions,
f(q), satisfy the set of integral equations

f (q) = 2τ

(

−E3 −
3

4
q2

)
∫

d2k
f (k)

−E3 − q2 − k2 − k · q
.

(2)

Armed with the solution to this equation, the momentum
distribution is

n(q) =

∫

d2p

∣

∣

∣

∣

∣

f(q) + f
(
∣

∣p− q
2

∣

∣

)

+ f
(
∣

∣p+ q
2

∣

∣

)

E3 + p2 + 3
4q

2

∣

∣

∣

∣

∣

2

. (3)

Following the discussion in Ref. [9], we define four com-
ponents nm(q) =

∑4
i=1 n

m
i (q), where m = 0 denotes the

ground state andm = 1 the excited state. The individual
components are

nm
1 (q) = f2

m(q)

∫

d2p
1

(

Em
3 + p2 + 3

4q
2
)2 =

πf2
m(q)

Em
3 + 3

4q
2
,

(4)

nm
2 (q) = 4fm(q)

∫

d2k
fm(k)

(Em
3 + k2 + q2 + k · q)2

, (5)

nm
3 (q) = 2

∫

d2k
f2
m(k)

(Em
3 + k2 + q2 + k · q)2

, (6)

nm
4 (q) = 2

∫

d2k
fm(k)fm (|k− q|)

(Em
3 + k2 + q2 + k · q)2

, (7)

where m on f(q) and E3 labels the state. Throughout,
we measure all momenta in units of

√
E2. Note that the

normalization we use is
∫

d2kn(k) = 1.

III. LARGE-MOMENTUM LIMIT

The leading order (LO) behavior of the momentum
distribution exhibits the same C2k−4 tail in 1D, 2D, and
3D since it derives solely from two-body physics [35].
However, C2 depends on what system is addressed and
whether few-body bound states are present. For bosons
in 3D, the tail is [8, 9]

n3D(k) →
1

k4
C2 +

cos[2s0ln(
√
3k/κ∗) + φ]

k5
C3, (8)

where s0 = 1.00624 and φ = −0.87280 are constants that
can be determined from a full solution of the three-bosons
problem in 3D at unitarity [9] with trimer energyE3 = κ2

∗

(using κ3D
∗

= κ∗ for simplicity). The log-periodic three-
body next-to-leading order (NLO) term derives from the
Efimov effect, whose solution can be used to determine
3(2π)3C2 = 53.097/κ∗ and 3(2π)3C3 = −89.263/κ2

∗
[9].

The factor 3(2π)3 is due to a difference in definition of
n(k) in Eq. (3) in comparison to Ref. [9]. As discussed
above, in 2D there is no Efimov effect for three bosons.
The log-periodic behavior is therefore not expected a pri-
ory. As we will now demonstrate, the distribution in 2D
is very different. It has the structure

n2D(k) →
1

k4
C2 +

ln3(k)

k6
C3, (9)

and we see indeed a very different NLO term. We note
that the NLO term is different from the fermionic case
discussed in Ref. [17] where no ln(k) factors are present
and implies that quantum statistics plays a role in deter-
mining the functional form of the NLO term. Further-
more, it implies that the NLO term is in fact an effective
measure of dimensionality of bosonic systems in the uni-
versal regime. We will return to this point below.
To derive the tail behavior in Eq. (9), one needs to de-

termine first the spectator function, fm(q), in Eq. (2)
for large q. This can be done analytically and we
provide the details in Appendix A. The result is that
fm(q) → Amln(q)/q2, where Am is a state-dependent
constant. This function can now be inserted into Eqs. (4)

Efimov effect disappears: 
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where ! is a large-momentum cutoff that will be useful
below. Taking ! ≫

√
E3, the spectator function in Eq. (A6)

is approximately given by

f (q) ≈ 2α(q,E3)
∫ !

0
dk

kf (k)

(E3 + q2 + k2)
√

1 − q2k2

(E3+q2+k2)2

+ 2α(q,E3)
∫ ∞

!

dk
kf (k)

(q2 + k2)
√

1 − q2k2

(q2+k2)2

. (A7)

For q → ∞, the first term on the right-hand side of Eq. (A7)
tends to zero in the following manner:

f1(q) ≈ 2
q2 ln q

∫ !

0
dk

kf (k)
√

1 − q2k2

(q2+k2)2

. (A8)

Now, we assume that

f (q) →
q→∞

ln q

q2
. (A9)

Inserting this ansatz and taking the limit q → ∞ in the second
term on the right-hand side of Eq. (A7) one finds

f2(q) ≈ 2
ln q

∫ ∞

!

dk
k ln k

k2(q2 + k2)
√

1 − q2k2

(q2+k2)2

→ 2
ln q

∫ ∞

!

dk
ln k

k(q2 + k2)
, (A10)

when q → ∞. Changing variables to y = k/q, the second
spectator function term becomes

f2(q) ≈ 2
q2 ln q

∫ ∞

!/q

dy

y

ln y + ln q

(1 + y2)
, (A11)

which can be split into

f2(q) ≈ 2
q2 ln q

[∫ ∞

!/q

dy

y

ln y

(1 + y2)

+ ln q

∫ ∞

!/q

dy

y

1
(1 + y2)

]
. (A12)

The first integral term on the right-hand side of Eq. (A12) is

∫ ∞

!/q

dy

y

ln y

(1 + y2)
= 1

2
ln2 y

1 + y2

∣∣∣∣
∞

!/q

+
∫ ∞

!/q

dy
y ln2 y

(1 + y2)2

→ −1
2

ln2 !

q
= −1

2
ln2 q (A13)

for q → ∞. The second term on the right-hand side of
Eq. (A12) is

∫ ∞

!/q

dy

y

1
(1 + y2)

= ln y

1 + y2

∣∣∣∣
∞

!/q

+ 2
∫ ∞

!/q

dy
y ln y

(1 + y2)2

→ − ln
!

q
= ln q (A14)

FIG. 3. (Color online) Spectator function f (q) for the ground
state calculated numerically (black solid line) and using the ansatz
f (q) = A0

ln q

q2 (red dashed line). The solid (black) line tends to
oscillate around the dashed (red) one as q → ∞ due to finite
numerical precision.

for q → ∞. Inserting the results of Eqs. (A13) and (A14) in
Eq. (A11) we arrive at

f2(q) ≈ 2
q2 ln q

(
ln2 q − 1

2
ln2 q

)
= ln q

q2
. (A15)

Collecting the results Eqs. (A8) and (A15) we conclude that
the ansatz in Eq. (A9) gives us the asymptotic behavior of the
exact spectator function.

In Fig. 3 both the spectator function obtained from the
numerical solution of the set of coupled integral equations and
the spectator function asymptotic behavior given in Eq. (A9)
for the ground state are shown. The log-log scale shows us that
both the magnitude and the line’s inclination are very close
in the region of q between 100 and 2000 for the numerical
and analytical calculations. For q > 2000, the curve which
represents the numerical solution of the integral equations
starts to oscillate around the analytical form.

APPENDIX B: MOMENTUM DENSITY ASYMPTOTIC
BEHAVIOR

The one-body momentum distribution is given by

n(q) =
∫

d2p

∣∣∣∣∣
f (q) + f

(∣∣p − q
2

∣∣) + f
(∣∣p + q

2

∣∣)

E3 + p2 + 3
4 q2

∣∣∣∣∣

2

, (B1)

and can be split into four parts through

nm(q) =
4∑

l=1

nm
l (q), (B2)
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Collecting the results Eqs. (A8) and (A15) we conclude that
the ansatz in Eq. (A9) gives us the asymptotic behavior of the
exact spectator function.

In Fig. 3 both the spectator function obtained from the
numerical solution of the set of coupled integral equations and
the spectator function asymptotic behavior given in Eq. (A9)
for the ground state are shown. The log-log scale shows us that
both the magnitude and the line’s inclination are very close
in the region of q between 100 and 2000 for the numerical
and analytical calculations. For q > 2000, the curve which
represents the numerical solution of the integral equations
starts to oscillate around the analytical form.
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The nonoscillatory term of order qB
-5 coming from n1 to n4 cancels for A =1. 

Cancellation of the subleading nonoscillatory term for other mass ratios: 

A = 0.2, 1 and 1.57 
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Single particle densities: mass imbalanced ABC systems (2d) 
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Figure 1. The difference f↵ (q) � 0
m��

ln q
q2 as a function of the momentum q . We see

that (19) exactly describes the asymptotic spectator function within our accuracy.

where we found that the integrals on the right-hand side of (16) and (17) are finite and their
contributions can be neglected when q ! 1 in comparison with the terms maintained.

In total, the spectator functions in (11) are now found by inserting (16) and (17) in (15).
Notice that the contribution from (17) has to be multiplied by ln q. With the � –� interchange,
we also get the second term on the right-hand side of (11). The leading order large-momentum
behavior of the spectator functions is therefore

lim
q!1
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Replacing f↵(q↵) in (18) by its conjectured asymptotic form, (10), we find a system of three
linear equations for the three unknowns, 0↵ = m↵�

2m��
0� + m↵�

2m��
0� , which can be rewritten as

m�� 0↵ = m↵� 0� = 0� m↵� := 0. The leading order large-momentum asymptotic behavior for
the three spectator functions is then

lim
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. (19)

This result relates the asymptotic behavior of the three spectator functions for one state. The
remaining constant 0 still depends on which excited state we consider, and furthermore, also on
the two-body masses and the two-body energies.

The derived large-momentum asymptotic behavior and the coefficients in (19) beautifully
agree with the numerical calculation. In figure 1, we plot the difference f↵ (q) � 0

m��

ln q
q2 as a
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Four-bosons in 3d with zero-range interaction 

Yamashita, Tomio,  Delfino & Frederico 
Four-boson scale near a Feshbach resonance. Europhys. Lett.75 (2006) 555 
 
• Tetramer ground state moves as a short-range scale collapses to zero with the trimer is fixed! 
• coupling between a closed and open channelsà  many-body forces in the open channel 

• Tetramer is fixed by the trimer information:  

 Platter,  Hammer, & Meissner,  
Four-boson system with short-range interactions.  Phys. Rev. A 70, 52101 (2004).         
            
 Stecher, D’Incao &Greene,  
Signatures of universal four-body phenomena and their relation to the Efimov physics Nat.Phys. 5(09)417                            
                  
 Deltuva 
Efimov physics in bosonic atom-trimer scattering, Phys. Rev. A 82, 040701(R) (2010) 
 
Gattobigio, Kievsky,Viviani, Birse, Hiyama… 
 

 4-body force near the Feshbach resonance? 
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Trajectory of four-boson bound states: one scenario… 

?! 



Problem: Position of four-atom resonant recombination
I Positions of four-atom recombination peaks (a < 0) where two

successive tetramers become unbound (blue-solid line). Cesium
atoms wide Feshbach resonances.

I (First point from the left corresponds to B4 ' 64 B3 at the unitary
limit.)
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r0 from the shift of the peaks of the four-atom losses
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Dimensional crossover transitions 3d!2d 

  Yamashita et al arXiv:1404.7002 [cond-mat.quant-gas] 

2

This is of course also one of the reasons for employing pe-
riodic boundary conditions in most contexts throughout
physics. The theoretical elegancy and tractability of cal-
culations in the three-body system is the strong incentive
that we have for pursuing this geometry.
Thomas-Efimov effect with a squeezed dimension. We

first discuss the Thomas collapse [46] and Efimov ef-
fect [3]. With periodic boundary conditions for the rel-
ative distance between the particles in the squeezed di-
mension (chosen to be z), the relative momenta along the
plane are then given by p⃗⊥ = (px, py), while

pz =
2πn

L
=

n

R
, (1)

with n = 0,±1,±2... and L = 2πR. The length of the
squeezed dimension corresponds to a radius, R, that in-
terpolates between the 2D limit for R → 0 and the 3D
limit for R → ∞. In this paper we will use a contact
(zero-range) interaction to study the continuous transi-
tion from 3D to 2D regimes. In momentum space the
matrix elements of the Dirac δ-function potential are con-
stant. This potential presents a singularity which is re-
solved by proper regularization [47] which introduces a
subtraction in the kernel of the zero-range three-boson in-
tegral equation, such that the generalized Skorniakov and
Ter-Martirosian (STM) equation [48] with a squeezed di-
mension is given by

f(q⃗⊥, n) = −2 τR

(

E3 −
3

4
(q2

⊥
+

n2

R2
)

)

×
∑

∫

d2p⊥
R

[

g0R(E)− g0R(−µ2)
]

f(p⃗⊥,m) , (2)

where

g−1

0R (E) = E − q2⊥ − p2⊥ − q⃗⊥ · p⃗⊥ −
n2

R2
−

m2

R2
+

n m
R2

. (3)

Here f(p⃗⊥,m) is the momentum-space three-body wave
function that we need to determine. The two-body T-
matrix, τR, is given by

R τ−1
R (E) =

∑

∫

d2p⊥

E − p2
⊥
− n2

R2

−
∑

∫

d2p⊥

E2 − p2
⊥
− n2

R2

, (4)

where E < 0 and we chose the bound-state pole at E2.
Throughout this paper we will use units of ! = µ = M =
1, where M is the boson mass and µ is the momentum-
space subtraction point of the regularization procedure
[47]. Performing the analytical integration over p⃗⊥ and
the sum, we have

τR(E) = −R

[

π ln

(

sinhπ
√
−ER

sinhπ
√
−E2R

)]−1

. (5)

Taking into account that the T-matrix in 2D and 3D have
different units, we recover the two limits via

τ2D(E) = lim
R→0

R−1τR(E) = −

[

π ln

( √
−E

√

|E2|

)]

−1

, (6)

which reproduces the standard 2D amplitude [47], and
for R → ∞ we obtain

τ3D(E) = lim
R→∞

τR(E) =
1

π2

[

√

E2 −
√
−E
]−1

, (7)

valid for E < 0. For continuum energies, E > 0, the an-
alytical extension in (6) and (7) can be performed from
negative to the positive energy through the upper half of
the complex energy plane. There is a subtlety in Eq. (2)
since for any R the kernel is noncompact if the subtrac-
tion term is disregarded. Therefore, to take the 2D limit
one has first to regularize Eq. (2) and then take the limit
R → 0. In addition, to get the famous 2D results of Bruch
and Tjon [36], one has to also take the limit E2 → 0.

For R → 0, the Efimov limit given by E2 → 0 dis-
appears because the homogeneous Eq. (2) reduces to its
usual 2D form. In this case, only states with n = 0 are
relevant. For higher n the kinetic energy blows up and
this makes terms with n > 0 in the kernel of the bound
state equation irrelevant. The 3D Thomas collapse (in-
finitely negative ground state three-body energy) occurs
when letting µ → ∞ in Eq. (2) after taking R → ∞. For
any finite R, the three-body ground state still collapses
for µ → ∞ as the kernel of Eq. (2) is noncompact if the
subtraction term is ignored.

Dimer energy with periodic boundary condition. Above
we considered E2 unchanged as we change R. In an ex-
periment this could be achieved by using a magnetic Fes-
hbach resonance and changing the field along with the
trap size in such a manner that E2 remains fixed. Here
we consider the case where we allow E2 to vary with R
under the physical condition that the magnetic field is
fixed and thus we have a fixed dimer energy in 3D, E3D

2 .
This implies that the second term on the right-hand side
of Eq. (4) in the limit of R → ∞ has to recover in 3D,
namely E3D

2 . This means that for finite R we must solve

∫

d3p

E3D
2 − p2

−
1

R

∑

∫

d2p⊥

E2 − p2
⊥
− n2

R2

= 0. (8)

As both terms in Eq. (8) are divergent, ultraviolet cut-
offs that are consistent with the correct 3D limit must be
introduced. It is enough to regularize the transverse mo-
mentum integral d2p⊥ in both terms of (8) with a cutoff
Λ and then take the limit Λ → ∞.

lim
Λ→∞

{
∫

∞

−∞

dy ln

[

−E3D
2 R2 + y2

−E3D
2 R2 + y2 + (ΛR)2

]

−
∞
∑

n=−∞

ln

[

E R2 − n2

ER2 − n2 − (ΛR)2

]

}

= 0 , (9)

where y ≡ Rp. Performing the analytical integration
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this makes terms with n > 0 in the kernel of the bound
state equation irrelevant. The 3D Thomas collapse (in-
finitely negative ground state three-body energy) occurs
when letting µ → ∞ in Eq. (2) after taking R → ∞. For
any finite R, the three-body ground state still collapses
for µ → ∞ as the kernel of Eq. (2) is noncompact if the
subtraction term is ignored.

Dimer energy with periodic boundary condition. Above
we considered E2 unchanged as we change R. In an ex-
periment this could be achieved by using a magnetic Fes-
hbach resonance and changing the field along with the
trap size in such a manner that E2 remains fixed. Here
we consider the case where we allow E2 to vary with R
under the physical condition that the magnetic field is
fixed and thus we have a fixed dimer energy in 3D, E3D

2 .
This implies that the second term on the right-hand side
of Eq. (4) in the limit of R → ∞ has to recover in 3D,
namely E3D

2 . This means that for finite R we must solve

∫

d3p

E3D
2 − p2

−
1

R

∑

∫

d2p⊥

E2 − p2
⊥
− n2

R2

= 0. (8)

As both terms in Eq. (8) are divergent, ultraviolet cut-
offs that are consistent with the correct 3D limit must be
introduced. It is enough to regularize the transverse mo-
mentum integral d2p⊥ in both terms of (8) with a cutoff
Λ and then take the limit Λ → ∞.

lim
Λ→∞

{
∫

∞

−∞

dy ln

[

−E3D
2 R2 + y2

−E3D
2 R2 + y2 + (ΛR)2

]

−
∞
∑

n=−∞

ln

[

E R2 − n2

ER2 − n2 − (ΛR)2

]

}

= 0 , (9)

where y ≡ Rp. Performing the analytical integration

2

This is of course also one of the reasons for employing pe-
riodic boundary conditions in most contexts throughout
physics. The theoretical elegancy and tractability of cal-
culations in the three-body system is the strong incentive
that we have for pursuing this geometry.
Thomas-Efimov effect with a squeezed dimension. We

first discuss the Thomas collapse [46] and Efimov ef-
fect [3]. With periodic boundary conditions for the rel-
ative distance between the particles in the squeezed di-
mension (chosen to be z), the relative momenta along the
plane are then given by p⃗⊥ = (px, py), while

pz =
2πn

L
=

n

R
, (1)

with n = 0,±1,±2... and L = 2πR. The length of the
squeezed dimension corresponds to a radius, R, that in-
terpolates between the 2D limit for R → 0 and the 3D
limit for R → ∞. In this paper we will use a contact
(zero-range) interaction to study the continuous transi-
tion from 3D to 2D regimes. In momentum space the
matrix elements of the Dirac δ-function potential are con-
stant. This potential presents a singularity which is re-
solved by proper regularization [47] which introduces a
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Ter-Martirosian (STM) equation [48] with a squeezed di-
mension is given by

f(q⃗⊥, n) = −2 τR

(

E3 −
3

4
(q2

⊥
+

n2

R2
)

)

×
∑

∫

d2p⊥
R

[

g0R(E)− g0R(−µ2)
]

f(p⃗⊥,m) , (2)

where

g−1

0R (E) = E − q2⊥ − p2⊥ − q⃗⊥ · p⃗⊥ −
n2

R2
−

m2

R2
+

n m
R2

. (3)

Here f(p⃗⊥,m) is the momentum-space three-body wave
function that we need to determine. The two-body T-
matrix, τR, is given by

R τ−1
R (E) =

∑

∫

d2p⊥

E − p2
⊥
− n2

R2

−
∑

∫

d2p⊥

E2 − p2
⊥
− n2

R2

, (4)

where E < 0 and we chose the bound-state pole at E2.
Throughout this paper we will use units of ! = µ = M =
1, where M is the boson mass and µ is the momentum-
space subtraction point of the regularization procedure
[47]. Performing the analytical integration over p⃗⊥ and
the sum, we have

τR(E) = −R

[

π ln

(

sinhπ
√
−ER

sinhπ
√
−E2R

)]−1

. (5)

Taking into account that the T-matrix in 2D and 3D have
different units, we recover the two limits via

τ2D(E) = lim
R→0

R−1τR(E) = −

[

π ln

( √
−E

√

|E2|

)]

−1

, (6)

which reproduces the standard 2D amplitude [47], and
for R → ∞ we obtain

τ3D(E) = lim
R→∞

τR(E) =
1

π2

[

√

E2 −
√
−E
]−1

, (7)

valid for E < 0. For continuum energies, E > 0, the an-
alytical extension in (6) and (7) can be performed from
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and Tjon [36], one has to also take the limit E2 → 0.

For R → 0, the Efimov limit given by E2 → 0 dis-
appears because the homogeneous Eq. (2) reduces to its
usual 2D form. In this case, only states with n = 0 are
relevant. For higher n the kinetic energy blows up and
this makes terms with n > 0 in the kernel of the bound
state equation irrelevant. The 3D Thomas collapse (in-
finitely negative ground state three-body energy) occurs
when letting µ → ∞ in Eq. (2) after taking R → ∞. For
any finite R, the three-body ground state still collapses
for µ → ∞ as the kernel of Eq. (2) is noncompact if the
subtraction term is ignored.

Dimer energy with periodic boundary condition. Above
we considered E2 unchanged as we change R. In an ex-
periment this could be achieved by using a magnetic Fes-
hbach resonance and changing the field along with the
trap size in such a manner that E2 remains fixed. Here
we consider the case where we allow E2 to vary with R
under the physical condition that the magnetic field is
fixed and thus we have a fixed dimer energy in 3D, E3D

2 .
This implies that the second term on the right-hand side
of Eq. (4) in the limit of R → ∞ has to recover in 3D,
namely E3D

2 . This means that for finite R we must solve

∫
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E3D
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−
1

R

∑

∫

d2p⊥

E2 − p2
⊥
− n2

R2

= 0. (8)

As both terms in Eq. (8) are divergent, ultraviolet cut-
offs that are consistent with the correct 3D limit must be
introduced. It is enough to regularize the transverse mo-
mentum integral d2p⊥ in both terms of (8) with a cutoff
Λ and then take the limit Λ → ∞.

lim
Λ→∞

{
∫

∞

−∞

dy ln

[

−E3D
2 R2 + y2

−E3D
2 R2 + y2 + (ΛR)2

]

−
∞
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n=−∞
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[

E R2 − n2
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= 0 , (9)

where y ≡ Rp. Performing the analytical integration
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and the sum we have

lim
Λ→∞

{

πR

(

√

−E3D
2 −

√

−E3D
2 + Λ2

)

− ln

(

sinhπ
√
−ER

sinhπ
√
−EΛ2R

)}

= πR
√

−E3D
2 − ln

(

2 sinhπ
√
−ER

)

= 0 . (10)

By recognizing that
√

−E3D
2 → 1/a in the zero-range

limit (where a is the two-body scattering length), the
energy of the dimer is

√

−E2 =
1

πR
sinh−1 eπR/a

2
, (11)

For R → 0 it goes to
√
−E2 ∼ (πR)−1 sinh−1 1

2 =
0.153174R−1, which does not depend on the scatter-
ing length. Therefore, for any 3D two-body subsystem -
bound or virtual - a strong deformation of the trap to-
wards 2D always binds the dimer with an energy given by
the trap energy scale (1/R2 in this case). In the unitary
limit where a → ∞ we find this bound state energy for
any finite R. This is analogous to the famous quasi-2D
harmonic trap result of Petrov and Shlyapnikov [49].
Dimer energy with open boundary condition. In the

following, we will address the question about how the
previous results would be modified if the squeezed di-
mension is not periodic but with open boundaries, i.e.
the transverse wave function in the relative motion is
not exp(±i k z) but rather sin(k z) with the right values
of k = nπ/L that makes the wave function vanish at
z = 0 and z = L, with n = 1, 2, 3... and L = 2πR. In this
way, k = n/(2R) and the corresponding equation for the
dimer binding energy becomes is

lim
Λ→∞

{

∞
∑

n=1

ln

[

−E2 R2 + n2

4

−E2 R2 + n2

4 + (ΛR)2

]

+ C

(

E3D
2

Λ2

)

−
∫

∞

−∞

dy

2
ln

[

−E3D
2 R2 + y2

4

−E3D
2 R2 + y2

4 + (ΛR)2

]}

= 0. (12)

We introduce a renormalization constant C that depends
on E3D

2 /Λ2, which should be fixed in the limit of R →
∞ to ensure that the zero of Eq. (12) gives the correct
3D binding energy. The analytical result of the sum in
Eq. (12) is

∞
∑

n=1

ln

[

−E2 R2 + n2/4

−E2 R2 + n2/4 + (ΛR)2

]

=

= ln

(

sinh 2π
√
−E2R

sinh 2πΛR

Λ√
−E2

)

. (13)

Inserting Eq. (13) in Eq. (12) and choosing the renor-
malization constant C (s) = ln

√
−s to cancel the term

ln(Λ) and give the correct result for the limit R → ∞,
one arrives at

lim
Λ→∞

{

2πR

(

√

−E3D
2 −

√

−E3D
2 + Λ2

)

+

− ln

(

√

−E3D
2

Λ

)

− ln

(

sinh 2π
√
−E2R

sinh 2πΛR

Λ√
−E2

)

}

= 2πR
√

−E3D
2 −ln

⎛

⎝2 sinh 2π
√

−E2R

√

E3D
2

E2

⎞

⎠ = 0.

(14)

The dimer energy is obtained from the solution of
Eq. (14) and becomes

√

−E2 =
1

2πR
sinh−1

[

e2πR
√

−E3D
2

2

√

E2

E3D
2

]

. (15)

Eq. (15) has to be compared with the result in Eq. (11)

for periodic boundaries. It has a correction term
√

E2

E3D
2

- harmless to the R → ∞ limit - which changes the result
at small R. This means that E2 depends on E3D

2 for R →
0. We still see that −E2 grows without limit for R → 0,
as can be verified numerically (see below). Therefore, the
value of E2 depends on the particular way in which one
dimension is squeezed. This is similar to the properties
of Fermi gases in non-trivial geometries [50].
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FIG. 1: Dimer energies E2/E
3D
2 as a function of R
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|
for periodic (dashed) and open boundary conditions (solid).

In Fig. 1 we compare the dimer energies as a function
of R for periodic and open boundary conditions. In one
case 2πR is the size of the compact direction with pe-
riodic boundary conditions, and in the other case 2πR
is the length of the direction z where the open bound-
ary condition is imposed. In both cases, for large R the
dimer energy tends to E3D

2 . In the limit R → 0, we see
in both cases that −E2 grows rapidly. Overall, we see
the same qualitative behavior. This implies that taking
open or periodic boundary conditions should display sim-
ilar qualitatively results. Due to the technical reductions

Periodic boundary conditions: 
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the latter choice brings, we choose periodic boundaries
in our trimer studies.
Trimer energy with periodic boundary conditions. We

present the main result of our paper which is the nu-
merical solution of the trimer bound state equation in
Eq. (2). For convenience, the dimensionless quanti-
ties ϵ3 = E3/E0, ϵ2 = E2/E0 and r = Rµ/!, where

E0 = −!
2µ2

M will be used. In order to explore the dimen-
sional crossover transition, Fig. 2 shows the ratios ϵ3/ϵ2
as a function of r for the ground, first, and second excited
states. Note that the last state goes into the continuum
before the 2D limit is reached.

FIG. 2: ϵ3/ϵ2 as a function of r, for ϵ3D2 = 10−7 (full circles)
and 10−6 (empty circles). The solid and dashed lines are
guides to the eye. As we approach the 2D limit (r → 0),
higher excited states disappear and only the ground and first
excited states remain. Note that the values of r and ϵ3/ϵ2
increase from right to left and top to bottom respectively.

The points are calculated for two fixed two-body en-
ergies ϵ3D2 = 10−6 (empty circles/dashed lines) and 10−7

(full circles/solid lines). In a pure 3D calculation these
parameters are on the a > 0 side of the resonance and
one finds three three-body bound states. The points at
which we calculated the energies are shown explicitly,
while the curves are guides to the eye. For the largest
r = 1000, the energies were obtained from a pure 3D
STM equation. The plot shows a very interesting di-
mensional crossover result. We have one sharp transition
for the ground state and two for the first excited state,
while the second excited state has two transitions before
it disappears. This plot is reminiscient of the famous
binding energy plot of Efimov trimers going from a = ∞
and into the three-body continuum [3]. This behaviour
can be understood by considering the size of the trimer
given roughly by r̄ ∼ 1/

√
ϵ3. For ϵ2 = 10−7 we have

r̄ = 10.35 and r̄ = 217.29, calculated, respectively, from
the ground state plateau at ϵ3/ϵ2 = 93330 and first ex-
cited state plateau at ϵ3/ϵ2 = 211.79. These r̄ values give

approximately the region of the jumps signaling that the
2D limit, represented by the plateau, is reached once the
trimer size matches the size of the squeezed dimension,
r. The same analysis can be made for ϵ2 = 10−6 with
r̄ = 10.27 and r̄ = 188.98, respectively, for the ground
and first excited state. Varying r from large to small
values (left to right), the 3D→2D transition occurs for
r ∼ 10, where we have the disappearance of the higher
excited states in order to reproduce the well known 2D re-
sults with two bound states proportional to ϵ3/ϵ2 = 16.52
and ϵ3/ϵ2 = 1.27.

From the experimental point of view it may be diffi-
cult to keep the dimer energy constant. However, the
transitions observed in Fig. 2 will not disappear due to
a variation of ϵ2 with r. A change in the dimer energy
does not move the jumps significantly. Larger dimer en-
ergies will cause the 3D plateau to move to lower ϵ3/ϵ2
ratio and push the beginning of the transition to smaller
r, thus making the transition region broader. In cases
where there are four or more states in the spectrum, the
higher states (second excited and above) will go to the
continuum before one reaches the 2D limit. Whether
they show two plateaus depends on whether they enter
the spectrum above or below the values ϵ3/ϵ2 = 16.52
and ϵ3/ϵ2 = 1.27 in analogy to what we see in Fig. 2. In
general, the jumps happen when a state is commensurate
with the energy of the transverse squeezed dimension,
while the associated plateaus are given by the 2D limit.

As an outlook we may consider a mass imbalanced sys-
tem where the 2D limit can be much more rich with many
bound states [51]. This immediately implies that there
could be more plateaus for these systems and that the
sequence of jumps will be more involved but potentially
even more interesting. We leave this issue for future stud-
ies.
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