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BASIC FACTS AND PHYSICAL MOTIVATION



THE EFIMOV EFFECT
Relevant regime:

• a resonant s-wave binary interaction between particles

• assume infinite scattering length, no two-body bound
state

Then the Efimov effect may occur:

• an infinite number of trimer states

• the spectrum is asymptotic to a geometric sequence, in
the limit of a large quantum number n:

En ∼
n→+∞

Eglobe
−2πn/|s|

• the exponent s ∈ iR+ is given by Efimov zero-range
theory, contrarily to Eglob

• spectrum becomes geometric, as in zero-range theory,
when de Broglie wavelength ≫ interaction ranges



A PARTICULARLY INTERESTING CASE
There exists a control parameter α allowing one to contin-
uously switch on/off the Efimov effect

αα
c

finite number of trimers infinite number of trimers

How does the system evolve from a finite number to an
infinite number of trimer states ?
Simple facts:

• The efimovian states cannot emerge from E = −∞ [any
physical spectrum is bounded from below], they shall
emerge from E = 0

• close to threshold, the efimovian states are in the zero-
range regime so their spectrum shall be entirely geomet-
ric



• behavior of exponent s known, vanishes as (α− αc)
1/2:

Λ(s, α) = 0

with Λ even function of s. At threshold, collision in
s = 0 of two real (α<αc) or imaginary (α>αc) roots:

1

2
s2∂2

sΛ(0, αc) + (α− αc)∂αΛ(0, αc) = O(α− αc)
2

• Does Eglob also vanish or diverge at the threshold, with
some critical exponent ?

Our goal here:

• Answer this question quantitatively on a simple but re-
alistic model: the infinitely narrow Feshbach resonance

• Then analytic techniques exist to calculate Eglob, as done
for three bosons (Gogolin, Mora, Egger, 2008).

• Also three-body losses suppressed in that limit



THE PHYSICAL MODEL AND

THE INTEGRAL EQUATION TO SOLVE



CONFIGURATION & PREDICTIONS OF EFIMOV THEORY
Make Efimov effect avoidable thanks to Pauli exclusion
principle:

• polarized fermions do not interact in s-wave

• so take two same-spin-state fermions of mass m reso-
nantly interacting (1/a = 0) with an impurity of mass
M

• Control parameter is mass ratio α = m/M : no Efimov
effect if α not too large (Efimov, 1973)

Even more interesting: a sequence of efimovian thresholds

• in the sectors of increasing odd angular momenta:

α
(l=1)
c = 13.60696 . . . α

(l=3)
c = 75.99449 . . .

α
(l=5)
c = 187.9583 . . . α

(l=7)
c = 349.6384 . . .

• no Efimov effect for even angular momenta



• Simple Born-Oppenheimer explanation:

ψ(r1, r2,R) ≈ φ(r1 − r2)Φ(R; r1, r2)

where the ground-state wavefunction Φ of the impurity
at fixed fermionic positions is a symmetric function of
these positions, of eigenenergy −~

2C2/(2Mr212) [here
C = exp(−C)], which leads to the effective potential

Veff(r12) =
~
2l(l + 1)

mr212

−
~
2C2

2Mr212

Efimov
≡

~
2(s2l − 1/4)

mr212

We have results beyond the Born-Oppenheimer approxi-
mation:
At bounded distance from threshold:

|sl|
2 =
l→∞

1

2
C2(α− α

(l)
c )[1 + O(1/l)]

1

2
C2α

(l)
c =

l→∞

(

l +
1

2

)2

+
17 − C2

12
−

7

6

(

C +
1

C + 1

)

+O(1/l)



WHICH IMPURITY-FERMION INTERACTION

• A Feshbach resonance: two-channel model

• in the open channel, van de Waals interaction of length
b and non-resonant scattering length abg ≈ b

• infinitely narrow: take limit b → 0 for fixed (rather than
diverging) interchannel coupling Λ. Then corresponding
Feshbach length R∗ does not vanish. E. g. for |abg| ≪ b:

R∗ ≃
π~

4

Λ2µ2

•R∗ gives the effective range of the binary interaction:

fk =
−1

ik + k2R∗



Ansatz for the trimer state of energy E = −~
2q2/(2µ) < 0:

|ψ3 at〉 =

∫

∏3
i=1 d

3ki

[(2π)3]3
(2π)3δ(

3
∑

i=1

ki)A(k1, k2, k3)a
†
k1
c
†
k2
c
†
k3

|0〉

|ψ1 at+1 mol〉 =

∫

d3k

(2π)3
B(k)b

†
−kc

†
k|0〉

• Integral equation from Schrödinger’s equation:
[

qrel(k) + q2
rel(k)R∗

]

D(k) = −

∫

d3k′

2π2

D(k′)

q2+k2+k
′2+ 2α

1+αk·k′

where D(k) ≃ B(k) for |abg| ≪ b

• effective relative wavenumber between impurity and fermion:

qrel(k) = [q2 +
1 + 2α

(1 + α)2
k2]1/2

• At fixed angular momentum: D(k) = d(k)Y 0
l (k̂)



USEFUL LIMITING CASES, THEIR SOLUTION



We shall obtain the trimer energies analytically with a
relative error O(qR∗) by matching two solutions:

0 q 1/R
*

solution E=-(/hq)
2
/2µ, R

*
=0

range of applicability of

its asymptotic range

its asymptotic range

solution E=0, R
*
>0

range of applicability of

matching interval

∞
k

When qR∗ ≪ 1 there exists a momentum interval where
both solutions are applicable and are in their k → ∞ and
k → 0 asymptotic regimes. Matchable asymptotic forms:

k2d(k) =
k/q→∞

eiθ<(k/q)s + c.c. + O(k/q)2

k2d(k) =
kR∗→0

eiθ>(kR∗)
s + c.c. + O(kR∗)



HOW TO SOLVE ?
E < 0, R∗ = 0:

• Fourier transform the real space Efimov solution

E = 0, R∗ > 0 (Gogolin, Mora, Egger, 2008):

• integral term is scaling invariant. Change of variable x =
ln(kR∗ cos ν) [where ν = arcsin α

1+α is mass angle] makes

it translationally invariant: setting k2d(k) = F (x),

0 = (1 + ex)F (x) + (K ∗ F )(x)

• Fourier transform with respect to x:

0 = F̃ (S+i) + Λl(iS, α)F̃ (S)

• Infinite product representation of s 7→ Λl(s) over its
roots and poles. Then solution for F̃ (S) is an infinite
product of ratios of Γ functions [Γ(z + 1) = zΓ(z)]



THE ANALYTICAL RESULTS



Exact value of the global energy scale:

E
(l)
glob = −

2~
2

µR2
∗

e2θl/|sl| ≡ −
~
2q

(l)2
glob

2µ

θl = Im[ln Γ(1+sl)+ln Γ(1+2sl)+2 ln Γ(l+1−sl)+ln Γ(l+2−sl)]

+

∫ |sl|

0
dS ln

[

Λl(iS, α)
S2 + (l + 1)2

S2 − |sl|
2

]

+
∑

k≥1

(−1)kB2k

(2k)!

d2k−1

dS2k−1

{

ln

[

Λl(iS, α)
S2 + (l + 1)2

S2 − S2
l

]}

S=|sl|

Finite limit at threshold:
θl/|sl| → 3ψ(1)−2ψ(l+1)−ψ(l+2)+

∑

j[ψ(xj)+ψ(1+
xj) − ψ(l+ 1 + 2j) − ψ(l+ 2 + 2j)]
where ψ(x) = Γ′(x)/Γ(x) is the digamma function and

the sum is taken over the positive roots of Λl(x, α
(l)
c )
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It is an excellent approximation to neglect the sum over k:
dashed line vs exact solid line. Other results:

q
(l)
globR∗|threshold ∼

l→∞

1 + C

l3
e−3γ

q
(l)
globR∗ →

α→∞
2(1 + C)e

∫C
0 dx

(

1
C

1+x
1−xex

− 1
C−x

)



A NUMERICAL STUDY:

BEYOND THE GEOMETRIC SPECTRUM



ANALYTICAL VS NUMERICAL FUNCTIONS (α = 14)
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Solid line: numerical. Dashed line: asymptotic formula
common to (E < 0, R∗ = 0) and (E = 0, R∗ > 0) analytical
solutions. Vertical dotted lines: borders of the matching
interval. N.B. n = 1 is indeed the ground trimer state.



ANALYTICAL VS NUMERICAL SPECTRA
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Relative deviations from geometric spectrum

• at fixed α, → 0 if n → ∞

• at fixed n, → ∞ if α → ∞

Experimentally accessible range (due to finite a):

• qR∗ > 0.1 not irrealistic

• On 6Li-40K Feshbach resonance, of width ∆B = 1G,
requires 0.3mG B field stabilization



CONCLUSION

• 2 + 1 fermionic problem, mass ratio α, narrow Feshbach
resonance

• at each Efimov threshold (of odd angular momentum l),
the corresponding trimer spectrum is entirely geometric:

E
(l)
n ∼

α→α
(l)+
c

E
(l)
globe

−2πn/|sl| ∀n ≥ 1

where the ground state trimer is n = 1

• the exact expression of E
(l)
glob shows that it has a finite

and non-zero limit at threshold

• opposite limit α → +∞: spectrum becomes hydrogenoid

E
(l)
n ∼

α→∞
−

~
2α

16µR2
∗

1

(n+ l)2

as predicted by the Born-Oppenheimer approximation


