

Johannes Hecker DenschlagSeattle, April 15, 2014

… another good thingfrom Ulm

(besides Einstein)

Trapped Ionsand Ultracold neutral Atoms

Good compatibility of traps!

Long range atom – ion interaction

An ion in a cloud of atoms, naive picture

- Thermalization of ion within a few collisions, sympathetic cooling
- No further dynamics afterwards….

Can atoms sympathetically cool hot ions?

Displaced ion

High potential energy

Sympathetic cooling of a hot ion

The role of excess micromotion

Elastic two-body atom-ion collisions

Thermal atom cloud $T \sim 100$ nK

Reactions

How do we detect a reaction?

 \bullet Ion turns dark, changes mass

- Release of energy
	- ion orbits outside of atoms
	- change in atom loss

Ion-induced atom lossRb+ in cold Rb cloud

Interaction time τ **[s]**

Atom number distributions

Atom-atom-ion three-body recombination

Measurement of the reaction energy

Data well described by three-body recombination dynamics

quadratic density dependence \rightarrow atom-atom-ion three-body **coefficient**

A. Härter et al. PRL 2012

Energy dependence

Similar as for Ba^{*} + 2 Rb!

Chris Green and Jesus Perez-Rioscan theoretically confirm this dependence! Calculations by Chris Greene and Jesus Perez-Rios(14. 5. 2014)

- -Classical trajectory
- -Monte-Carlo
- - Heuristic argument for $E^{-4/7} = E^{-5.7}$ dependence

Reaction: Ba+ with Rb cloud

Typical reaction: charge exchange

Decay of Ba⁺ in atomic clouds of various densities

Charge exchange in three-body process!

vs

Langevin collision: The rate $Γ$ should be energyindependent!

Energy dependence of three-body charge exchange

Investigate reaction product states

Question:What quantum state is the molecule in?

Three-body recombination

Three-body recombination awayfrom Feshbach resonance

The set-up

4×10 $^4\,$ 87 Rb atoms 4 in an optical dipole trapat 1064nm;~1 μ K temperature; density $\sim 10^{13}$ cm⁻³ ;

The set-up

 4×10^{4} $87Rb$ atoms in an optical dipole trapat 1064nm;~1 μ K temperature; density $\sim 10^{13}$ cm⁻³ ;

> Stateselectivelyionizemolecule!

-

+

electron **-**

Rb**2⁺ ion is trapped!**

Detecting dark ions

Use resonance enhanced multi-photon ionization!

Plenty of resonances!

- very dense and fairly irregular spectrum (> 100 lines)
- distribution over many initial states
- selection rules: each level only gives rise to two or three lines

A. Härter, A. Krükow, M. Deiß, B. Drews, E. Tiemann, and J. Hecker Denschlag, Nature Physics (2013)

Study the line shape!

First assignment of rotational line spectrum

First assignment of rotational line spectrum

- \bullet Understand reaction pathways in all details
- Test theoretical models/ predictionsfor three-body recombination

A. Härter, A. Krükow, M. Deiß, B. Drews, E. Tiemann, and J. Hecker Denschlag, Nature Physics (2013)

Collisions of ultracold Rb² molecules

Björn DrewsMarkus Deiss

Krzysztof JachymskiTommaso CalarcoZbigniew Idziaszek

Collisions of ultracold Rb² molecules

 $a^3\Sigma_u$

- -Vibrational ground state
- Molecule rotation $R = 0$ or $R = 2$
- Precisely defined quantumstate: R, I, F, J, m_F , ...
- Quasi 1D trap ground state in transverse direction $(-100 E_{r})$
- Longitudinal energy \sim 100nK k_B

Decay of Rb² molecules

Data compatible with universal collisions?

$$
a_{3D} = \bar{a}(1 - i) \qquad \bar{a} = 2\pi/\Gamma(1/4)^2 R_6
$$

$$
R_6 = (2\mu C_6/\hbar)^{1/4} \approx 270a_0
$$

Four stories

4) Cold collisions of $Rb₂$ triplet molecules 2 Rb₂ \rightarrow loss

