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Physics Problem:   
Nuclear Reactions dominated by few degrees of freedom

Light nuclei

Heavy nuclei 

Reactions:  Elastic Scattering,  Breakup & Transfer
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Reduce Many-Body to Few-Body Problem

• Isolate important degrees of freedom in a reaction
• Keep track of important channels
• Connect back to the many-body problem

Task:

Hamiltonian for effective few-body poblem:  

H = H0 + Vnp + VnA + VpA

Optical potentials p+A and n+A np interaction 

Three-Body Problem



(d,p) Reactions as three-body problem

Elastic, breakup, rearrangement channels are included and fully 
coupled
(compared to e.g. CDCC calculations)

Deltuva and Fonseca, Phys. Rev. C79, 014606 (2009)

Applied Faddeev AGS Equations  to 12C(d,p)13C
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(d,p) Reactions as three-body problem

Elastic, breakup, rearrangement channels are included and fully coupled
(compared to e.g. CDCC calculations)

Issue: current 
momentum 
space 
implementation 
of Coulomb 
interaction 
(screening) does 
not converge for 
Z ≥ 20



A.M. Mukhamedzhanov, V. Eremenko and A.I. Sattarov,
Phys.Rev. C86 (2012) 034001  

Solve Faddeev equations in Coulomb basis (no screening) 

Can we handle this?

Very nasty!      Oscillatory singular at p=q
Partial-wave Coulomb function in momentum space

Scattering: Faddeev equations best solved in momentum space

Matrix elements in Coulomb basis:  

Example: plane wave basis:    V(p’,p) ≡ <p’ | V | p> 
Coulomb basis:  2 singularities, for p’=p: “pinch” singularity

Up to now 
• not directly solved
• Indirect: Chinn, CE, Thaler, 

PRC44, 1569 (1991) for p+A
scattering

Work with separable functions: V(p’,p) ≡ ∑ g(p’) λ g(p) 



First Test in Two-Body System
Separable t-matrix derived from p+A optical potential  (generalized EST scheme)

Nuclear matrix elements

Coulomb distorted nuclear matrix element



Challenge I:  momentum space Coulomb functions 

General:
FT: A. Chan, MS thesis 

U. Waterloo (2007)

Partial wave decomposition (Mukhamedzanov, Dolinskii) (1966) 

has different representations

Essential:

depending on ζ



has different representations in terms of the 
hypergeometric function 2F1 (a;b;c;z) depending on ζ

ζ large enough  ( p and q different)

ζ ≈ 1  ( p ≈ q ) 

“regular” representation

“pole-proximity” representation



Partial-wave momentum space Coulomb functions
“regular” representation

“pole-proximity” representation:

Oscillatory singularity for p→q



q = 1.5 fm-1



q = 1.5 fm-1

Work in progress:  publish code in CPC



Challenge II:  
Matrix elements with Coulomb basis functions

Coulomb distorted nuclear matrix element

Separable t-matrix derived from p+A optical potential  (generalized EST scheme)

Nuclear matrix elements

“oscillatory” singularity at ࢗ ൌ ࢖ ∶



Gel’fand-Shilov Regularization:
Generalization of Principal value regularization
Idea: reduce value of integrand near singularity

simplified

 Reduce integrand around pole 
by subtracting 2 terms of the 
Laurent series
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no Coulomb



p + 12C

Fixed p

α



First Physics Check:

Selected partial wave S-matrix elements Sl+1 for p+48Ca (CH89 optical potential)
with Coulomb distorted n+48Ca formfactors

Method not designed for two-body scattering! 

p + 48Ca



Summary  & Outlook
Faddeev-AGS framework in Coulomb basis passed first test!

 Momentum space nuclear form factors obtained in a Coulomb distorted 
basis for high charges for the first time.

 “Oscillatory singularity” of ࣒࢒,ࢗ
ࢉ ࢖ at p →q successfully regularized.

 Algorithms to compute ࣒࢒,ࢗ
ࢉ ࢖ and overlap integrals  successfully 

implemented

Near Future:

Implementation of Faddeev-AGS equations in Coulomb basis
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