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Background

Ideas of effective field theory and renormalisation group

o well-developed for few-nucleon and few-atom systems
e rely on separation of scales
e Wilsonian RG used to derive power counting
— classify terms as perturbations around fixed point (or limit cycle)
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Ideas of effective field theory and renormalisation group

o well-developed for few-nucleon and few-atom systems
e rely on separation of scales
e Wilsonian RG used to derive power counting
— classify terms as perturbations around fixed point (or limit cycle)

Many unsuccessful attempts to extend to dense matter

e but no separation of scales
e other EFT’s for interacting Fermi systems exist
(Landau Fermi liquid, Ginsburg-Landau theory)
e but parameters have no simple connection to underlying forces



EFTs based on contact interactions

e not well suited for standard many-body methods
— switch to lattice simulation or look for some more heuristic
approach
e based on field theory
e can be matched onto EFT’s for few-body systems
(input from 2- and 3-body systems in vacuum)

Try functional renormalisation group (“exact” RG)

e based on Wilsonian RG approach to field theories

e successfully applied to various systems in areas from
condensed-matter physics to quantum gravity
[version due to Wetterich (1993)]
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Outline

e Functional RG
e Spin-1 fermions

o Dimer-dimer scattering
e Bosons

o Efimov physics

o 4-body systems

27



Functional RG

Version based on the effective action '[¢¢]
e start from generating function W[J] defined by

W — / Do g/(SI0+J 0= 50-R0)

e R(q,k): regulator function
suppresses modes with momenta q < k (“cutoff scale”)

e only modes with q 2 k integrated out
e W/[J] becomes full generating function as k — 0

Legendre transform — effective action
Sw

r[(l)c] = W[J]—J-(])C—i—%(])C‘R-Q)C where (I)C:W

(generating function for 1-particle-irreducible diagrams)
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I" evolves with scale k according to
&°r
30c80c

[ —1
okl =— é Tr [(akR) (r(z) — R) } where 3 =
(r'® — R)~": propagator of boson in background field ¢
(one-loop structure but still exact)

Evolution interpolates between “bare” classical action at large scale K
and full 1PI effective action as k — 0 (thresholds etc ...)
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I" evolves with scale k according to

&°r
30500

ol =— é Tr [(akR) (r(z) - R>1] where T2 =

(r'® — R)~": propagator of boson in background field ¢
(one-loop structure but still exact)

Evolution interpolates between “bare” classical action at large scale K
and full 1PI effective action as k — 0 (thresholds etc ...)

Functional differential equation

e hard/impossible solve in general
— work with tructated ansatz for I’
e |ocal action expanded in powers of derivatives
(cf low-energy EFTs, but don’t know a priori if we have a
consistent power counting)



Derivative expansion may be good at starting scale K
e use power counting of EFT to determine relevant terms
(or use this RG to find that power counting in scaling regime)
e but no guarantee that it remains good for k — 0

(can’t be for scattering amplitudes at energies above threshold:

cuts — nonanalytic behaviour)
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Derivative expansion may be good at starting scale K

e use power counting of EFT to determine relevant terms
(or use this RG to find that power counting in scaling regime)

e but no guarantee that it remains good for k — 0
(can’t be for scattering amplitudes at energies above threshold:
cuts — nonanalytic behaviour)

— need consistency checks:

stability against adding exira terms to ansatz
stability against changes in form of regulator

e use this to optimise choice of regulator [Litim, Pawlowski]
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Two species of fermion

Fermion field: y(x) (spin-% atoms or neutrons)
Boson “dimer” field: ¢(x) (strongly interacting pairs)
Local (nonrelativistic) ansatz for action in vacuum: 2-body sector

v, v', 0,07 K]

- /d4 [ <lao+vz) w(x)

2

+24(0000)" (130 3 ) 06— s (900000
(300 wioTozy() + o) |
g: AA—D coupling

uy (k): dimer self-energy (u1/g?: only physical parameter)
Zy(k): dimer wave-function renormalisation
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Evolution equation

W= T [@eRe) (MO -R)) ]

5 Tr[@uRs) (M@ —R)™)

r®: matrix of second derivatives of the action
(Gorkov-like form: y and y' as independent variables — factors of %)

o)

“Skeleton” diagram for driving terms in evolution of 2-body parameters

(need to insert dxRfF on one internal line)
Expand in powers of energy — dxuy, dxZy
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3-body sector: AD contact interaction

v’ .075k] ==K [ dw (0 (CO00W()

Evolution of A driven by terms corresponding to skeletons

A / / \ ‘
} 1 % 4
N ) ) /

e AD contact interaction
e single-A exchange between dimers
(cf Faddeev and STM equations)

>
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4-body sector: DD—DD, DD—DAA, DAA—DAA terms
[Birse, Krippa and Walet (2010); cf Schmidt and Moroz (2009): bosons]

M.y’ 0,07k = /d“ [ ua (k) (070)°
+ Z v(k) (100w oy +Hc)
+ :—1 w(k)o oy oy ooy

e dimer “breakup” terms allow 3-body physics to feed in properly
(cf Faddeev-Yakubovski)
— coupled evolution equations for u», v, w (27 distinct skeletons)
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Regulators
e fermions: sharp cutoff

K2 — g2
2M

Re(q.k) = o(k—q)
pushes states with g > k up to energy k?/2M
nonrelativistic version of “optimised” cutoff [Litim (2001)]
fastest convergence at this level of truncation

bosons

(CB k)2 _ q2

O(cgk —
aM (cs q)

RB(q’ k) = Z¢(k)

e cg: relative scale of boson cutoff
e optimised choice ¢g = 1 [cf Pawlowski (2007)]
(no mismatch between fermion and boson cutoffs)

Also examined smooth cutoffs — more convenient in dense matter
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Initial conditions
As k — oo boson field purely auxiliary
° Z¢(k) —0
e ui(K) chosen so that in physical limit (k — 0)

Mg?

u1(0):_4nao

ao: AA scattering length

e other couplings A, us, v, w also vanish as k — oo
— either set Zy(K) = 0 etc at large starting scale K
or match on to K~ behaviour in scaling regime K > 1/ag
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Initial conditions
As k — oo boson field purely auxiliary
° Z¢(k) —0
e ui(K) chosen so that in physical limit (k — 0)

Mg?

u1(0):_4nao

ao: AA scattering length

e other couplings A, us, v, w also vanish as k — oo
— either set Zy(K) = 0 etc at large starting scale K
or match on to K~ behaviour in scaling regime K > 1/ag

Expansion point for ay > 0: dimer binding energy Ep = —1/(Ma3)

e external boson lines carry Py = ‘Ep
e external fermion lines carry Py = ED/Z
(below all thresholds)
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Results: DD scattering length

2 e

8.01 o1 T o T oo

black: “minimal” action — only two-body and DD vertex u»
red adds three-body coupling A

green: full local four-body action, includes v, w

purple: similar but using smooth cutoff
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Comments

e results seem to converge as more terms are included
e converge to value only weakly dependent on cutoff
(very little variation over range 0 < cg < 2)
e stationary very close to expected “optimum” cg = 1
e incomplete actions — strong dependence on cg around cg = 1
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Comments
e results seem to converge as more terms are included
e converge to value only weakly dependent on cutoff
(very little variation over range 0 < cg < 2)
e stationary very close to expected “optimum” cg = 1
e incomplete actions — strong dependence on cg around cg = 1

Final result

e ag/ay~0.58+0.02
e agrees well with full few-body result ag/ag = 0.6
[Petrov, Salomon and Shlyapnikov (2004)]
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Bosons

More interesting: Efimov effect in 3-body sector

Very similar action and evolution equations
e 3-body coupling A periodic under scaling k by factor e/
where sg = 0.92503 [Schmidt and Moroz (2009)]
e agrees with Efimov so = 1.00624 to < 10%
e no sign of 4-body bound states at this truncation
[numerical integration requires some care — poles in A]

Introduce trimer field x(x)
e include energy dependence associated with 3-body bound states
e obtain equations with structure like Faddeev-Yakubovsky
[coupled DD, AT channels]
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Effective action

rk[\vvw*aq)v(l)*?XvX*]

2 V2 VZ
_/d4 [ (1804‘) Y+ Z40" (180+>¢+Z,x <180+6m>x

—Ugd* O — U Y — g(¢*w+w*w*¢) —h(X ow+9¢ v*yx)
—AO WOy

— 22 (0%0)" — <2 (070" oW+ 0" W Y 00) — Z0°V W owy
—u"x*w*xw — 7’ (0" 0 W + X W 00)

(¢*w*w*xw+x v oyy)
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AD interaction A regenerated by evolution even if zero initially
[unlike AA scattering]

— introduce running trimer field [cf Gies and Wetterich (2002)]
Ix = L1 oW+ LW xw+ Lo w00 + Loyl owy

where {; = —dkA/2h to cancel running of A
e other terms do same for four-atom couplings v4, w and v;
e additional piece in evolution equation

BkF_—fTr[( )((r R)" )hgr Y

e can keep A, vy, w and v; = 0 for all k
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3-body sector

Coupled equations for u;(k), Z;(k) and h?(k)

Scaling limit k > 1/|ao|
e couplings oscillate sinusoidally with In k
e poles in AD scattering amplitude h?/u;
(values of k where 3-body bound states appear at zero energy)
— tower of Efimov states with s = 0.92503
momentum scale factor e®/% = 29.2 (exact: 22.7)
e tower cuts off when k ~ 1/ag
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4-body sector

3-body couplings — cyclic behaviour in ugg(k), ug(k), and vi(k)
One Efimov cycle of rescaled (k) as a function of t = In(k/K)

200

—100F L , N
; \
\ ] 1

—200 | . [ i . "w . |

solid: real, dashed: imaginary
vertical grey line: AT threshold passes through zero energy
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Comments

e imaginary part appears at AT threshold t = t3 ~ —4.85

e 4-body bound states below AT threshold t ~ —3.83, —4.67, ...

(decay to deeper trimer + free atom — finite widths)

e unphysical singularity from zero of h?(k) at t ~ —3.0
(end of region within cycle where h?(k), Z;(k) have opposite
signs — trimer “ghost”)
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Infinite tower of 4-body bound states below AT threshold

T TTTT70

—-1000

-20001 7

—3000 §

m[ it ] /(t—t3)

I

—40001 ]

—5000F b
-12 -10 -8 -6 -4 -2 0
ln( 1—t3 )

Double exponential pattern ~ super-Efimov effect
[Nishida, Moroz and Son (2013)]

e but may not survive in physical limit Kk — 0
e 4-body states may move relative to AT threshold, become virtual
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Final cycle of Uy (k) for finite ag < 0
tuned so that last three-body state appears at k =0 (t = —o0)

200 ;
100 ,
0 7,
—100F | 8
—200L . L | : L
-8 -7 -4 -3 -2

Three 4-body states, at t = —4.1, —5.6 and —7.1
(consistent with theorem of Amado and Greenwood)
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AA scattering lenght corresponding to zero-energy 3-body state: a3
(results just shown)
Further decrease in a: 4-body states cross zero energy at

a%/a;~0438, a\"/a;~0877, &P/ ay~0.9967
Two lowest states: ratios within 5% of exact results

[von Stecher it et al (2009); Deltuva (2010)]

Third state extremely weakly bound

e if real: challenge to observe numerically and experimentally
e could be artefact of truncation
(Efimov cycles too long: scale factor ~ 30 instead of 23)
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Scaling regime
Scales at which 3- and 4-body states appear

e double exponential form
ki") = ks exp [oce’B”}
e Ratios of scales given by universal relation
k("+1)/k(") (k 4 n))1—exp(fﬁ)

Similar to universal scaling function found by Hadizadeh et al but

e different functional form
e no new 4-body scale parameter
(o fixed, independent of the initial conditions)
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Summary

Applications of functional RG to 3- and 4-body systems

e |ocal effective action, “optimised” cutoff
e keeping all local terms in 4-body sector

Fermions

e results for dimer-dimer scattering length
stable against variation of cutof, agree with direct calculations

Bosons

e dynamical trimer field to match structure of Faddeev-Yakubovsky
equations

imaginary parts of 4-body couplings from each AT threshold
infinite tower of 4-body bound states below each AT threshold
double exponential (super-Efimov) pattern

finite 2-body scattering length: three states in last cycle
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Super-Efimov effect

Relies on being close to fixed point with complex scaling
Example for fewer-body coupling g2 at nontrivial fixed point

dv
— =ag*+bgfvtcv?

dt
with b? — 4ac < 0 — imaginary scaling dimension
Now consider g2 marginal: g2 = g& /t with t = In(k / ko)
and define V = tv

A

dv
ti

5 = 2% +(1+bg5)V+c¥?

— cyclic behaviour in Int = In(In(k/ko)) if

1 2
<2+b> —4ac<0
(f}

4 bosons — close to AAD Efimov cycle [Deltuva (2012)]
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