"Three-body Physics in Quenched Unitary Bose gases" Jose P. D'Incao

JILA, Dept. of Physics, U. of Colorado at Boulder Dept. Physics, Kansas State University

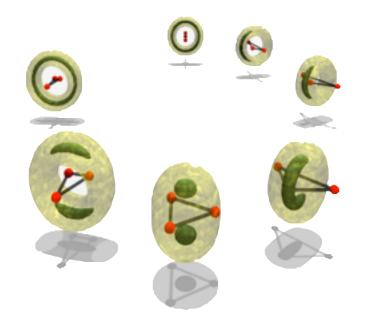
<u>Collaborators:</u> Jia Wang (UConn), Yujun Wang (KSU), Guido Pupillo (Strabourg), Brett Esry (KSU), John Bohn (JILA), Chris H. Greene (Purdue)

University of Colorado

National Science Foundation

Air Force Office of Scientific Research MURI

Universal Few-Body Physics



From the theoretical side:

- ✓ Signatures of Efimov Physics,
- Four- and More-bodies universal states,
- ▶ New families of universal states,
- Approaching a quantitative level (exps.)

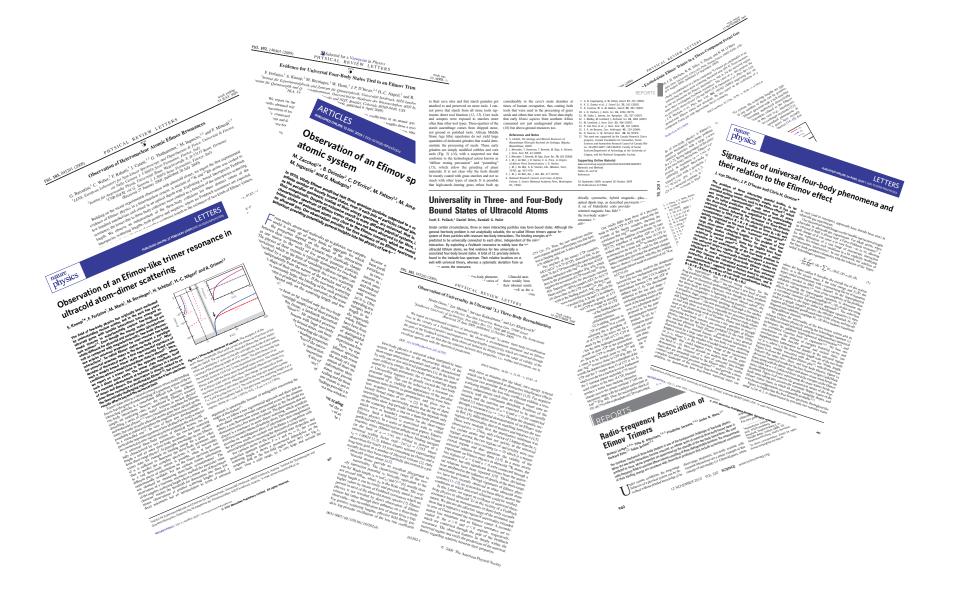
Ultracold Quantum Gases (<peV)

From the experimental side:

- **clean** and accurate experiments
- **CONTROL** of interactions (*B*-field or *E*-field)
- ✓ can explore the universal regime (low T and strong interactions)

A Few-body Perpective in Ultracold Quantum Gases

A new research venue ?



$$\hat{H} = -\frac{1}{2\mu}\nabla_T^2 + \sum_{i < j} V(r_{ij})$$

... angles + set of non-compact coordinates $r_{ij} \rightarrow [0, \infty]$

$$\hat{H} = -\frac{1}{2\mu}\nabla_T^2 + \sum_{i < j} V(r_{ij})$$

... the hyperspherical way !!!

$$\hat{H} = -\frac{1}{2\mu} \frac{d^2}{d^2 R} + \frac{\Lambda^2(\Omega)}{2\mu R^2} + V(R,\Omega)$$

... angles + set of non-compact coordinates $r_{ij} \rightarrow [0, \infty]$

hyperradius R : overall size (collective motion)

 $R \to [0,\infty]$

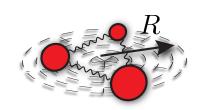
hyperangles $\{\Omega\}$: internal motion $\{\Omega\} \to [0, \propto \pi]$

$$\hat{H} = -\frac{1}{2\mu}\nabla_T^2 + \sum_{i < j} V(r_{ij})$$

... the hyperspherical way !!!

$$\hat{H} = -\frac{1}{2\mu} \frac{d^2}{d^2 R} + \frac{\Lambda^2(\Omega)}{2\mu R^2} + V(R,\Omega)$$

... angles + set of non-compact coordinates $r_{ij} \rightarrow [0, \infty]$



hyperradius R : overall size (collective motion)

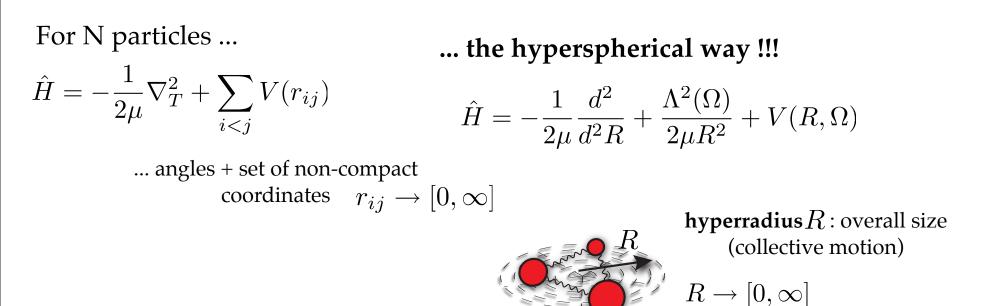
 $R \to [0,\infty]$

hyperangles $\{\Omega\}$: internal motion $\{\Omega\} \to [0, \propto \pi]$

(Democratic hyperangles:

Smith-Whitten, Johnson, Kuppermann, Aquilanti)

Fragmentation thresholdsSymmetrization is simpler



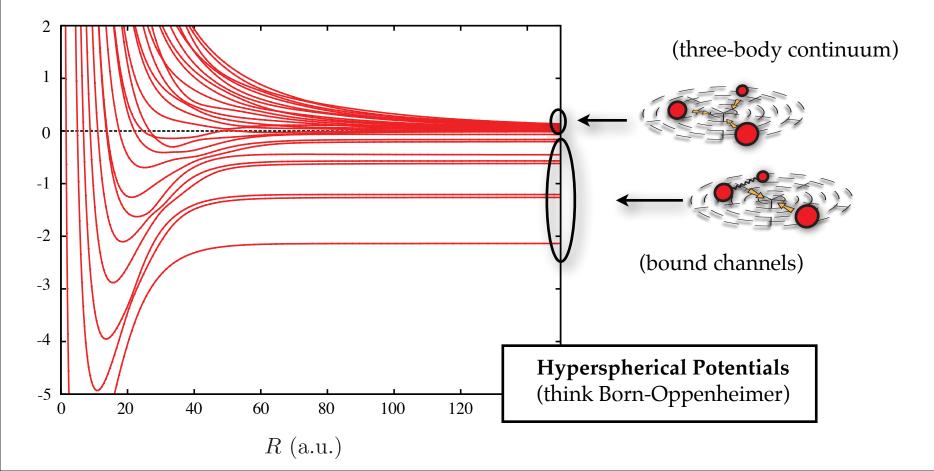
Adiabatic representation:

hyperangles $\{\Omega\}$: internal motion $\{\Omega\} \to [0, \propto \pi]$

$$\hat{H} = -\frac{1}{2\mu} \nabla_T^2 + \sum_{i < j} V(r_{ij})$$

... the hyperspherical way !!!

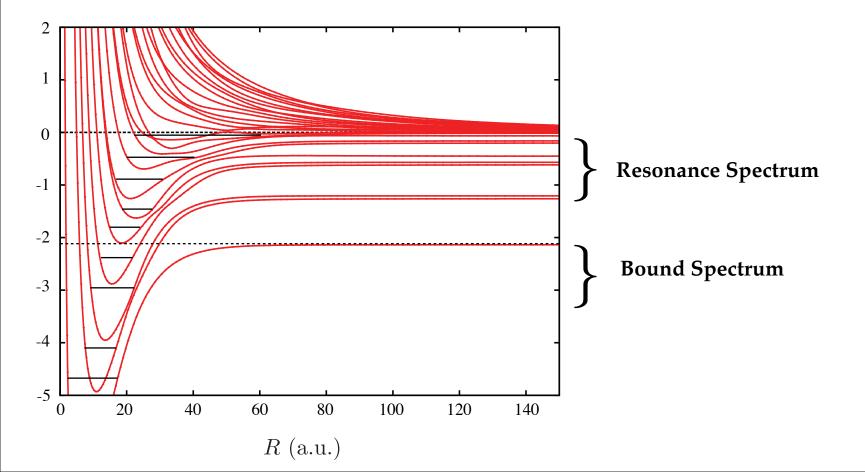
$$\hat{H} = -\frac{1}{2\mu} \frac{d^2}{d^2 R} + \frac{\Lambda^2(\Omega)}{2\mu R^2} + V(R,\Omega)$$



Bound and Scattering Properties

$$\left[-\frac{1}{2\mu}\frac{d^2}{dR^2} + U_{\nu}(R) - E\right]F_{\nu}(R) + \sum_{\nu'}W_{\nu\nu'}(R)F_{\nu'}(R) = 0$$

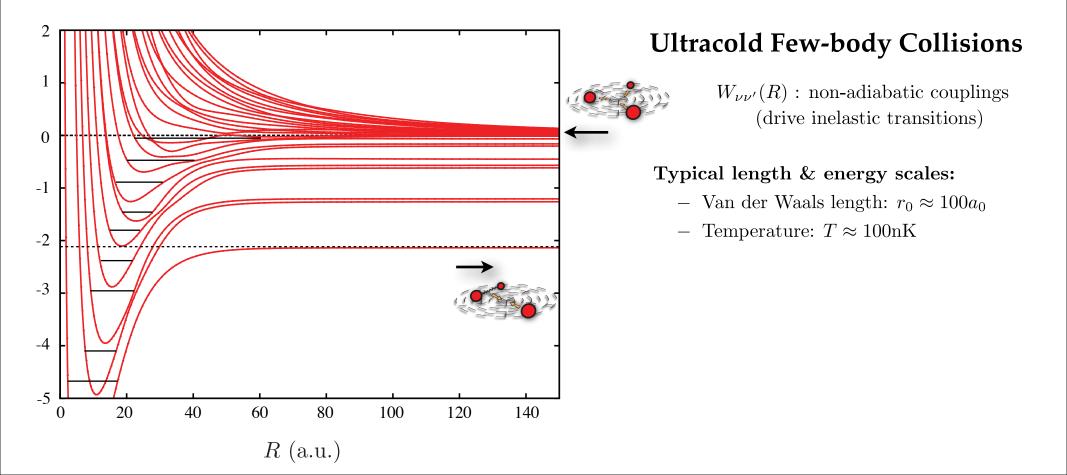
(Hyperradial Schrodinger Equation)



Bound and Scattering Properties

$$\left[-\frac{1}{2\mu}\frac{d^2}{dR^2} + U_{\nu}(R) - E\right]F_{\nu}(R) + \sum_{\nu'}W_{\nu\nu'}(R)F_{\nu'}(R) = 0$$

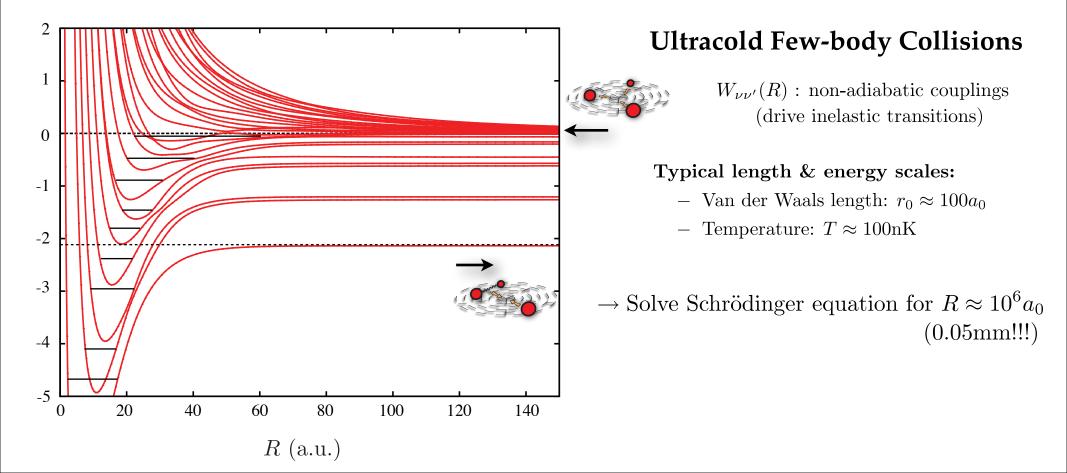
(Hyperradial Schrodinger Equation)



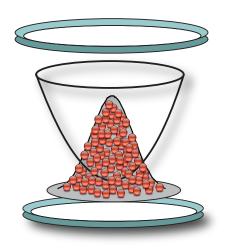
Bound and Scattering Properties

$$\left[-\frac{1}{2\mu}\frac{d^2}{dR^2} + U_{\nu}(R) - E\right]F_{\nu}(R) + \sum_{\nu'}W_{\nu\nu'}(R)F_{\nu'}(R) = 0$$

(Hyperradial Schrodinger Equation)



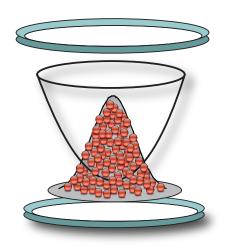
Unitary Quantum gases ($n|a|^3 \gg 1$)



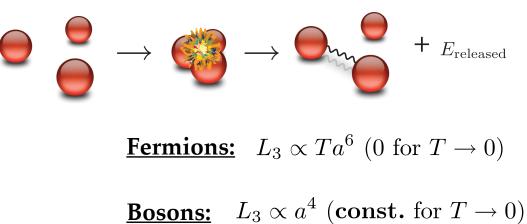
Unitary Fermi Gases: BEC-BCS crossover, Superfluidity ... (Duke, Innsbruck, JILA, MIT, Rice, ...)

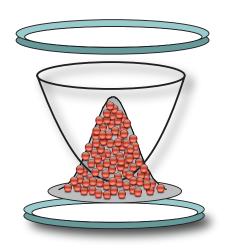
Stable and Universal state !!!

[see Giorgini, Pitaevskii & Stringari, RMP (2008)]

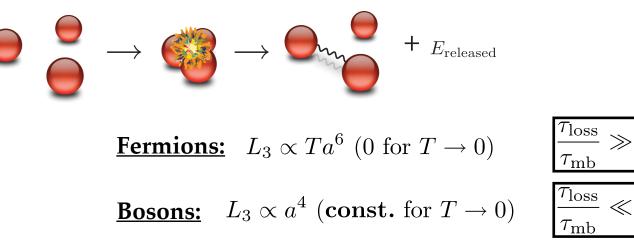


Three-Body Losses: (three-body recombination)

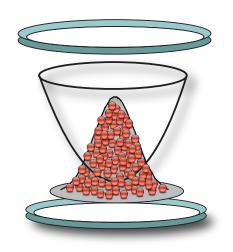


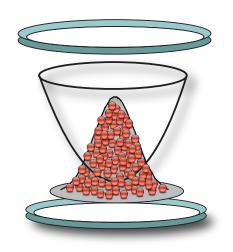


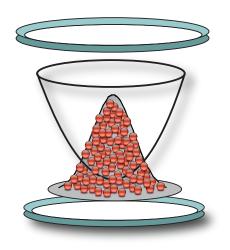
Three-Body Losses: (three-body recombination)



 $[\tau_{\rm mb}:$ timescale for many-body physics]





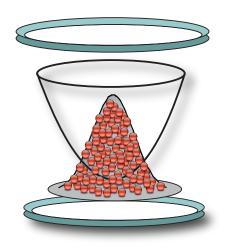


Efimov Physics (~1970, nuclear physics)

appearance of an *attractive* or *repulsive* three-body effective interaction ... in the strongly interacting regime $(|a| \gg r_0)$

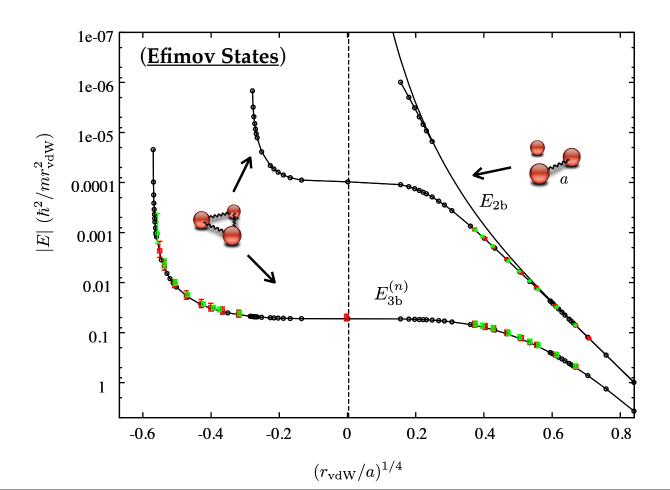
Repulsive Interactions (Fermions): Long lifetimes

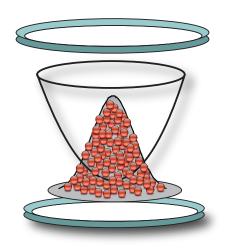
Attractive interactions (Bosons): infinite number of weakly bound three-body states (Efimov effect)



Efimov Physics (~1970, nuclear physics)

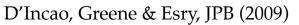
appearance of an *attractive* or *repulsive* three-body effective interaction ... in the strongly interacting regime $(|a| \gg r_0)$

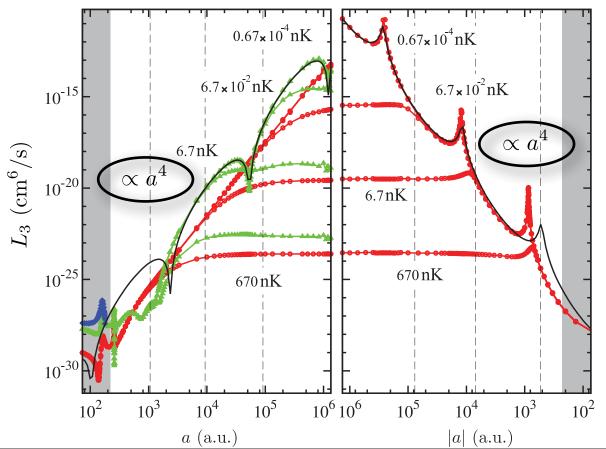


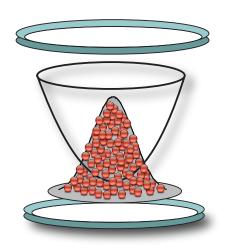


Efimov Physics (~1970, nuclear physics)

appearance of an *attractive* or *repulsive* three-body effective interaction ... in the strongly interacting regime $(|a| \gg r_0)$







Efimov Physics (~1970, nuclear physics)

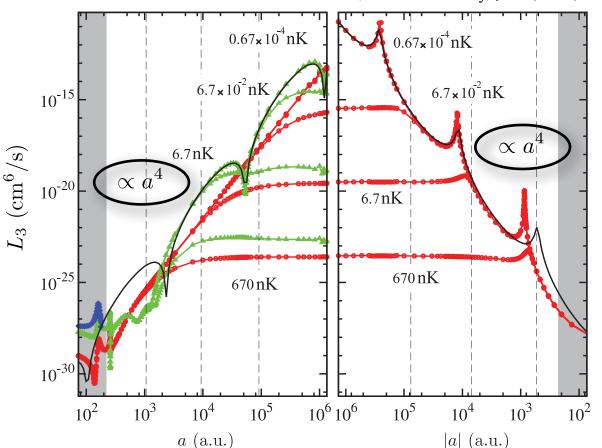
appearance of an *attractive* or *repulsive* three-body effective interaction ... in the strongly interacting regime $(|a| \gg r_0)$

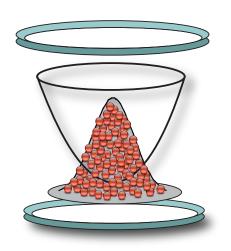
... at finite temperatures $(k|a| \gg 1)$

$$L_3 = \frac{36\sqrt{3}\pi^2}{m^3} \frac{(1 - e^{-4\eta})}{(k_B T)^2} \hbar^5$$

 $\eta:$ 3-body inelasticity parameter

[See Rem et. all, PRL (2013), D'Incao& Esry, PRL (2004)] D'Incao, Greene & Esry, JPB (2009)





Efimov Physics (~1970, nuclear physics)

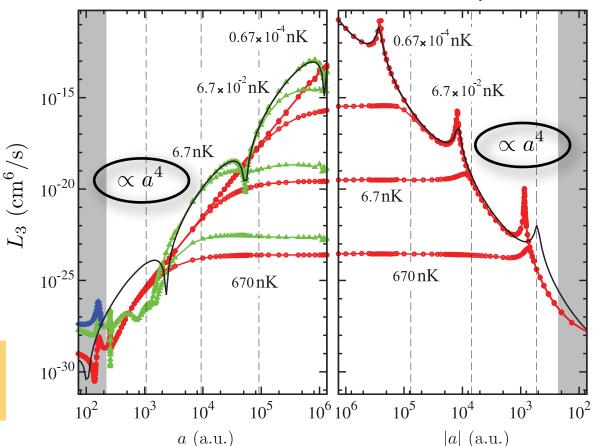
appearance of an *attractive* or *repulsive* three-body effective interaction ... in the strongly interacting regime $(|a| \gg r_0)$

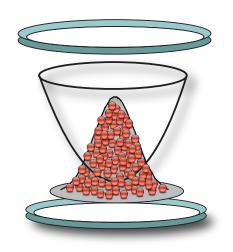
... at finite temperatures $(k|a| \gg 1)$

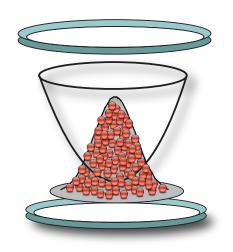
$$L_3 = \frac{36\sqrt{3}\pi^2}{m^3} \frac{(1 - e^{-4\eta})}{(k_B T)^2} \hbar^5$$

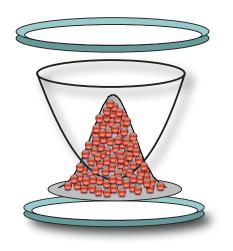
 $\eta:$ 3-body inelasticity parameter

(for ⁸⁵Rb : $\eta \approx 0.06$) $L_3 \approx 3 \times 10^{-20} \text{cm}^6/\text{s}$ $\tau = 1/n_{pk}^2 L_3 \approx 0.4 \mu \text{s}$!! D'Incao, Greene & Esry, JPB (2009)





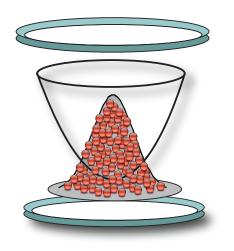




Experimental Scenario

Lifetime of the Bose Gas with Resonant Interactions (7Li) Rem, Grier, Ferrier-Barbut, Eismann, Langen, Navon, Khaykovich, Werner, Petrov, Chevy, and Salomon Phys. Rev. Lett. **110**, 163202 (2013)

Stability of a Unitary Bose Gas (39K) Fletcher, Gaunt, Navon, Smith, and Hadzibabic Phys. Rev. Lett. **111**, 125303 (2013)



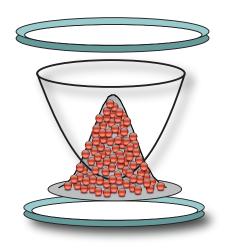
Experimental Scenario

Lifetime of the Bose Gas with Resonant Interactions (7Li) Rem, Grier, Ferrier-Barbut, Eismann, Langen, Navon,

Khaykovich, Werner, Petrov, Chevy, and Salomon Phys. Rev. Lett. **110**, 163202 (2013)

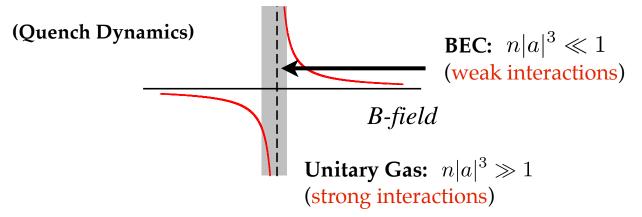
Stability of a Unitary Bose Gas (39K) Fletcher, Gaunt, Navon, Smith, and Hadzibabic Phys. Rev. Lett. **111**, 125303 (2013)

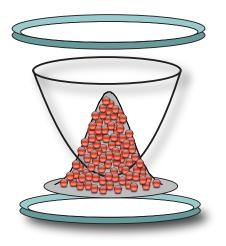
... but still $n|a|^3 < 1$



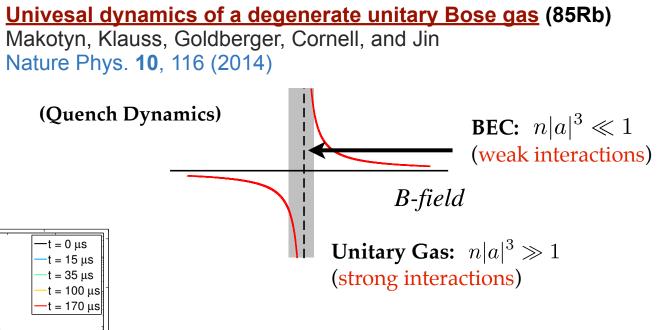
Experimental Scenario

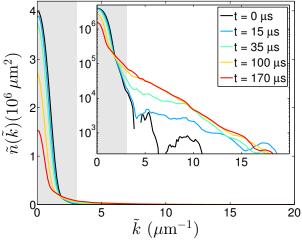
Univesal dynamics of a degenerate unitary Bose gas (85Rb) Makotyn, Klauss, Goldberger, Cornell, and Jin Nature Phys. **10**, 116 (2014)





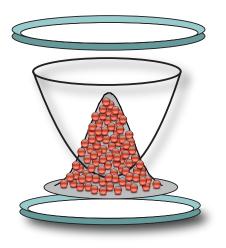
Experimental Scenario





Found:

- Non-equilibrium dynamics
- metastable Bose gas (strongly interacting Bose liquid)
- dynamics at unitary (Tan's contact interaction)
- open new ways to explore unitary regime



 $ilde{n}(ilde{k})(10^6\,\mu{
m m}^2)$

2

0^L

10⁶

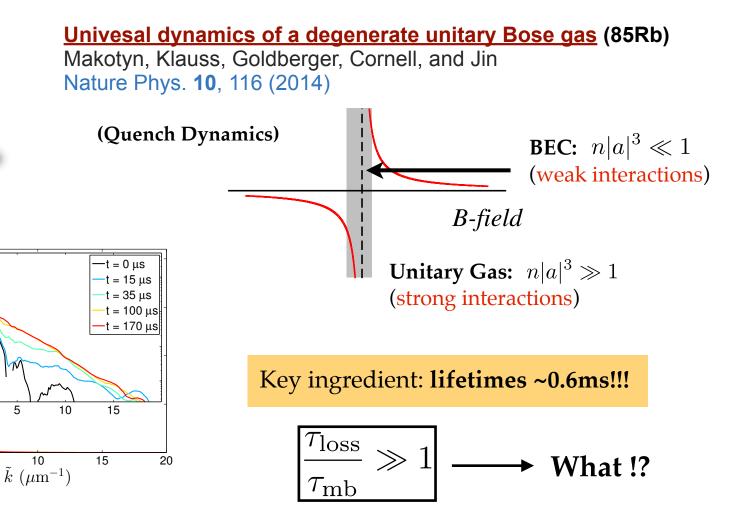
10⁵

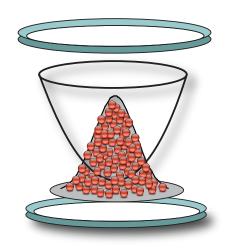
10⁴

 10^{3}

5

Experimental Scenario





Theoretical Scenario

<u>Quench dynamics of a strongly interacting resonant Bose gas</u> Yin, Radzihovsky, PRA **88**, 063611 (2013)

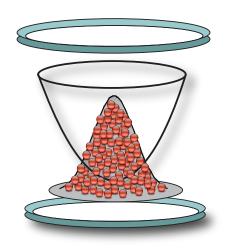
Quenching to unitarity: Quantum dynamics in a 3D Bose gas Sykes, Corson, D'Incao, Koller, Greene, Rey, Hazzard, Bohn, PRA 89, 021601 (2014)

Two-body and three-body Contacts for identical bosons near unitarity Smith, Braaten, Kang, Platter, PRL **112**, 110402 (2014)

Nonequilibrium states of a quenched Bose Gas Ben, Ling, arXiv:1401.2390 (2014)

Momentum distribution of a dilute unitary Bose gas with three-body losses Laurent, Leyronas, Chevy, arXiv:1312.0079 (2013)

Equilibrating dynamics in quenched Bose gases: characterizing multiple time regimes Racon, Levin, arXiv:1403.0141 (2014)



Theoretical Scenario

Quench dynamics of a strongly interacting resonant Bose gas Yin, Radzihovsky, PRA 88, 063611 (2013)

Quenching to unitarity: Quantum dynamics in a 3D Bose gas Sykes, Corson, D'Incao, Koller, Greene, Rey, Hazzard, Bohn, PRA 89, 021601 (2014)

Two-body and three-body Contacts for identical bosons near unitarity Smith, Braaten, Kang, Platter, PRL **112**, 110402 (2014)

Nonequilibrium states of a quenched Bose Gas Ben, Ling, arXiv:1401.2390 (2014)

Momentum distribution of a dilute unitary Bose gas with three-body losses Laurent, Leyronas, Chevy, arXiv:1312.0079 (2013)

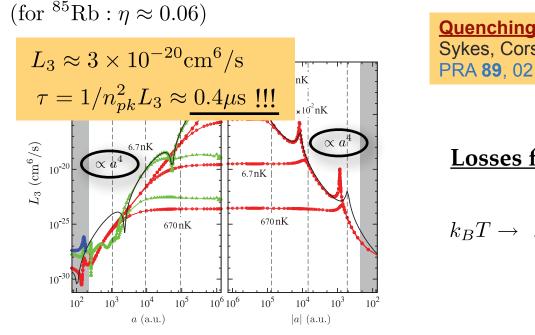
Equilibrating dynamics in quenched Bose gases: characterizing multiple time regimes Racon, Levin, arXiv:1403.0141 (2014)

(for ${}^{85}\text{Rb}: \eta \approx 0.06$) $L_3 \approx 3 \times 10^{-20} \mathrm{cm}^6 \mathrm{/s}$ nK $\tau = 1/n_{pk}^2 L_3 \approx 0.4 \mu s$!!! $\frac{1}{\times 10^2}$ nK $L_3~({ m cm}^6/{ m s})$ $\propto a^4$ 6.7nK $\propto a^4$ 10-20 6.7nK 10⁻²⁵ 670 nK 670 nK 10^{-30} 10^{5} $10^{6} 10^{6}$ 10^{5} 10^{4} 10^{3} 10^{2} 10^{3} 10^{4} 10^{2} a (a.u.) |a| (a.u.)

Quenching to unitarity: Quantum dynamics in a 3D Bose gas Sykes, Corson, D'Incao, Koller, Greene, Rey, Hazzard, Bohn PRA 89, 021601 (2014)

Losses for a unitary gas: $(n|a|^3 \gg 1)$

 $k_B T \to E_F = \frac{(6\pi^2 n)^{2/3}}{2m} \hbar^2$ and $\langle L_3 \rangle = \frac{\int L_3 n^3 d^3 r}{\int n^3 d^3 r}$

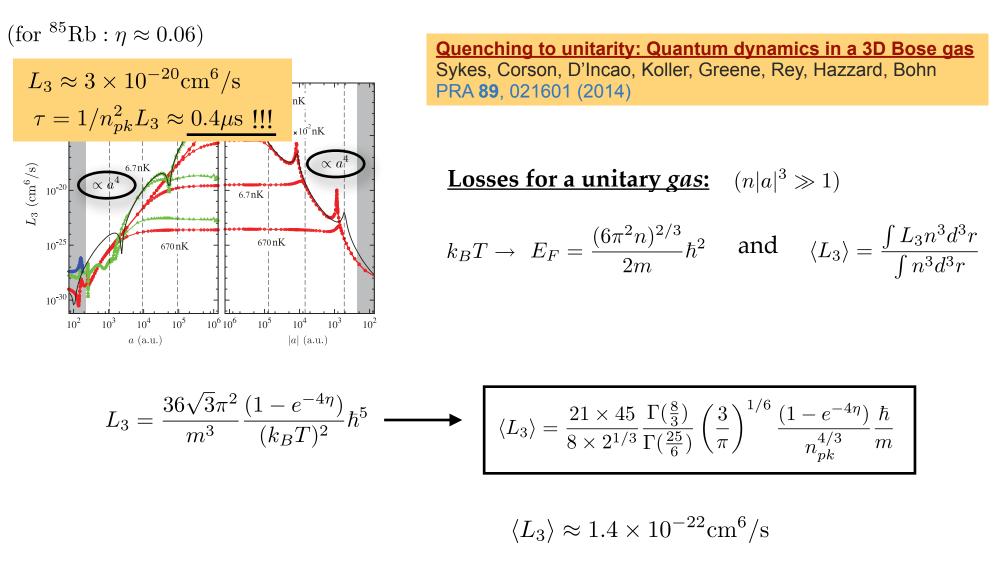


Quenching to unitarity: Quantum dynamics in a 3D Bose gas Sykes, Corson, D'Incao, Koller, Greene, Rey, Hazzard, Bohn PRA 89, 021601 (2014)

Losses for a unitary gas: $(n|a|^3 \gg 1)$

 $k_B T \to E_F = \frac{(6\pi^2 n)^{2/3}}{2m} \hbar^2$ and $\langle L_3 \rangle = \frac{\int L_3 n^3 d^3 r}{\int n^3 d^3 r}$

$$L_3 = \frac{36\sqrt{3}\pi^2}{m^3} \frac{(1 - e^{-4\eta})}{(k_B T)^2} \hbar^5 \longrightarrow \qquad \langle L_3 \rangle = \frac{21 \times 45}{8 \times 2^{1/3}} \frac{\Gamma(\frac{8}{3})}{\Gamma(\frac{25}{6})} \left(\frac{3}{\pi}\right)^{1/6} \frac{(1 - e^{-4\eta})}{n_{pk}^{4/3}} \frac{\hbar}{m}$$



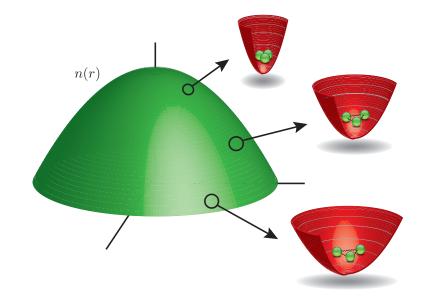
 $\langle \tau \rangle \approx 0.20 \text{ms !!!}$ (as opposed to $0.4 \mu \text{s}$)

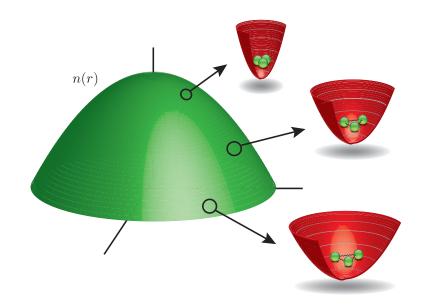
What about Efimov states ?

(for ⁸⁵Rb :
$$\eta \approx 0.06$$
)

$$L_{3} \approx 3 \times 10^{-20} \text{cm}^{6}/\text{s}$$
 $\tau = 1/n_{pk}^{2} L_{3} \approx 0.4\mu \text{s} !!!$

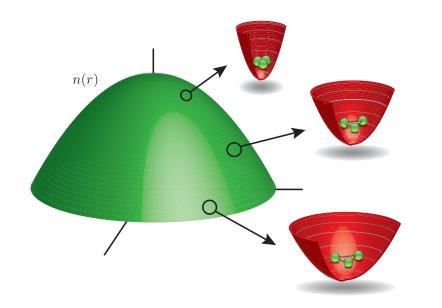
$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{\pi$$





$$n = \frac{9\sqrt{\pi/2}}{128 a_{\rm ho}^3} \longrightarrow \hbar\omega_{\rm ho} = \hbar^2 \frac{16(2/\pi)^{1/3}}{3^{2/3}m} n^{2/3}$$

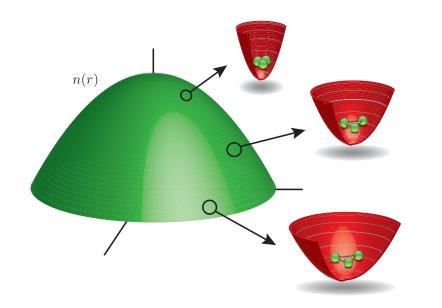
Borca, Blume & Greene, NJP (2003) Goral, Kohler, Gardiner, Tiesinga & Julienne, JPB (2004)



$$n = \frac{9\sqrt{\pi/2}}{128 \ a_{\rm ho}^3} \longrightarrow \ \hbar\omega_{\rm ho} = \hbar^2 \frac{16(2/\pi)^{1/3}}{3^{2/3}m} n^{2/3}$$

Borca, Blume & Greene, NJP (2003) Goral, Kohler, Gardiner, Tiesinga & Julienne, JPB (2004)

$$\Psi_{i}(\vec{R}) \xrightarrow[a \approx 150a_{0}]{} \Psi(\vec{R},t) = \sum c_{\beta} \Psi_{\beta}(\vec{R}) e^{iE_{\beta}t/\hbar} \\ (E_{\beta} = E_{\beta}^{0} - i\Gamma_{\beta}/2)$$



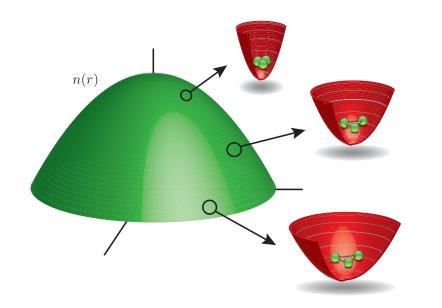
$$n = \frac{9\sqrt{\pi/2}}{128 \ a_{\rm ho}^3} \longrightarrow \ \hbar\omega_{\rm ho} = \hbar^2 \frac{16(2/\pi)^{1/3}}{3^{2/3}m} n^{2/3}$$

Borca, Blume & Greene, NJP (2003) Goral, Kohler, Gardiner, Tiesinga & Julienne, JPB (2004)

$$\Psi_{i}(\vec{R}) \xrightarrow[a \approx 150a_{0}]{} \Psi(\vec{R}, t) = \sum c_{\beta} \Psi_{\beta}(\vec{R}) e^{iE_{\beta}t/\hbar} (E_{\beta} = E_{\beta}^{0} - i\Gamma_{\beta}/2)$$

$$\langle L_3^* \rangle = \frac{21}{8N_0} \frac{1}{n_{pk}^2} \sum_{\beta} \int \left[c_{\beta}^2(a_{\rm ho}) \frac{\Gamma_{\beta}(a_{\rm ho})}{\hbar} \right] n(r) d^3r$$

 c_{β}^2 : Population $au_{\beta} = \hbar/\Gamma_{\beta}$: Lifetime



$$n = \frac{9\sqrt{\pi/2}}{128 \ a_{\rm ho}^3} \longrightarrow \ \hbar\omega_{\rm ho} = \hbar^2 \frac{16(2/\pi)^{1/3}}{3^{2/3}m} n^{2/3}$$

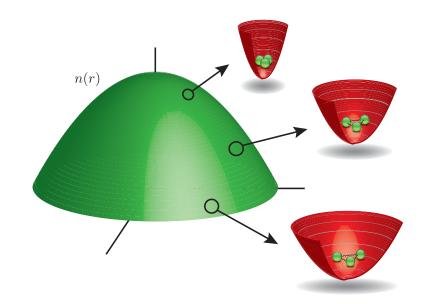
Borca, Blume & Greene, NJP (2003) Goral, Kohler, Gardiner, Tiesinga & Julienne, JPB (2004)

 $\langle \tau^* \rangle \approx 1.1 \mathrm{ms} !!!$

 $\langle L_3^* \rangle \approx 2.6 \times 10^{-23} \mathrm{cm}^6 \mathrm{/s}$

$$\Psi_{i}(\vec{R}) \xrightarrow{\text{(quench)}} \Psi(\vec{R},t) = \sum c_{\beta} \Psi_{\beta}(\vec{R}) e^{iE_{\beta}t/\hbar}$$
$$(E_{\beta} = E_{\beta}^{0} - i\Gamma_{\beta}/2)$$

$$\langle L_3^* \rangle = \frac{21}{8N_0} \frac{1}{n_{pk}^2} \sum_{\beta} \int \left[c_{\beta}^2(a_{\rm ho}) \frac{\Gamma_{\beta}(a_{\rm ho})}{\hbar} \right] n(r) d^3r$$



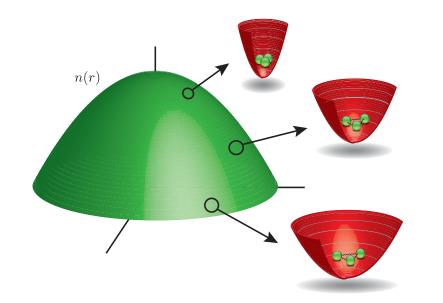
$$n = \frac{9\sqrt{\pi/2}}{128 \ a_{\rm ho}^3} \longrightarrow \ \hbar\omega_{\rm ho} = \hbar^2 \frac{16(2/\pi)^{1/3}}{3^{2/3}m} n^{2/3}$$

Borca, Blume & Greene, NJP (2003) Goral, Kohler, Gardiner, Tiesinga & Julienne, JPB (2004)

Separation of timescales (universal relation)

$$\frac{\tau_{\rm loss}}{\tau_C} \approx \frac{1.89}{\eta}$$

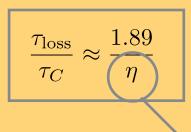
⁸⁵Rb ($\eta \approx 0.06$): 31.5 ⁷Li ($\eta \approx 0.21$): 9.0 ¹³³Cs ($\eta \approx 0.08 - 0.19$): 23.6-9.9 ³⁹K ($\eta \approx 0.09$): 21.0



$$n = \frac{9\sqrt{\pi/2}}{128 a_{\rm ho}^3} \longrightarrow \hbar\omega_{\rm ho} = \hbar^2 \frac{16(2/\pi)^{1/3}}{3^{2/3}m} n^{2/3}$$

Borca, Blume & Greene, NJP (2003) Goral, Kohler, Gardiner, Tiesinga & Julienne, JPB (2004)

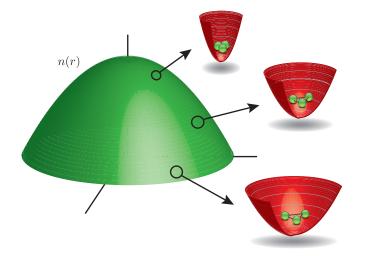
Separation of timescales (universal relation)



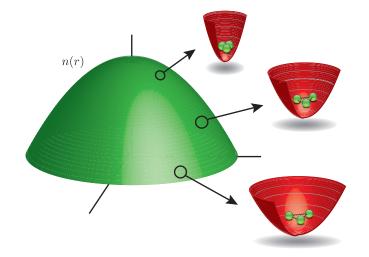
⁸⁵Rb ($\eta \approx 0.06$): 31.5 ⁷Li ($\eta \approx 0.21$): 9.0 ¹³³Cs ($\eta \approx 0.08 - 0.19$): 23.6-9.9 ³⁹K ($\eta \approx 0.09$): 21.0

Three-body inelasticity parameter !!!

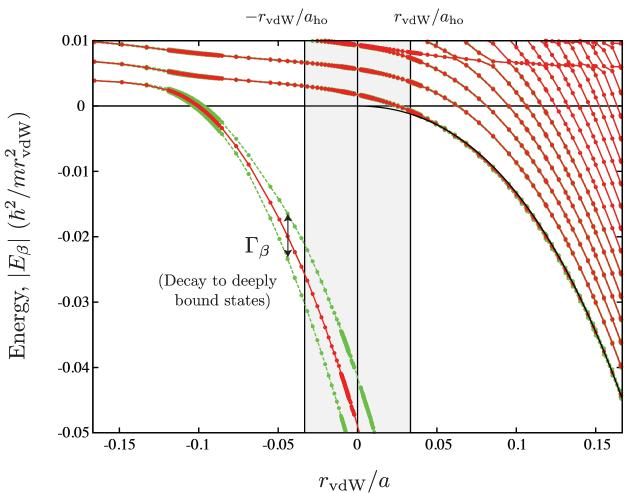
Efimov states in Unitary Bose gases !?

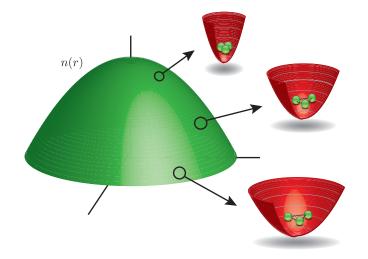


Efimov states and dynamics in ultracold unitary Bose gases J. P. D'Incao and J. L. Bohn (in preparation)

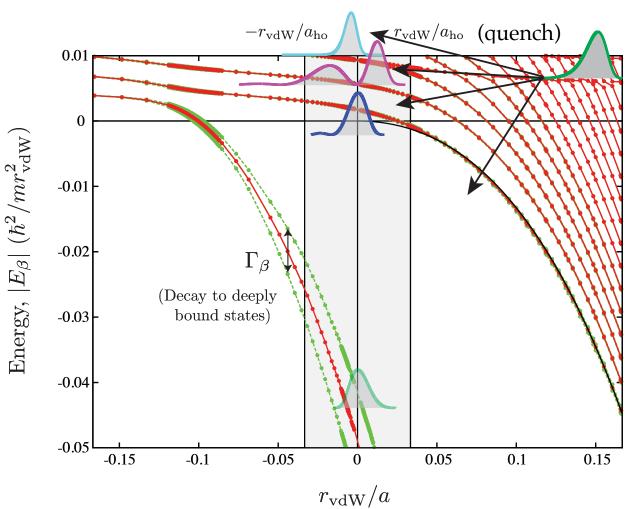


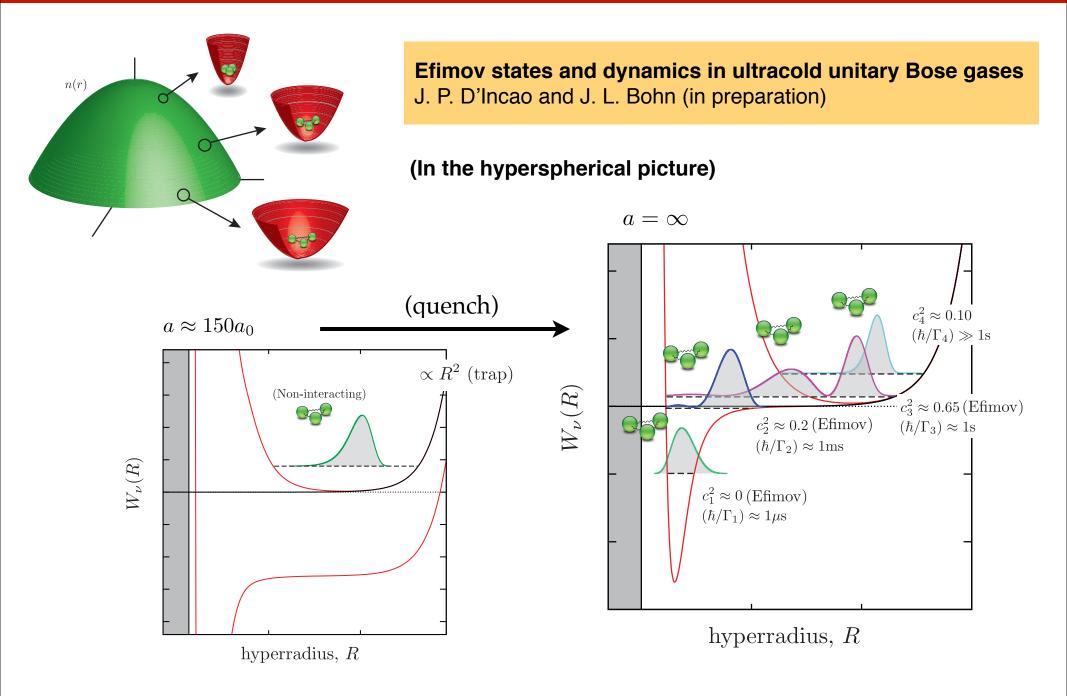
Efimov states and dynamics in ultracold unitary Bose gases J. P. D'Incao and J. L. Bohn (in preparation)

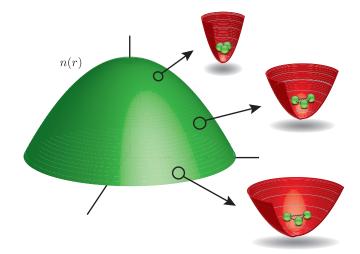




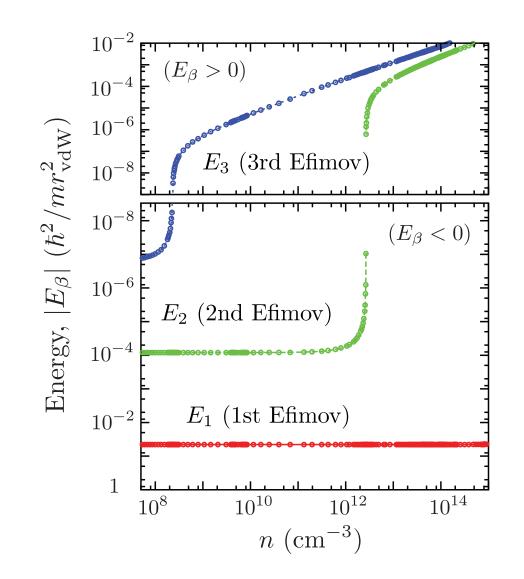
Efimov states and dynamics in ultracold unitary Bose gases J. P. D'Incao and J. L. Bohn (in preparation)

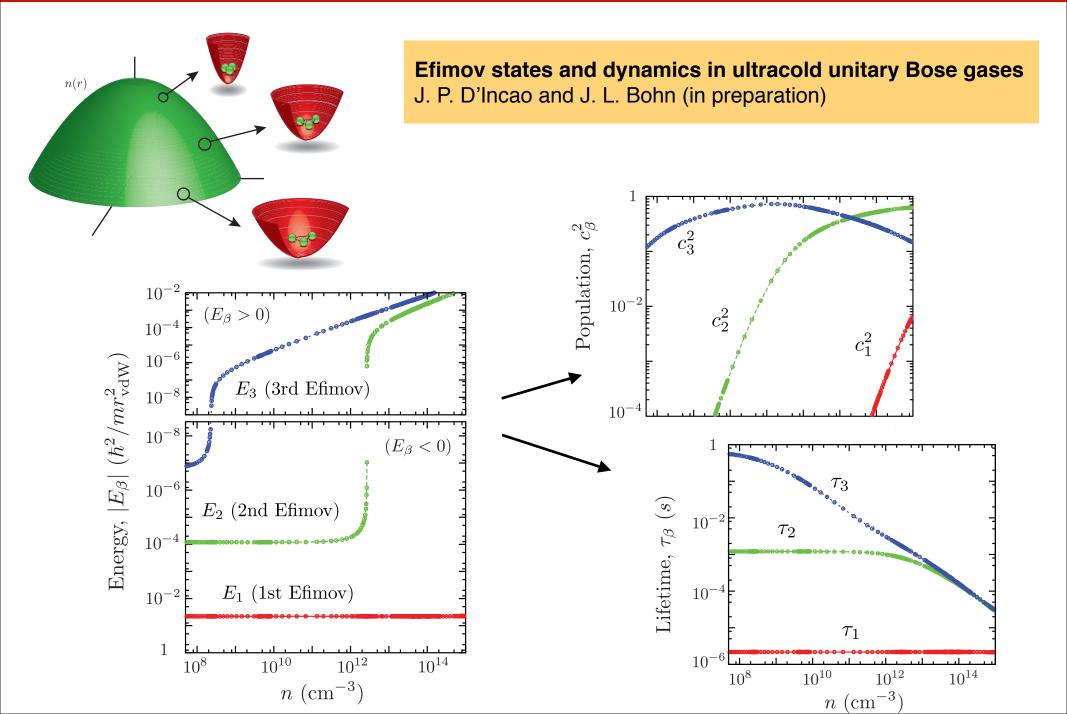


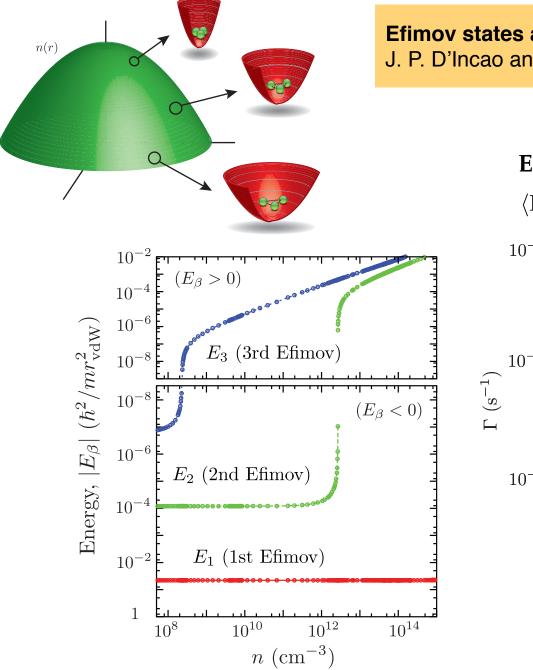




Efimov states and dynamics in ultracold unitary Bose gases J. P. D'Incao and J. L. Bohn (in preparation)



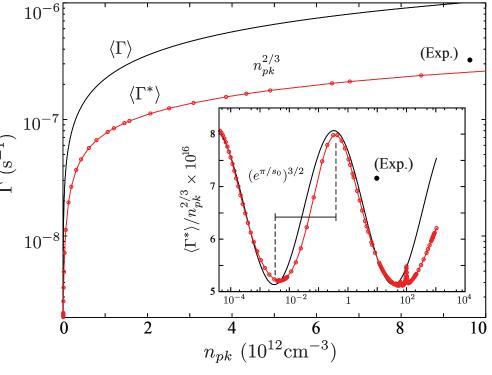


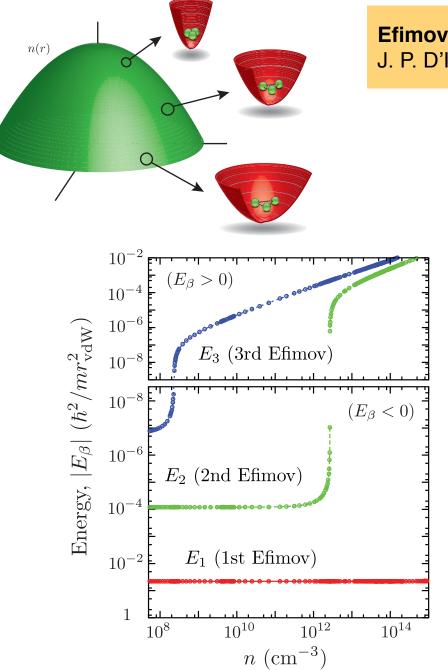


Efimov states and dynamics in ultracold unitary Bose gases J. P. D'Incao and J. L. Bohn (in preparation)

Efimov oscillations:

 $\langle \Gamma \rangle \approx [A + B \sin^2(s_0 \ln n^{1/3} + \phi)] n^{2/3}$





Efimov states and dynamics in ultracold unitary Bose gases J. P. D'Incao and J. L. Bohn (in preparation)

Bottom Line:

>>> Separation of timescales

$$\frac{\tau_{\text{loss}}}{\tau_C} \approx \frac{1.89}{\eta}$$
⁸⁵Rb ($\eta \approx 0.06$): 31.5
⁷Li ($\eta \approx 0.21$): 9.0
¹³³Cs ($\eta \approx 0.08 - 0.19$): 23.6–9.9
³⁹K ($\eta \approx 0.09$): 21.0

>>> Lifetime controlled by Efimov states

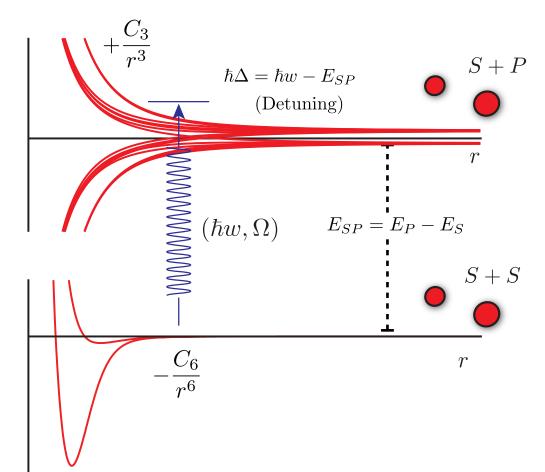
Can we control Efimov state lifetime ?

Can we control Efimov state lifetime ?

(with G. Pupillo, J. Wang, C. H. Greene)

(with G. Pupillo, J. Wang, C. H. Greene)

Schematic Two-body potentials:



Atom-Laser interaction

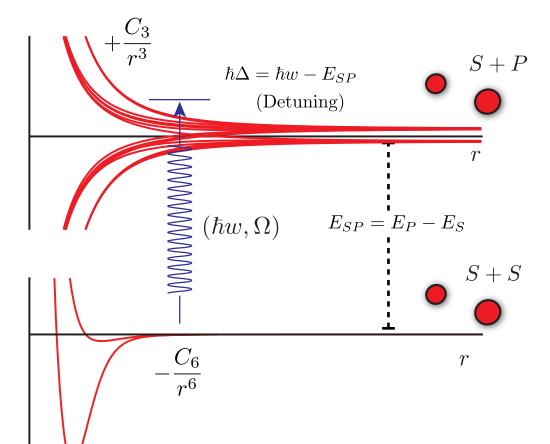
$$\hat{W}(t) = \hbar \Omega \Big(|S\rangle \langle P| + |P\rangle \langle S| \Big) \cos(wt)$$
$$\Omega \equiv \text{Rabi frequency}$$
$$w \equiv \text{Laser frequency}$$

Blue-Shielding:

blue-detuned Laser = coupling to a repulsive $1/r^3$ interaction = prevents atoms to approach short distances

Schematic Two-body potentials:

(with G. Pupillo, J. Wang, C. H. Greene)



Atom-Laser interaction

$$\hat{W}(t) = \hbar \Omega \Big(|S\rangle \langle P| + |P\rangle \langle S| \Big) \cos(wt)$$
$$\Omega \equiv \text{Rabi frequency}$$
$$w \equiv \text{Laser frequency}$$

Blue-Shielding:

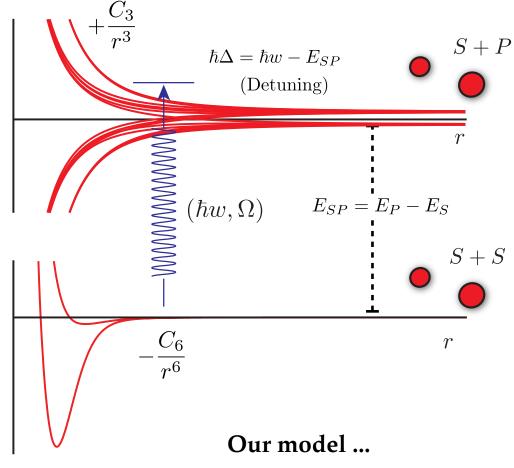
blue-detuned Laser = coupling to a repulsive $1/r^3$ interaction = prevents atoms to approach short distances

Successful for two-bodies

Suominen, Holland, Burnett, Julienne, PRA **51**, 1446 (1995); Weiner, Bagnato, Zilio, Julienne, RMP **71**, 1 (1999); Gorshkov, Rabl, Pupillo, Micheli, Zoller, Lukin, Buchler, PRL **101**, 073201 (2008)

Schematic Two-body potentials:

(with G. Pupillo, J. Wang, C. H. Greene)



Atom-Laser interaction

$$\hat{W}(t) = \hbar \Omega \Big(|S\rangle \langle P| + |P\rangle \langle S| \Big) \cos(wt)$$
$$\Omega \equiv \text{Rabi frequency}$$
$$w \equiv \text{Laser frequency}$$

Blue-Shielding:

blue-detuned Laser = coupling to a repulsive $1/r^3$ interaction = prevents atoms to approach short distances

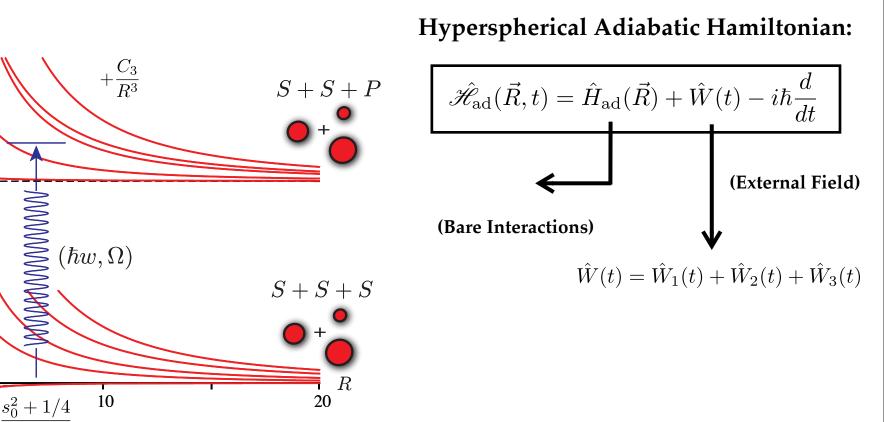
- S + S Interaction : $v_{SS}(r) = -\frac{C_6}{r^6} \left(1 \frac{\lambda_*^6}{r^6}\right), \quad (a \to \pm \infty)$
- S + P Interaction : $v_{SP}(r) = +\frac{C_3}{r^3}$

Extension to three-bodies ?

(with G. Pupillo, J. Wang, C. H. Greene)

(with G. Pupillo, J. Wang, C. H. Greene)

Hyperspherical Three-body potentials:
$$(a \rightarrow \pm \infty)$$



(Decay)

 $\overline{2\mu R^2}$

(Efimov States)

(universal)

50

2

0

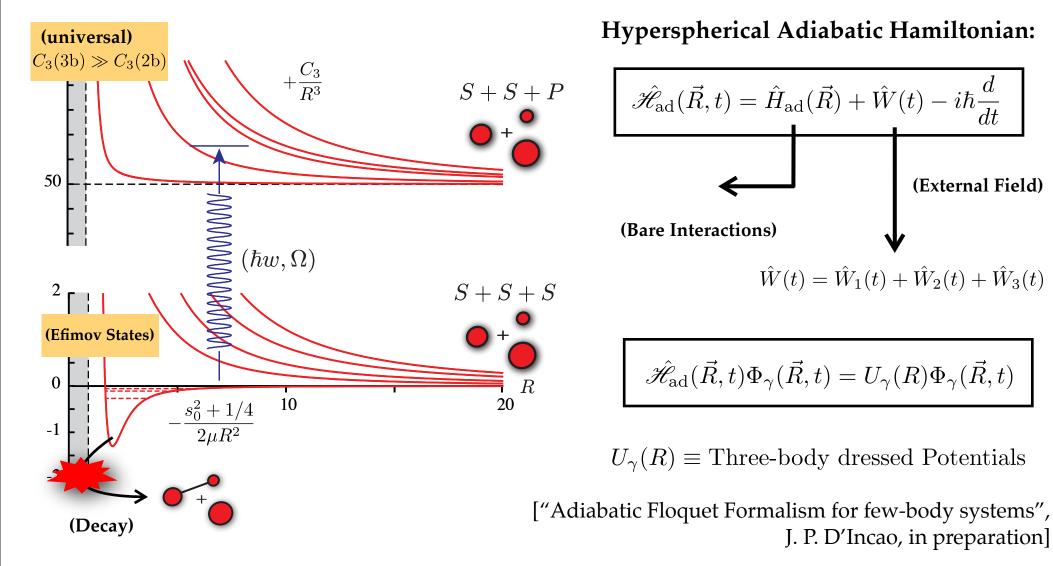
-1

 $C_3(3b) \gg C_3(2b)$

(External Field)

(with G. Pupillo, J. Wang, C. H. Greene)

Hyperspherical Three-body potentials:
$$(a \rightarrow \pm \infty)$$



[See Shih-I Chu and Dmitry A. Telnov, Phys. Rep. 390, 1 (2004)]

(universal) $C_3(3b) \gg C_3(2b)$

50

2

(Efimov States)

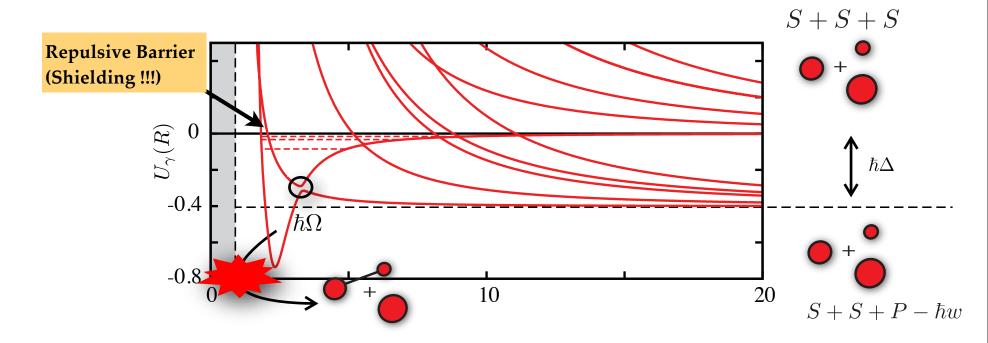
(Decay)

(with G. Pupillo, J. Wang, C. H. Greene)

Hyperspherical Adiabatic Hamiltonian:

$$\hat{\mathscr{H}}_{\mathrm{ad}}(\vec{R},t) = \hat{H}_{\mathrm{ad}}(\vec{R}) + \hat{W}(t) - i\hbar \frac{d}{dt}$$

Hyperspherical Dressed Three-body potentials:



Hyperspherical Three-body potentials: $(a \rightarrow \pm \infty)$

S + S + P

S + S + S

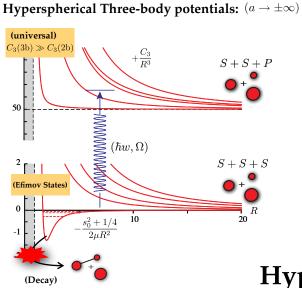
 $+\frac{C_3}{R^3}$

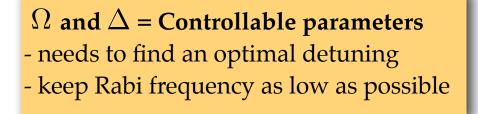
 $(\hbar w, \Omega)$

 $\frac{s_0^2 + 1/4}{2\mu R^2}$

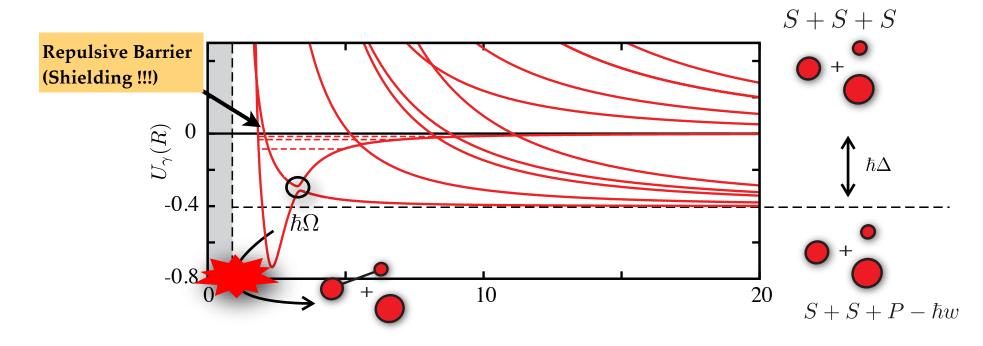
10

(with G. Pupillo, J. Wang, C. H. Greene)

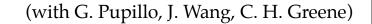


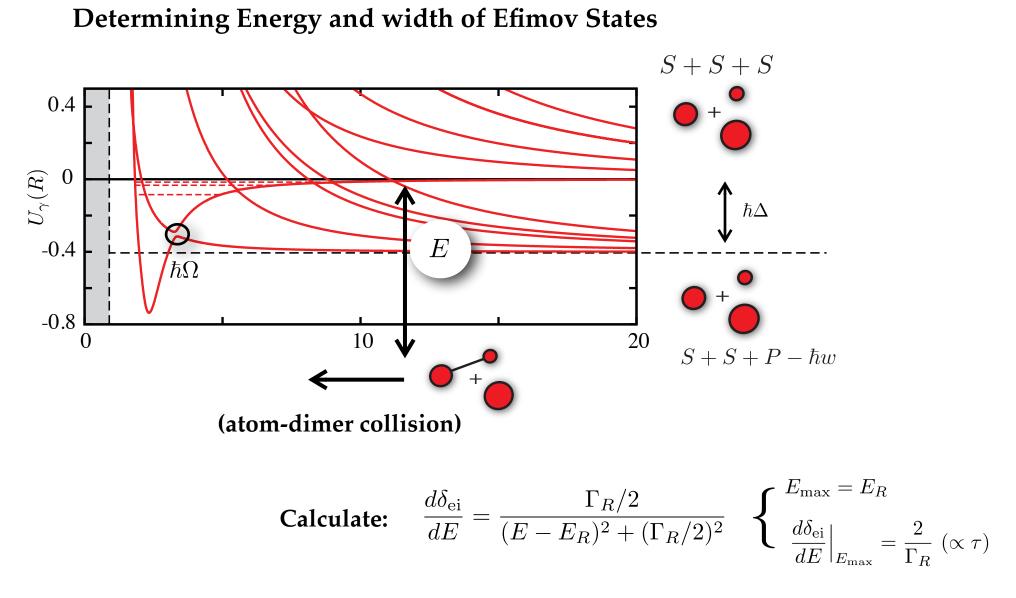


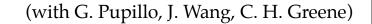
Hyperspherical Dressed Three-body potentials:

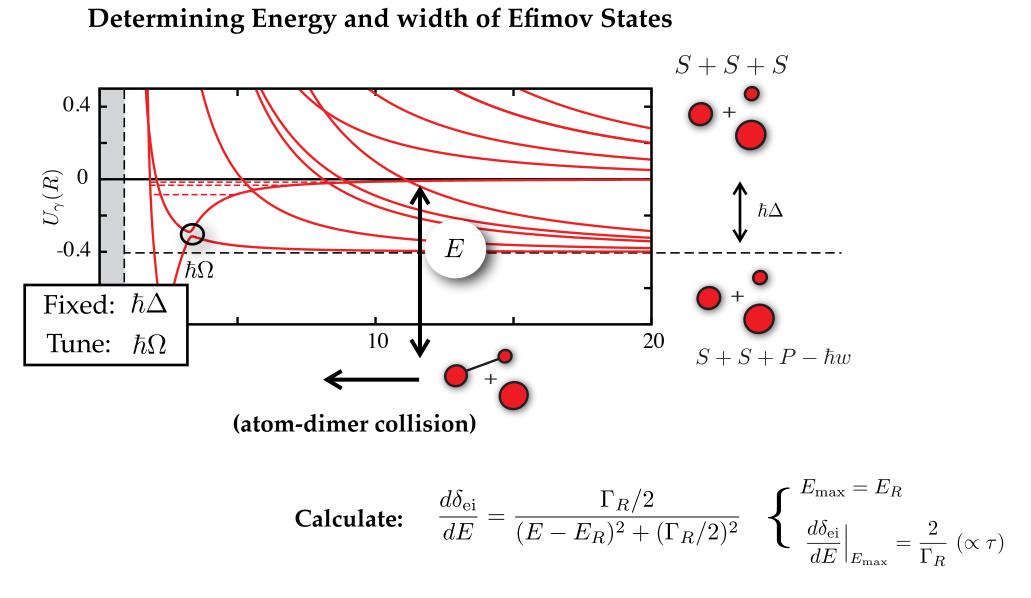


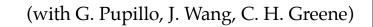
(with G. Pupillo, J. Wang, C. H. Greene)

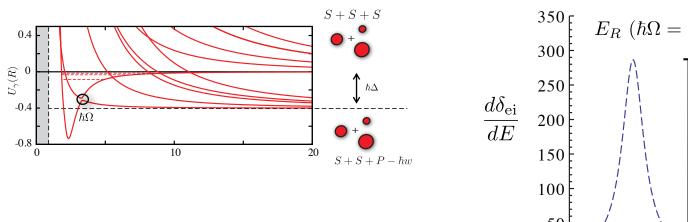


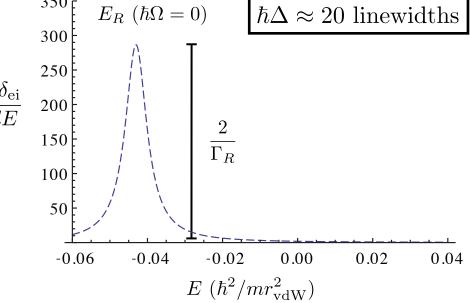


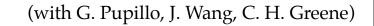


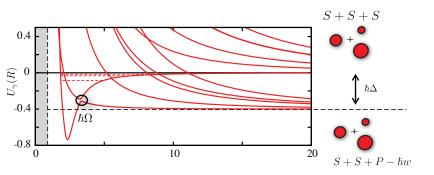


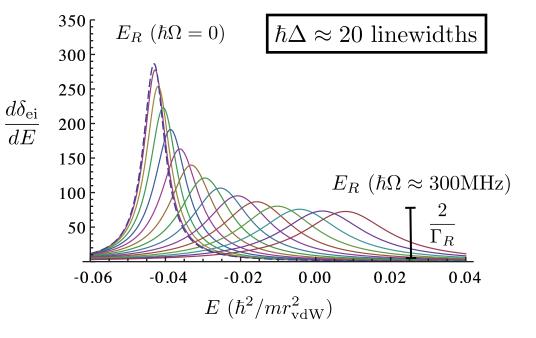


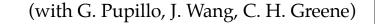


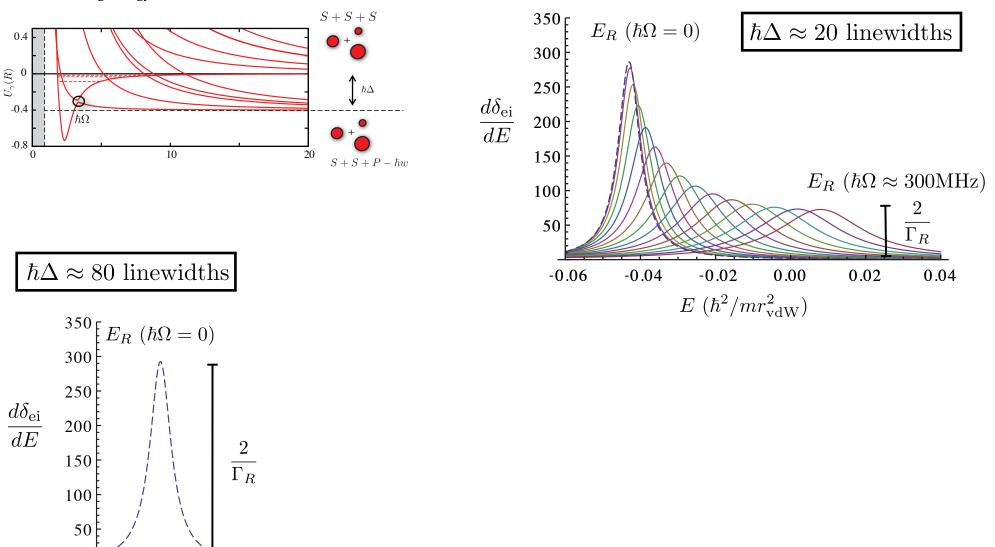












-0.04

-0.06

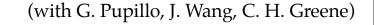
-0.02

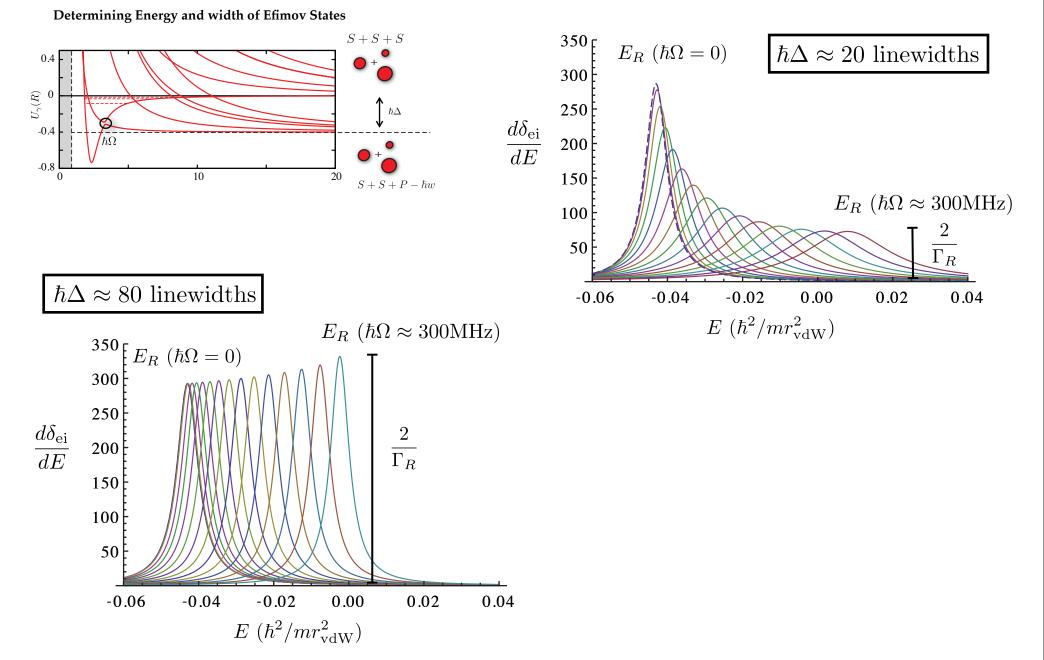
 $E (\hbar^2 / m r_{\rm vdW}^2)$

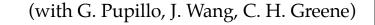
0.00

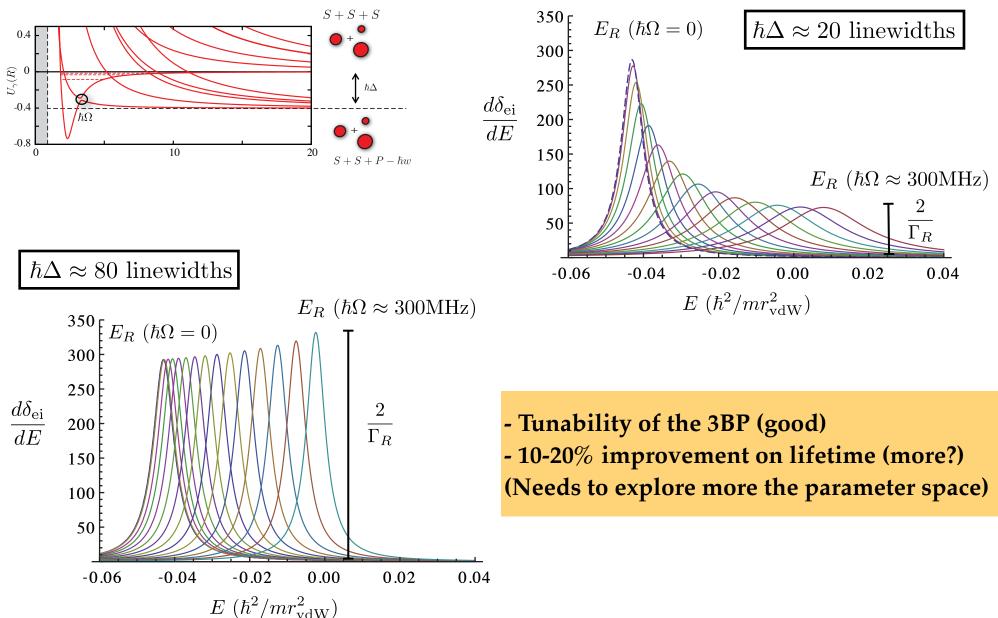
0.02

0.04

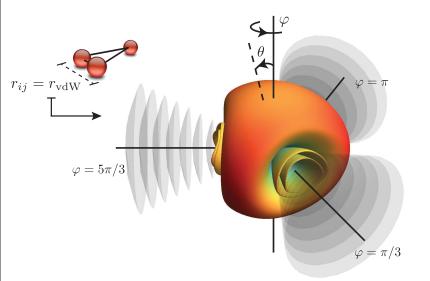








Summary



• Both the theoretical and experimental advances in ultracold quantum gases have demonstrated these systems to be ideal candidates to explore universal few-body physics

• Some of the physical aspects of unitary Bose gases can be understood from a few-body perspective

• Quench to unitary: The separation of time scales for losses and many-body physics is favorable and allows interesting regimes to explore universal few-body physics

•The use of a blue-detuned laser seems promising in order to allow for the control of both energy and lifetime of Efimov states. In particular, we expect a better control for Efimov states when the scattering is finite.