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FIG. 12. Isospin-1, P -wave ππ elastic scattering phase shift and Breit-Wigner parameterisation for mπ = 391MeV. Energy
region plotted is from ππ threshold to KK threshold.

Richards, and C. E. Thomas, Phys. Rev. Lett. 103,
262001 (2009), arXiv:0909.0200 [hep-ph].

[9] J. J. Dudek et al., Phys. Rev. D82, 034508 (2010),
arXiv:1004.4930 [hep-ph].

[10] R. G. Edwards, J. J. Dudek, D. G. Richards, and S. J.
Wallace, Phys.Rev.D84, 074508 (2011), arXiv:1104.5152
[hep-ph].

[11] C. E. Thomas, R. G. Edwards, and J. J. Dudek,
Phys.Rev. D85, 014507 (2012), arXiv:1107.1930 [hep-
lat].

[12] J. J. Dudek and R. G. Edwards, Phys.Rev. D85, 054016
(2012), arXiv:1201.2349 [hep-ph].

[13] J. J. Dudek, R. G. Edwards, B. Joo, M. J. Peardon,
D. G. Richards, et al., Phys.Rev. D83, 111502 (2011),
arXiv:1102.4299 [hep-lat].

[14] L. Liu et al. (for the Hadron Spectrum Collaboration),
JHEP 1207, 126 (2012), arXiv:1204.5425 [hep-ph].

[15] M. Peardon et al. (Hadron Spectrum), Phys. Rev. D80,
054506 (2009), arXiv:0905.2160 [hep-lat].

[16] J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G.
Richards, and C. E. Thomas, Phys.Rev. D83, 071504
(2011), arXiv:1011.6352 [hep-ph].

[17] J. J. Dudek, R. G. Edwards, and C. E. Thomas,
Phys.Rev. D86, 034031 (2012), arXiv:1203.6041 [hep-
ph].

[18] S. Aoki et al. (CP-PACS Collaboration), Phys.Rev. D76,
094506 (2007), arXiv:0708.3705 [hep-lat].

[19] X. Feng, K. Jansen, and D. B. Renner, Phys.Rev. D83,
094505 (2011), arXiv:1011.5288 [hep-lat].

[20] C. Lang, D. Mohler, S. Prelovsek, and M. Vidmar,
Phys.Rev. D84, 054503 (2011), arXiv:1105.5636 [hep-
lat].

[21] S. Aoki et al. (CS Collaboration), Phys.Rev.D84, 094505
(2011), arXiv:1106.5365 [hep-lat].

[22] C. Pelissier and A. Alexandru, (2012), arXiv:1211.0092
[hep-lat].

[23] M. Gockeler, R. Horsley, M. Lage, U.-G. Meissner,

P. Rakow, et al., (2012), arXiv:1206.4141 [hep-lat].
[24] M. Doring, U. Meissner, E. Oset, and A. Rusetsky,

Eur.Phys.J. A48, 114 (2012), arXiv:1205.4838 [hep-lat].
[25] L. Leskovec and S. Prelovsek, Phys.Rev. D85, 114507

(2012), arXiv:1202.2145 [hep-lat].
[26] R. G. Edwards, B. Joo, and H.-W. Lin, Phys. Rev. D78,

054501 (2008), arXiv:0803.3960 [hep-lat].
[27] H.-W. Lin et al. (Hadron Spectrum), Phys. Rev. D79,

034502 (2009), arXiv:0810.3588 [hep-lat].
[28] S. Beane et al. (NPLQCD Collaboration), Phys.Rev.

D85, 034505 (2012), arXiv:1107.5023 [hep-lat].
[29] C. Michael, Nucl. Phys. B259, 58 (1985).
[30] B. Blossier, M. Della Morte, G. von Hippel, T. Mendes,

and R. Sommer, JHEP 04, 094 (2009), arXiv:0902.1265
[hep-lat].

[31] J. J. Dudek, R. G. Edwards, N. Mathur, and
D. G. Richards, Phys. Rev. D77, 034501 (2008),
arXiv:0707.4162 [hep-lat].

[32] D. C. Moore and G. T. Fleming, Phys. Rev. D73, 014504
(2006), arXiv:hep-lat/0507018.

[33] J. Pelaez and G. Rios, Phys.Rev. D82, 114002 (2010),
arXiv:1010.6008 [hep-ph].

[34] F. Von Hippel and C. Quigg, Phys.Rev. D5, 624 (1972).
[35] Z. Li, M. Guidry, T. Barnes, and E. Swanson, (1994),

arXiv:hep-ph/9401326 [hep-ph].
[36] J. Pelaez and F. Yndurain, Phys.Rev. D71, 074016

(2005), arXiv:hep-ph/0411334 [hep-ph].
[37] P. Estabrooks and A. D. Martin, Nucl.Phys. B95, 322

(1975).
[38] J. Beringer et al. (Particle Data Group), Phys.Rev. D86,

010001 (2012).
[39] S. Protopopescu, M. Alston-Garnjost, A. Barbaro-

Galtieri, S. M. Flatte, J. Friedman, et al., Phys.Rev. D7,
1279 (1973).

[40] R. G. Edwards and B. Joo, Nucl. Phys. B. Proc. Suppl.
140, 832 (2005).

[41] M. A. Clark et al., Comput. Phys. Commun. 181, 1517

11

500

1000

1500

2000

2500

3000

FIG. 11: Isoscalar (green/black) and isovector (blue) meson spectrum on the mπ = 391MeV, 243 × 128 lattice. The vertical
height of each box indicates the statistical uncertainty on the mass determination. States outlined in orange are the lowest-lying
states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.

extrapolation might be the complex resonance pole posi-
tion, but we do not obtain this in our simple calculations
using only “single-hadron” operators.

We discuss the specific case of the 0−+ and 1−− sys-
tems in the next subsections.

E. The low-lying pseudoscalars: π, η, η�

In lattice calculations of the type performed in this
paper, where isospin is exact and electromagnetism does
not feature, the π and η mesons are exactly stable and η�

is rendered stable since its isospin conserving ηππ decay
mode is kinematically closed. Because of this, many of
the caveats presented in Section III B do not apply. Fig-
ure 17 shows the quality of the principal correlators from
which we extract the meson masses, in the form of an
effective mass,

meff =
1

δt
log

λ(t)

λ(t+ δt)
, (16)

for the lightest quark mass and largest volume consid-
ered. The effective masses clearly plateau and can be
described at later times by a constant fit which gives a
mass in agreement with the two exponential fits to the
principal correlator that we typically use.

Figure 18 indicates the detailed quark mass and vol-
ume dependence of the η and η� mesons. We have already
commented on the unexplained sensitivity of the η� mass

to the spatial volume atmπ = 391MeV, and we note that
since only a 163 volume was used at mπ = 524MeV, the
mass shown there may be an underestimate.
Figure 19 shows the octet-singlet basis mixing angle,

θ = α − 54.74◦, which by definition must be zero at the
SU(3)F point4 . While we have no particularly well mo-
tivated form to describe the quark mass dependence, it
is notable that the trend is for the data to approach a
phenomenologically reasonable value ∼ −10◦ [1, 45–47].

F. The low-lying vector mesons: ρ,ω,φ

Figure 20 shows the effective masses of ω,φ and ρ prin-
cipal correlators on the mπ = 391MeV, 243×128 lattice.
The splitting between the ρ and ω is small but statisti-
cally significant, reflecting the small disconnected contri-
bution at large times in this channel. At the pion masses
presented in this paper, the ω and φ mesons are kine-
matically stable against decay into their lowest thresh-
old channels, πππ and KK. In Figure 21 we show the
quark mass and volume dependence of the low lying vec-
tor mesons along with the relevant threshold energies.

4
Here we are using a convention where |η� = cos θ|8� − sin θ|1�,
|η�� = sin θ|8�+cos θ|1� with 8,1 having the sign conventions in

Eqn 5.
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Nuclei and hyper nuclei from first principles, 
nuclear structure.
Nuclear landscape at unphysical pion masses.

Beane, et al, Phys.Rev. D87 (2013) 034506.

Barnea, et al, arXiv:1311.4966.

NUCLEAR PHYSICS FROM LATTICE QCD
RECENT DEVELOPMENTS

TABLE XVIII: Summary of the extracted ground-state binding energies of the nuclei and hyper-

nuclei studied in this work.

State A s I J
π

SU(3) irrep Binding Energy (MeV) ∼ B/A (MeV)

d (deuteron) 2 0 0 1
+ 10 19.5(3.6)(3.1)(0.2) 10

nn (di-neutron) 2 0 1 0
+ 27 15.9(2.7)(2.7)(0.2) 8

nΣ 2 -1
3
2 1

+ 10 5.5(3.4)(3.7)(0.0) 3

H (H-dibaryon) 2 -2 0 0
+ 1 74.6(3.3)(3.3)(0.8) 37

nΞ 2 -2 0 1
+ 8A 37.7(3.0)(2.7)(0.4) 19

3
He,

3
H 3 0

1
2

1
2
+

35 53.9(7.1)(8.0)(0.6) 18

3
ΛH(hypertriton) 3 -1 0

1
2
+

35 53.9(7.1)(8.0)(0.6) 18

3
ΛH(hypertriton) 3 -1 0

3
2
+

10 82(8)(12)(1) 27

3
ΛHe,

3
ΛH̃, nnΛ 3 -1 1

1
2
+

27 69(5)(12)(0) 23

3
ΣHe 3 -1 1

3
2
+

27 55(6)(10)(1) 18

4
He 4 0 0 0

+ 28 107(12)(21)(1) 27

4
ΛHe,

4
ΛH 4 0 0 0

+ 28 107(12)(21)(1) 27

4
ΛΛHe,

4
ΛΛH, nnΛΛ 4 0 0 0

+ 27 156(16)(21)(2) 39
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FIG. 19: A compilation of the nuclear energy levels, with spin and parity J
π
, determined in this

work.

In the three-body sector, we are able to cleanly identify the Jπ = 1
2

+
ground state
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The I = 2 ππ S-wave Scattering Phase Shift from Lattice QCD
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Abstract
The π+π+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice
QCD. Calculations were performed at a pion mass of mπ ∼ 390 MeV with an anisotropic nf = 2+1
clover fermion discretization in four lattice volumes, with spatial extent L ∼ 2.0, 2.5, 3.0 and
3.9 fm, and with a lattice spacing of bs ∼ 0.123 fm in the spatial direction and bt ∼ bs/3.5 in
the time direction. The phase-shift is determined from the energy-eigenvalues of π+π+ systems
with both zero and non-zero total momentum in the lattice volume using Lüscher’s method. Our
calculations are precise enough to allow for a determination of the threshold scattering parameters,
the scattering length a, the effective range r, and the shape-parameter P , in this channel and to
examine the prediction of two-flavor chiral perturbation theory: m2

πar = 3 + O(m2
π/Λ

2
χ). Chiral

perturbation theory is used, with the Lattice QCD results as input, to predict the scattering
phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with
determinations from the Roy equations and with the existing experimental phase shift data.
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FIG. 20: Expected energy levels in the Jπ = 0+ 4He sector. The blue, green and red lines in
each column denote the location of non-interacting continuum levels in the 243× 48 , 323× 48 and
483× 64 ensembles, respectively. The location of the states in the 243× 48 and 323× 48 ensembles
have been displaced slightly for demonstrative purposes.
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FIG. 11: Isoscalar (green/black) and isovector (blue) meson spectrum on the mπ = 391MeV, 243 × 128 lattice. The vertical
height of each box indicates the statistical uncertainty on the mass determination. States outlined in orange are the lowest-lying
states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.

extrapolation might be the complex resonance pole posi-
tion, but we do not obtain this in our simple calculations
using only “single-hadron” operators.

We discuss the specific case of the 0−+ and 1−− sys-
tems in the next subsections.

E. The low-lying pseudoscalars: π, η, η�

In lattice calculations of the type performed in this
paper, where isospin is exact and electromagnetism does
not feature, the π and η mesons are exactly stable and η�

is rendered stable since its isospin conserving ηππ decay
mode is kinematically closed. Because of this, many of
the caveats presented in Section III B do not apply. Fig-
ure 17 shows the quality of the principal correlators from
which we extract the meson masses, in the form of an
effective mass,

meff =
1

δt
log

λ(t)

λ(t+ δt)
, (16)

for the lightest quark mass and largest volume consid-
ered. The effective masses clearly plateau and can be
described at later times by a constant fit which gives a
mass in agreement with the two exponential fits to the
principal correlator that we typically use.

Figure 18 indicates the detailed quark mass and vol-
ume dependence of the η and η� mesons. We have already
commented on the unexplained sensitivity of the η� mass

to the spatial volume atmπ = 391MeV, and we note that
since only a 163 volume was used at mπ = 524MeV, the
mass shown there may be an underestimate.
Figure 19 shows the octet-singlet basis mixing angle,

θ = α − 54.74◦, which by definition must be zero at the
SU(3)F point4 . While we have no particularly well mo-
tivated form to describe the quark mass dependence, it
is notable that the trend is for the data to approach a
phenomenologically reasonable value ∼ −10◦ [1, 45–47].

F. The low-lying vector mesons: ρ,ω,φ

Figure 20 shows the effective masses of ω,φ and ρ prin-
cipal correlators on the mπ = 391MeV, 243×128 lattice.
The splitting between the ρ and ω is small but statisti-
cally significant, reflecting the small disconnected contri-
bution at large times in this channel. At the pion masses
presented in this paper, the ω and φ mesons are kine-
matically stable against decay into their lowest thresh-
old channels, πππ and KK. In Figure 21 we show the
quark mass and volume dependence of the low lying vec-
tor mesons along with the relevant threshold energies.

4
Here we are using a convention where |η� = cos θ|8� − sin θ|1�,
|η�� = sin θ|8�+cos θ|1� with 8,1 having the sign conventions in

Eqn 5.
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TWO HADRONS IN A FINITE VOLUME

p2

p1

p2

p1

p2

p1
L

cutbound state

E∞

B∞

poles

EL

BL
{∼ 1

mL2
pi =

2πni

L

* Cubic spatial volume 
with the PBCs

Luscher’s formula

Infinite volume
L → ∞

Continuum limit 
but finite volume

* Maiani-Testa no-go theorem
Maiani, Testa, Phys.Lett., B245, 585 (1990).
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L = φ†
�
i∂0 +

∇2

2m

�
φ− d†

�
i∂0 +

∇2

4m
−∆

�
d† − g2

2
(dφ2 + h.c.) + ...

Eliminate in favor of physical 
observables:    a, r

+= ∞D∞ =

iD∞(E,q) =
−imr/2

q cot δd − iq + i�

The spectrum in FV can be written 
in a model-independent way

DV = += V

iDV (E,q) =
−imr/2

q cot δd − 4π cq00(q
2+i�) + i�

cq00(x) =

�
1

L3

�

k

−P
�

d3k

(2π)3

�
k∗l

√
4πY00(k̂∗)

k∗2 − x
k∗ = k− q/2

LUESCHER FORMULA
A DERIVATION BASED ON DIMER FORMALISM

A NR EFT

Luscher, Nucl.Phys. B354 (1991) 531-578.
Rummukainen, Gottlieb, Nucl.Phys. B450 (1995) 397-436.
Kim, Sachrajda, Sharpe, et al, Nucl.Phys. B727 (2005) 218-243.
Bour, et al, Phys.Rev. D84 (2011) 091503.
Davoudi, Savage, Phys.Rev. D84 (2012) 114502.

S-wave quantization condition (QC)
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TWO-NUCLEON SYSTEMS IN INFINITE VOLUME AND SYMMETRIES

Parity and total J

Assuming isospin symmetry

CONSERVED
Orbital angular 
momentum L

NOT CONSERVED

e.g. deuteron

4 channels

L = 0, L = 2

1+ (I = 0)

Jπ=± (I = 0, 1)

Image courtesy of JLab

η = − tan �1|k∗=iκ∞
d

≈ 0.02713(6)

Image courtesy of JLab

Biedenharn, Blatt, Phys.Rev. 93, 1387 (1954).
Mustafa, Phys. Rev. C47, 473 (1993).
de Swart, et al, 9509032 (1995).
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TWO-NUCLEON QUANTIZATION CONDITION
FINITE VOLUME SYMMETRY GROUPS

P = 0 P =
2π

L
(0, 0, 1) P =

2π

L
(1, 1, 0) P =

2π

L
(1, 1, 1)

respectively. The matrix elements of δGV in the positive-parity isoscalar channel in this basis are,

�
δGV

�
JMJ ,LS;J �M �

J ,L
�S� =

iMk∗

4π
δS1δS�1



δJJ �δMJM �
J
δLL� + i

�

l,m

(4π)3/2

k∗l+1
c
d
lm(k∗2; L)

×
�

ML,M �
L,MS

�JMJ |LML1MS��L�
M

�
L1MS |J �

M
�
J�
ˆ

dΩ Y
∗
LML

Y
∗
lmYL�M �

L



 , (2)

and are evaluated at the on-shell momentum of each nucleon in the CM frame, k∗ =
�
ME∗ − |P|2/4.

�JMJ |LML1MS� and �L�M �
L1MS |J �M �

J� are Clebsch-Gordan coefficients, and cdlm(k∗2; L) is a kine-
matic function related to the three-dimensional zeta function, Zd

lm, [20, 21, 41–43],

c
d
lm(k∗2; L) =

√
4π

L3

�
2π

L

�l−2

Zd
lm[1; (k∗L/2π)2] ,

Zd
lm[s;x2] =

�

n

|r|lYl,m(r)

(r2 − x2)s
, (3)

where r = n− d/2 with n an integer triplet.
The finite-volume matrix δGV is neither diagonal in the J basis nor in the LS basis, as is clear

from the form of Eq. (2). As a result of the scattering amplitudes in higher partial waves being
suppressed at low-energies, the infinite-dimensional matrices present in the determinant condition
can be truncated to a finite number of partial waves. For the following analysis of positive-parity
isoscalar channel, the scattering in all but the S- and D-waves are neglected. With this truncation,
the scattering amplitude matrix M can be written as

M =





M1,S M1,SD 0 0
M1,SD M1,D 0 0

0 0 M2,D 0
0 0 0 M3,D



 , (4)

where the first subscript of the diagonal elements, MJ,L, denotes the total angular momentum of
the channel and the second subscript denotes the orbital angular momentum. The off-diagonal
elements in J = 1 sub-block are due to the S-D mixing. In the J = 3 channel, there is a mixing
between L = 2 and L = 4 partial waves, but as scattering in the L = 4 partial wave is being
neglected, the scattering amplitude in this channel remains diagonal. Each element of this matrix
is a diagonal matrix of dimension (2J + 1)× (2J + 1) dictated by the MJ quantum number.

d point group classification Nelements irreps (dimension)
(0, 0, 0) O cubic 24 A1(1),A2(1),E(2),T1(3),T2(3)
(0, 0, 1) D4 tetragonal 8 A1(1),A2(1),E(2),B1(1),B2(1)
(1, 1, 0) D2 orthorhombic 4 A(1),B1(1),B2(1),B3(1)
(1, 1, 1) D3 trigonal 6 A1(1),A2(1),E(2)

TABLE I. Classification of the point groups corresponding to the symmetry of the FV calculations with
boost vectors, d. The forth column shows the number of elements of each group, and the last column gives
the irreducible representations of each point group along with their dimensions.
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respectively. The matrix elements of δGV in the positive-parity isoscalar channel in this basis are,
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and are evaluated at the on-shell momentum of each nucleon in the CM frame, k∗ =
�
ME∗ − |P|2/4.

�JMJ |LML1MS� and �L�M �
L1MS |J �M �

J� are Clebsch-Gordan coefficients, and cdlm(k∗2; L) is a kine-
matic function related to the three-dimensional zeta function, Zd
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where r = n− d/2 with n an integer triplet.
The finite-volume matrix δGV is neither diagonal in the J basis nor in the LS basis, as is clear

from the form of Eq. (2). As a result of the scattering amplitudes in higher partial waves being
suppressed at low-energies, the infinite-dimensional matrices present in the determinant condition
can be truncated to a finite number of partial waves. For the following analysis of positive-parity
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where the first subscript of the diagonal elements, MJ,L, denotes the total angular momentum of
the channel and the second subscript denotes the orbital angular momentum. The off-diagonal
elements in J = 1 sub-block are due to the S-D mixing. In the J = 3 channel, there is a mixing
between L = 2 and L = 4 partial waves, but as scattering in the L = 4 partial wave is being
neglected, the scattering amplitude in this channel remains diagonal. Each element of this matrix
is a diagonal matrix of dimension (2J + 1)× (2J + 1) dictated by the MJ quantum number.
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(1, 1, 1) D3 trigonal 6 A1(1),A2(1),E(2)

TABLE I. Classification of the point groups corresponding to the symmetry of the FV calculations with
boost vectors, d. The forth column shows the number of elements of each group, and the last column gives
the irreducible representations of each point group along with their dimensions.
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DEUTERON BINDING ENERGY
TWISTED BOUNDARY CONDITIONS AND VOLUME IMPROVEMENT
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The remaining coefficients are dictated by the symmetry of the systems,
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4√
6
e∓iπ/4 F3±1 , F3−2 = F3+2

F4+2 = −F4−2 = − 2√
7
e∓iπ/4 F4±3 = 2e±iπ/4 F4±1 , F40 =

14√
70

F4±4 . (C8)

The coefficients presented in Table I and Eq. (C8) show that the leading volume dependences of the c0,φ,−φ
lm

functions are c00 = − κ
4π + O(e−2κL/L), c10 = O(e−κL/L), c22 = O(e−

√
2κL/L), c30 = O(e−κL/L), c32 =

O(e−
√
3κL/L), c40 = O(e−2κL/L) and c42 = O(e−

√
2κL/L).

i-PBCs: A2
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i-PBCs: E

(b)

FIG. 3. a) The deuteron binding energy as a function of L from PBCs (green curve) and from APBCs
(purple curve). The black-solid curve represents the average of these energies. b) A closer look at the average
in part (a) compared with energies obtained with i-PBCs, A2 (blue curve) and E (red curve).

in Eq. (18), the QC dictated by S-wave interactions is 11

p∗ cot δ(
3S1)|p∗=iκ + κ =

�

n �=0

ei(α−
1
2 )n·(φ

p+φn)e−i 12n·(φ
p−φn)ei2παn·d

e−|γ̂n|κL

|γ̂n|L
. (19)

The volume dependence of the deuteron binding momentum, κ, originates from the right-hand

side of this equation. For d = 0, the c2m functions vanish for both PBCs and APBCs, leading to

Eq. (19) without further approximation. For the twist angles φp = −φn ≡ φ = (π2 ,
π
2 ,

π
2 ) and boost

d = 0, the first few terms in the summation on the right-hand side of Eq. (19) (n2 ≤ 3) vanish,

leaving the leading volume corrections to scale as ∼ e−2κL/L. A lesser cancellation occurs in the

average of binding energies obtained with PBCs and APBCs, giving rise to deviations from the

infinite-volume energy by terms that scale as ∼ e−
√
2κL/L.

The result of Monte Carlo twist averaging of the deuteron binding energy can be ascertained

from the behavior of the two extreme contributions, the PBC and APBC results. While the average

binding energy obtained from N randomly selected sets of twist angles scales as B(∞)
d +O

�
e−2κL/L

�
,

the standard deviation of the mean scales as ∼ e−κL/(
√
NL), giving rise to a signal-to-noise in the

binding energy that scales as ∼
√
N B(∞)

d L eκL, which even for L ∼ 14 fm allows only for a poor

extraction, as can be deduced from Fig. 3(a). It is clear that such a method is inferior to that of

pair-wise averaging, such as from PBCs and APBCs, or choosing special twists, such as i-PBCs.

We have restricted ourselves to the scenarios where the net twist angles in each Cartesian

direction (the lattice axes) are the same. One reason for this is that systems with arbitrary twists

give rise to three distinct, but nearby, energy eigenvalues associated with combinations of each

of the three MJ -states of the deuteron - a sub-optimal system to analyze in LQCD calculations.

Another reason is that a twist of
π
2 in each direction is optimal in minimizing the FV effects in

both the two-body binding energies and the single-baryon masses. Further, averaging the results of

calculations with PBCs and APBCs also eliminates the leading FV corrections to both quantities.

We re-emphasize that ultimately, one wants to extract as many scattering parameters as feasible

from calculations in a single volume, requiring calculations with multiple boosts of the CM as well

11 In the limit where �1 = 0, the J = 1 α-wave is entirely S-wave, while the β-wave is entirely D-wave. This
approximation neglects FV effects of the form �1e

−κL/L.

ψ(x+ nL) = eiθ·nψ(x)
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THREE-BODY CORRELATION FUNCTIONS WITH DIMER FIELD
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2m

, |P− q1|)iK3(q1,q2;P, E)iDV (E − q22
2m

, |P− q2|)A�
3 (q2)

(E,P)
Kinematic region below four-particle threshold

iK3(q1,q2;P, E) ≡− ig3 −
ig22

E − q2
1

2m − q2
2

2m − (P−q1−q2)
2

2m + i�

g2
g2

g3

4. R. Briceno and ZD,  Phys. Rev. D 87, 094507.
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DIMER-PARTICLE CORRELATION FUNCTION
QUANTIZATION CONDITION I

In CM frame

q∗

q∗

Off-shell states mE∗ <
3

4
q∗2κ

Exponential 
corrections

{ · · ·}Three-particle states

diboson-boson three bosonstriboson

+++

{q∗κ, q∗κ} = {
�
q∗0,

�
4

3
(mE∗ − q∗20 )

�
,

�
q∗21 ,

�
4

3
(mE∗ − q∗1)

�
, . . . ,

�
q∗NE∗ ,

�
4

3
(mE∗ − q∗2NE∗ )

�
}

Power-law 
corrections

q∗2κ = mE∗ − 3

4
q∗2κ

q∗κ cot δd = 4π c
( 2P

3 −q∗κ)
00 (q2κ)

Only Luscher poles matter

COUPLED-CHANNELS

(I)
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DIMER-PARTICLE CORRELATION FUNCTION
QUANTIZATION CONDITION II

= + +

V

∞ ∞M̃∞
V M̃∞

V M̃∞
VK3 K3 K3

= + +∞ ∞
∞

M̃∞
∞ M̃∞

∞ M̃∞
∞K3 K3 K3

Diagonal in angular momentum Mixes the three particle states

M̃∞
V (p,k;P, E) = M̃∞

∞(p,k;P, E)−
�

d3q

(2π)3
M̃∞

∞(p,q;P, E)δDV (E − q2

2m
, |P− q|)M̃∞

V (q,k;P, E)

Det(1 + M̃∞
V δG̃V) ≡ detoc[detpw(1 + M̃∞

V δG̃V)] = 0

Determinant over open 
kinematic channels

(II)

Determinant over partial-wave 
channels of boson-dimer state
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BOUND-STATE PARTICLE SCATTERING
RECOVERING LUESCHER

deuteron

nucleon

MBd =
3π

m

1

q∗0 cot δBd − iq∗0

S-wave boson-diboson elastic scattering amplitude

M̃∞
V M̃∞

∞ ≡ MBdvs. ?

Key: Diboson is a compact object in 
sufficiently large volumes

q∗0 cot δBd = 4π cP00(q
∗
0) + η

e−γdL

L

A coefficient that needs to be 
fit to data

L ∼ 1

γd

V

Diboson infinite volume 
binding momentum

q∗0 =

�
4

3
(mE∗ − q̄∗20 )

q̄∗0 = iγd +O(e−γdL/L)

Rokash, et al, arXiv:1308.3386 (2013).
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BOUND-STATE PARTICLE SCATTERING
RECOVERING LUESCHER

Triton binding energy?

Other sources of systematics to the Luescher approximation

O

�
e−

√
2γdL/L

�

O

�
e−

√
4
3 (q

∗2
1 −mE∗)L

L

�

NLO correction due 
to size of diboson

Partial-wave mixing,
S-wave dimer?

First off-shell 
state ignored

(Jd, JBd) = {(0, 0), (2, 0), (4, 0), (0, 4), (2, 4), (2, 6), . . .}
(Jd, JBd) = {(0, 0), (0, 1), (2, 0), (2, 1), (0, 2), (2, 2), . . .}

γBd + q∗Bd cot δBd|q∗2Bd=−γ2
Bd

= O(e−γBdL/L)
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RECOMBINATION AND BREAK UPS?
NO ALGEBRAIC EQUATION EXISTS

deuteron

nucleon

Relates to physical scattering amplitudes 
through an integral equation

A coupled-channels problem

Just above the threshold

1 2
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THREE-PARTICLE QUANTIZATION CONDITION
ALTERNATIVE APPROACHES

Reproduces perturbative results of Beane, 
Detmold and Savage (2007) and Tan (2008) up to 

O(1/L6)

Relativistic model-independent formalism

Non-algebraic in nature

Three-particle quantization condition

+

+

+

CL(E,�P) = ++

+ +

+

+ +

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+ · · ·

Figure 1: Skeleton expansion defining the finite-volume correlator. The leftmost circle in all diagrams

represents the function �σ , while the rightmost represents �σ†
. Any insertion between these with four (six)

legs represents a two-to-two (three-to-three) Bethe-Salpeter kernel iB2→2 (iB3→3). All lines represent fully-

dressed propagators. Finally, dashed rectangles indicate that all loop momenta on enclosed propagators are

summed rather than integrated. See text for further details.

that B2→2 always appears alongside a spectator line, it follows that none of the B2→2 in Fig. 1 can

have on-shell intermediate states. This implies that the integrands “inside” B2→2 are non-singular,

and momentum sums can be replaced by integrals. Thus we can replace the finite-volume version

of B2→2 with its infinite-volume correspondent. Similarly iB3→3 is defined so that it contains no

diagram in which three propagators carry the total energy-momentum (E,�P). Diagrams with one

propagator carrying (E,�P), as well as any odd number greater than three, are allowed. Again we

drop exponentially suppressed corrections and work with the infinite-volume version of the kernel.

Finally, in our skeleton expansion all kernels and interpolating functions are connected by

fully-dressed propagators

∆(q)≡
�

d4xeiqx�0|Tφ(x)φ(0)|0� . (2.3)

Here φ(x) is a one particle interpolating field defined with on-shell renormalization so that

lim
q0→ωq

�
∆(q)(q2 −m2)/i

�
= 1 . (2.4)

We use infinite-volume fully-dressed propagators throughout, which is justified because the self-

energy graphs do not contain on-shell intermediate states.

In summary, only three-particle intermediate states give important (power-law) finite-volume

corrections. The skeleton expansion therefore keeps these on-shell states explicit and groups all

off-shell states into infinite-volume kernels and propagators.

3. 3-body phase space and notation

To avoid repetitive definitions, we describe here the coordinates and notation we use for three

4

CL(E, �P )CL(E,P)

Poeljaeva, Rusetsky, EPJA i 12067 (2012).
Guo, arXiv:1303.3349 (2013).

Hansen, Sharpe, arXiv:1311.4848..

= +

+ +

FIG. 1: Integral equation for the atom-dimer amplitude. The single lines denote the boson propa-
gator and the double lines denote the full dimer propagator.

The full dimer propagator D denoted by the double lines in Fig. 1 is obtained by dressing
the bare dimer propagator which is simply a constant, 4i/g2, with bosonic loops. This leads
to an infinite sum which can be evaluated analytically yielding

D(E,!0) =
32π

g2
2

[

1

a
−

√
−E +

1

L

∑

!∈Z3

! "=0

1

|!|
e−|!|

√
−EL

]−1

(3)

for a dimer at rest. The term containing the box length L vanishes in the limit L → ∞ and
the expression reduces to the infinite volume result. Using the Feynman rules encoded in
Eq. (2) and the full dimer propagator from above, we can translate the Feynman diagrams
in Fig. 1 into an equation for the atom-dimer amplitude. It involves an integration over
the loop energy and a sum over over the quantized loop momenta. The integration over
the loop energy is performed using the residue theorem while the remaining sum over the
quantized momenta is rewritten into an integral by virtue of Poisson’s resummation formula:
∑

!n∈Z3 δ3(!z − !n) =
∑

!m∈Z3 exp(i2π!m · !z) , which is understood to be used under an integral.
The resulting expression is simplified further by exploiting the behavior of the atom-dimer

amplitude near a bound state. For energies close to a bound state energy, the amplitude has
a simple pole, and the dependence on the ingoing and outgoing momenta seperates. Thus,
we obtain a homogeneous integral equation for the bound state amplitude F , namely

F(!p) =
1

π2

∫ Λ

d3y
∑

!m∈Z3

eiL!m·!yZE(!p, !y)τE(y)F(!y) , (4)

where

ZE(!p, !y) =
(

p2 + !p · !y + y2 − E
)−1

+
H(Λ)

Λ2
, (5)

τE(y) =

(

−
1

a
+

√

3

4
y2 − E −

∑

!∈Z3

! "=!0

1

L|!|
e−L|!|

√
3

4
y2−E

)−1

.

The Λ-dependent three-body interaction in Eq. (5) is given by H(Λ) ≡ −g3Λ2/(9g2
2) =

cos[s0 ln(Λ/Λ∗) + arctan s0]/ cos[s0 ln(Λ/Λ∗) − arctan s0] where s0 ≈ 1.00624 is a transcen-
dental number [6].

In the infinite volume case, only S-wave bound states are formed. In a cubic box, however,
the extraction of the S-wave part of F is not straightforward due to the breakdown of the

4

Kreuzer, Hammer, Phys. Lett. B694: 424 (2011).
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Barnea, et al, arXiv:1311.4966.

Beane, et al, Phys.Rev. D87 
(2013) 034506.
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TABLE XVIII: Summary of the extracted ground-state binding energies of the nuclei and hyper-

nuclei studied in this work.

State A s I J
π

SU(3) irrep Binding Energy (MeV) ∼ B/A (MeV)

d (deuteron) 2 0 0 1
+ 10 19.5(3.6)(3.1)(0.2) 10

nn (di-neutron) 2 0 1 0
+ 27 15.9(2.7)(2.7)(0.2) 8

nΣ 2 -1
3
2 1

+ 10 5.5(3.4)(3.7)(0.0) 3

H (H-dibaryon) 2 -2 0 0
+ 1 74.6(3.3)(3.3)(0.8) 37

nΞ 2 -2 0 1
+ 8A 37.7(3.0)(2.7)(0.4) 19

3
He,

3
H 3 0

1
2

1
2
+

35 53.9(7.1)(8.0)(0.6) 18

3
ΛH(hypertriton) 3 -1 0

1
2
+

35 53.9(7.1)(8.0)(0.6) 18

3
ΛH(hypertriton) 3 -1 0

3
2
+

10 82(8)(12)(1) 27

3
ΛHe,

3
ΛH̃, nnΛ 3 -1 1

1
2
+

27 69(5)(12)(0) 23

3
ΣHe 3 -1 1

3
2
+

27 55(6)(10)(1) 18

4
He 4 0 0 0

+ 28 107(12)(21)(1) 27

4
ΛHe,

4
ΛH 4 0 0 0

+ 28 107(12)(21)(1) 27

4
ΛΛHe,

4
ΛΛH, nnΛΛ 4 0 0 0

+ 27 156(16)(21)(2) 39
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FIG. 19: A compilation of the nuclear energy levels, with spin and parity J
π
, determined in this

work.

In the three-body sector, we are able to cleanly identify the Jπ = 1
2

+
ground state

29

mπ ∼ 800 MeV
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Matèria. Institut de Ciències del Cosmos (ICC),

Universitat de Barcelona, Mart́ı i Franquès 1, E08028-Spain
4
Department of Physics, College of William and Mary,

Williamsburg, VA 23187-8795, USA
5
Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606, USA

6
Department of Physics, University of Washington,

Box 351560, Seattle, WA 98195, USA
7
N Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA

8
Department of Physics, Indiana University, Bloomington, IN 47405, USA

9
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract
The π+π+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice
QCD. Calculations were performed at a pion mass of mπ ∼ 390 MeV with an anisotropic nf = 2+1
clover fermion discretization in four lattice volumes, with spatial extent L ∼ 2.0, 2.5, 3.0 and
3.9 fm, and with a lattice spacing of bs ∼ 0.123 fm in the spatial direction and bt ∼ bs/3.5 in
the time direction. The phase-shift is determined from the energy-eigenvalues of π+π+ systems
with both zero and non-zero total momentum in the lattice volume using Lüscher’s method. Our
calculations are precise enough to allow for a determination of the threshold scattering parameters,
the scattering length a, the effective range r, and the shape-parameter P , in this channel and to
examine the prediction of two-flavor chiral perturbation theory: m2

πar = 3 + O(m2
π/Λ

2
χ). Chiral

perturbation theory is used, with the Lattice QCD results as input, to predict the scattering
phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with
determinations from the Roy equations and with the existing experimental phase shift data.
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NUCLEAR PHYSICS FROM QCD
THE ROADMAP

LQCD in nuclear physics

• Very difficult to explore all of 
NP from QCD

• A possible path to ab initio 
nuclear physics:

• QCD forms a foundation - 
determines few body 
interactions

• Match existing many body 
techniques onto QCD

• Hierarchy of methods

• QCD: focus on small A 

3
3

3

3

Lattice QCD

Exact many body:
GFMC, NCSM,

lattice EFT

Shell model, 
coupled cluster, 

configuration-interaction

Density 
Functional,
Mean field

Image by of M. J. Savage
R. Briceno, ZD, T. Luu, Review on the “nuclear reactions from LQCD” workshop, to be released.
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SUMMARY AND CONCLUSION

Progress in nuclear multi-particle 
calculations has been significant.

Finite-volume formalism to 
study two-nucleon systems 
has been developed.
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FIG. 12. Isospin-1, P -wave ππ elastic scattering phase shift and Breit-Wigner parameterisation for mπ = 391MeV. Energy
region plotted is from ππ threshold to KK threshold.
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FIG. 19: A compilation of the nuclear energy levels, with spin and parity J
π
, determined in this

work.

In the three-body sector, we are able to cleanly identify the Jπ = 1
2

+
ground state

29

mπ ∼ 800 MeV
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Abstract
The π+π+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice
QCD. Calculations were performed at a pion mass of mπ ∼ 390 MeV with an anisotropic nf = 2+1
clover fermion discretization in four lattice volumes, with spatial extent L ∼ 2.0, 2.5, 3.0 and
3.9 fm, and with a lattice spacing of bs ∼ 0.123 fm in the spatial direction and bt ∼ bs/3.5 in
the time direction. The phase-shift is determined from the energy-eigenvalues of π+π+ systems
with both zero and non-zero total momentum in the lattice volume using Lüscher’s method. Our
calculations are precise enough to allow for a determination of the threshold scattering parameters,
the scattering length a, the effective range r, and the shape-parameter P , in this channel and to
examine the prediction of two-flavor chiral perturbation theory: m2

πar = 3 + O(m2
π/Λ

2
χ). Chiral

perturbation theory is used, with the Lattice QCD results as input, to predict the scattering
phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with
determinations from the Roy equations and with the existing experimental phase shift data.
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LQCD in nuclear physics

• Very difficult to explore all of 
NP from QCD

• A possible path to ab initio 
nuclear physics:

• QCD forms a foundation - 
determines few body 
interactions

• Match existing many body 
techniques onto QCD

• Hierarchy of methods

• QCD: focus on small A 
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Lattice QCD

Exact many body:
GFMC, NCSM,

lattice EFT

Shell model, 
coupled cluster, 

configuration-interaction

Density 
Functional,
Mean field

Finite-volume 
formalism to study 
three-nucleon systems 
is under development.

Lattice QCD with the 
help of effective field 
theories can be matched 
into nuclear many-body 
calculations.
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Abstract
The π+π+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice
QCD. Calculations were performed at a pion mass of mπ ∼ 390 MeV with an anisotropic nf = 2+1
clover fermion discretization in four lattice volumes, with spatial extent L ∼ 2.0, 2.5, 3.0 and
3.9 fm, and with a lattice spacing of bs ∼ 0.123 fm in the spatial direction and bt ∼ bs/3.5 in
the time direction. The phase-shift is determined from the energy-eigenvalues of π+π+ systems
with both zero and non-zero total momentum in the lattice volume using Lüscher’s method. Our
calculations are precise enough to allow for a determination of the threshold scattering parameters,
the scattering length a, the effective range r, and the shape-parameter P , in this channel and to
examine the prediction of two-flavor chiral perturbation theory: m2

πar = 3 + O(m2
π/Λ

2
χ). Chiral

perturbation theory is used, with the Lattice QCD results as input, to predict the scattering
phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with
determinations from the Roy equations and with the existing experimental phase shift data.
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