
Lattice QCD & strongly 
interacting few-body systems
A universal result and not-so-universal implications

Raúl Briceño 

pp p

⇡

INT 14-1



⇡�

Goals

Institute for Nuclear Theory 
Workshop INT-13-53W 

Nuclear Reactions from Lattice QCD
March 11-12, 2013
Organizers: RB, Zohreh Davoudi, Thomas Luu 

Fundamental 
symmetries:

Spectroscopy/
scattering:

Form factors:



p

⇡

p

Weak

n

n

p e
e pp

⇡
K

⇡

Goals

Fundamental 
symmetries:

n
n n

K K

⌘

⇤⇤

⇡
!

⇡

⇡

⇡
⇡
⇡

QCD

Spectroscopy/
scattering:

pp⇡�

⇡

⇡⇡ p

⇡
⇡⇡

⇡

QED

�Form factors:



⇡�

⇡

⇡⇡

⇡
⇡⇡

Goals

Fundamental 
symmetries:

Spectroscopy:

Hadron structure-
transition form factors:

n
n n

⇤⇤

p

⇡�n

p
p

S P S S
⇡

p p p

n np⇡⇡

K K

⌘⇡
!

⇡

⇡

⇡
⇡
⇡

barrel
calorimeter

time-of
-flight

forward calorimeter 

photon beam

electron
beamelectron

beam

superconducting
magnet 

target

tagger magnet

tagger to detector distance
is not to scale

diamond
wafer

GlueX

central drift
chamber

forward drift
chambers

start
counter

pp p

⇡



Goals

Fundamental 
symmetries:

Spectroscopy:

Hadron structure-
transition form factors:

K K

⌘⇡
!

⇡

⇡

⇡
⇡
⇡

p

⇡�n

p
p

S P S S
⇡

p p p

n np⇡⇡

pp⇡�

⇡

⇡⇡ p

⇡
⇡⇡

⇡

⇤⇤

p

⇡

p

n

n

p e
e

n
n n

Energy

1/a

a = a(m⇡)



u d

u
u
d

d

np scattering

p = uud

n = udd

LQCD =  ̄f (i ⇥D�mf) f �
1

4
tr (GG)

Lattice QCD



u
u
d

u d
dT

L

a

LQCD: Finite Euclidean Spacetime 

neutron-proton in a 4D torus

t ! i�

2D torus



LQCD: Finite Euclidean Spacetime 
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scattering parameters, form factors,...
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FIG. 11: Isoscalar (green/black) and isovector (blue) meson spectrum on the m� = 391MeV, 243 � 128 lattice. The vertical
height of each box indicates the statistical uncertainty on the mass determination. States outlined in orange are the lowest-lying
states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.

extrapolation might be the complex resonance pole posi-
tion, but we do not obtain this in our simple calculations
using only “single-hadron” operators.

We discuss the specific case of the 0�+ and 1�� sys-
tems in the next subsections.

E. The low-lying pseudoscalars: ⇥, �, ��

In lattice calculations of the type performed in this
paper, where isospin is exact and electromagnetism does
not feature, the ⌃ and ⇤ mesons are exactly stable and ⇤⇤

is rendered stable since its isospin conserving ⇤⌃⌃ decay
mode is kinematically closed. Because of this, many of
the caveats presented in Section III B do not apply. Fig-
ure 17 shows the quality of the principal correlators from
which we extract the meson masses, in the form of an
e�ective mass,

me� =
1

⇥t
log

⇧(t)

⇧(t+ ⇥t)
, (16)

for the lightest quark mass and largest volume consid-
ered. The e�ective masses clearly plateau and can be
described at later times by a constant fit which gives a
mass in agreement with the two exponential fits to the
principal correlator that we typically use.

Figure 18 indicates the detailed quark mass and vol-
ume dependence of the ⇤ and ⇤⇤ mesons. We have already
commented on the unexplained sensitivity of the ⇤⇤ mass

to the spatial volume atm� = 391MeV, and we note that
since only a 163 volume was used at m� = 524MeV, the
mass shown there may be an underestimate.
Figure 19 shows the octet-singlet basis mixing angle,

⌅ = � � 54.74⇥, which by definition must be zero at the
SU(3)F point4 . While we have no particularly well mo-
tivated form to describe the quark mass dependence, it
is notable that the trend is for the data to approach a
phenomenologically reasonable value ⇤ �10⇥ [1, 45–47].

F. The low-lying vector mesons: ⇤,⇧,⌅

Figure 20 shows the e�ective masses of  ,� and ⌥ prin-
cipal correlators on the m� = 391MeV, 243⇥128 lattice.
The splitting between the ⌥ and  is small but statisti-
cally significant, reflecting the small disconnected contri-
bution at large times in this channel. At the pion masses
presented in this paper, the  and � mesons are kine-
matically stable against decay into their lowest thresh-
old channels, ⌃⌃⌃ and KK. In Figure 21 we show the
quark mass and volume dependence of the low lying vec-
tor mesons along with the relevant threshold energies.

4 Here we are using a convention where |�⇥ = cos ⇥|8⇥ � sin ⇥|1⇥,
|��⇥ = sin ⇥|8⇥+cos ⇥|1⇥ with 8,1 having the sign conventions in
Eqn 5.

Hadron Spectrum Collaboration: [PRD] arXiv:1309.2608 [hep-lat] 
J. Dudek, R. Edwards, P. Guo & C. Thomas (2013)
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states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.
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Q: Why can we resolve so much 
on the mesonic sector?

http://arxiv.org/pdf/1309.2608v1.pdf
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A: Finite volume spectrum maps 
onto scattering parameters 

How do we know this?

The state of the art 
in the meson sector
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FIG. 12. Isospin-1, P -wave �� elastic scattering phase shift and Breit-Wigner parameterisation for m� = 391MeV. Energy
region plotted is from �� threshold to KK threshold.
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FIG. 11: Isoscalar (green/black) and isovector (blue) meson spectrum on the m� = 391MeV, 243 � 128 lattice. The vertical
height of each box indicates the statistical uncertainty on the mass determination. States outlined in orange are the lowest-lying
states having dominant overlap with operators featuring a chromomagnetic construction – their interpretation as the lightest
hybrid meson supermultiplet will be discussed later.

extrapolation might be the complex resonance pole posi-
tion, but we do not obtain this in our simple calculations
using only “single-hadron” operators.

We discuss the specific case of the 0�+ and 1�� sys-
tems in the next subsections.

E. The low-lying pseudoscalars: ⇥, �, ��

In lattice calculations of the type performed in this
paper, where isospin is exact and electromagnetism does
not feature, the ⌃ and ⇤ mesons are exactly stable and ⇤⇤

is rendered stable since its isospin conserving ⇤⌃⌃ decay
mode is kinematically closed. Because of this, many of
the caveats presented in Section III B do not apply. Fig-
ure 17 shows the quality of the principal correlators from
which we extract the meson masses, in the form of an
e�ective mass,

me� =
1

⇥t
log

⇧(t)

⇧(t+ ⇥t)
, (16)

for the lightest quark mass and largest volume consid-
ered. The e�ective masses clearly plateau and can be
described at later times by a constant fit which gives a
mass in agreement with the two exponential fits to the
principal correlator that we typically use.

Figure 18 indicates the detailed quark mass and vol-
ume dependence of the ⇤ and ⇤⇤ mesons. We have already
commented on the unexplained sensitivity of the ⇤⇤ mass

to the spatial volume atm� = 391MeV, and we note that
since only a 163 volume was used at m� = 524MeV, the
mass shown there may be an underestimate.
Figure 19 shows the octet-singlet basis mixing angle,

⌅ = � � 54.74⇥, which by definition must be zero at the
SU(3)F point4 . While we have no particularly well mo-
tivated form to describe the quark mass dependence, it
is notable that the trend is for the data to approach a
phenomenologically reasonable value ⇤ �10⇥ [1, 45–47].

F. The low-lying vector mesons: ⇤,⇧,⌅

Figure 20 shows the e�ective masses of  ,� and ⌥ prin-
cipal correlators on the m� = 391MeV, 243⇥128 lattice.
The splitting between the ⌥ and  is small but statisti-
cally significant, reflecting the small disconnected contri-
bution at large times in this channel. At the pion masses
presented in this paper, the  and � mesons are kine-
matically stable against decay into their lowest thresh-
old channels, ⌃⌃⌃ and KK. In Figure 21 we show the
quark mass and volume dependence of the low lying vec-
tor mesons along with the relevant threshold energies.

4 Here we are using a convention where |�⇥ = cos ⇥|8⇥ � sin ⇥|1⇥,
|��⇥ = sin ⇥|8⇥+cos ⇥|1⇥ with 8,1 having the sign conventions in
Eqn 5.
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Energy gap, strongly depends on 
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Take home message:

“Approximations suitable for infinite 
volume physics may lead to O(1) errors 

in a finite volume”
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2Body system in a box
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3Body system in a box
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Spinless, identical particles! AttractiveRepulsive
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3Body system in a box

Spinless, identical particles!

RB & Davoudi
“almost two body”

Hansen & Sharpe
Polejaeva & Rusetsky
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