

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Understanding the proton radius puzzle: Nuclear structure corrections in light muonic atoms

Sonia Bacca

In collaboration with: Nir Barnea, Javier Hernandez, Chen Ji and Nir Nevo Dinur

The Proton Charge Radius

May 9th 2014

Sonia Bacca

How Small is the Proton?

Monday, 12 May, 14

Origin of the discrepancy?

• Experimental results may be wrong:

"Multiple independent electron-proton experiments agree, and the muonic hydrogen experiment looks more convincing than any of the electron-proton experiments" Pohl, Gilman, Miller, Pachucki, Ann.Rev.Nucl.Part.Sci. 63 (2013)

Electron scattering experiments are done at finite Q², maybe not small enough

Dispersion analysis: global fit of n and p give r_p = 0.84(1) with $\chi^2 \approx 2.2$

Lorenz, Hammer, Meissner, EPJA (2012)

Exotic hadronic structures?

Birse, McGovern EPJA (2012) vs Miller PLB (2013)

• New physics beyond standard model?

New force carrier, e.g. dark photon, that couples differently with e and μ Yavin, Pospelov, Carlson etc...

May 9th 2014

Sonia Bacca

TRIUMF

New Experiments to Shed Light on the Puzzle

Higher precision electron scattering experiments
 Q² from 10⁻⁴ GeV² to 10⁻² GeV²

• MUSE collaboration (2016) measure $e^{\pm}p$ and $\mu^{\pm}p$ to reduce systematic errors

Extracting the radius from measurements requires theoretical input

$$\Delta E^{2S-2P} = \delta_{QED} + \delta_{pol} + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

in a $\,Z\alpha\,$ expansion up to 5^{\rm th} order

May 9th 2014

Extracting the radius from measurements requires theoretical input

$$\Delta E^{2S-2P} = \delta_{QED} + \delta_{pol} + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

QED corrections

vacuum polarizations lepton self energy relativistic recoil

May 9th 2014

Extracting the radius from measurements requires theoretical input

$$\Delta E^{2S-2P} = \delta_{QED} + \delta_{pol} + \underbrace{\frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle}_{24} - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

• Nuclear structure corrections

Elastic corrections: Finite size

May 9th 2014

Monday, 12 May, 14

7

Extracting the radius from measurements requires theoretical input

$$\Delta E^{2S-2P} = \delta_{QED} + \delta_{pol} + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

• Nuclear structure corrections

Elastic corrections: Finite size

Zemach moment

May 9th 2014

Monday, 12 May, 14

Extracting the radius from measurements requires theoretical input

$$\Delta E^{2S-2P} = \delta_{QED} + \delta_{pol} + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

• Nuclear structure corrections

Elastic corrections: Finite size

Zemach moment

Inelastic corrections: nuclear polarization δ_{pol}

May 9th 2014

Monday, 12 May, 14

Extracting the radius from measurements requires theoretical input

$$\Delta E^{2S-2P} = \delta_{QED} + \delta_{pol} + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

• Nuclear polarizability corrections

Dipole excitation

Stronger Coulomb - reduced energy

May 9th 2014

Monday, 12 May, 14

Extracting the radius from measurements requires theoretical input

$$\Delta E^{2S-2P} = \delta_{QED} + \delta_{pol} + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

• Nuclear polarizability corrections

Dipole excitation

Stronger Coulomb - reduced energy

The distorted charge distribution follows the orbiting μ like a "tide"

Nuclear response function
$$S_{\hat{O}}(\omega) = \frac{1}{2j_0+1} \sum_{N \neq N_0, J} |\langle N_0 J_0 || \hat{O} || N J \rangle |^2 \delta(\omega - E_N + E_0)$$

May 9th 2014

Sonia Bacca

The Muonic Atom System

$$H = H_N + H_\mu + \Delta V$$

$$H_{\mu} = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$

Perturbative potential: correction to the bulk Coulomb

$$\Delta V = \sum_{a}^{Z} \alpha \left(\frac{1}{r} - \frac{1}{|\vec{r} - \vec{R}_{a}|} \right)$$

Using perturbation theory at second order one obtains the expression for δ_{pol} up to order $(Z\alpha)^5$

May 9th 2014

Sonia Bacca

Contributions to δ_{pol}

Non relativistic terms

RIUMF

- Take non-relativistic kinetic energy in muon propagator
- Neglect Coulomb force in the intermediate state
- Expand the muon matrix elements in $\sqrt{2m_r\omega}|{m R}-{m R}'|$

 \star |R - R'| "virtual" distance traveled by the proton between the two-photon exchange

May 9th 2014

Sonia Bacca

Contributions to δ_{pol}

Non relativistic terms

 $\star~\delta^{(0)} \propto |oldsymbol{R}-oldsymbol{R}'|^2$

dominant term, related to the energy-weighted integral of the dipole response function

$$\delta_{D1}^{(0)} = -\frac{2\pi m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \sqrt{\frac{2m_r}{\omega}} S_{D_1}(\omega)$$

 $\star~\delta^{(1)} \propto |oldsymbol{R}-oldsymbol{R}'|^3$

contains a part that cancels the Zemach moment elastic contribution

cf. Pachucki (2011) Friar (2013)

 $\star~\delta^{(2)} \propto |m{R} - m{R}'|^4$

leads to energy-weighted integrals of three different response functions $S_{R^2}(\omega), S_O(\omega), S_{D1D3}(\omega)$

May 9th 2014

Monday, 12 May, 14

Contributions to δ_{pol}

Relativistic terms

RIUMF

- Take the relativistic kinetic energy in muon propagator
- Separate in longitudinal and transverse term
- Related to the dipole response function

$$\delta_{L(T)}^{(0)} = \frac{2m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \, K_{L(T)} \left(\frac{\omega}{m_r}\right) \, S_{D_1}(\omega)$$

Coulomb term

- Consider the Coulomb force in the intermediate states
- Naively it is a $\delta_C^{(0)} \sim (Z\alpha)^6$ corrections, but actually logarithmically enhanced

$$\delta_C^{(0)} \sim (Z\alpha)^5 \log(Z\alpha)$$

```
Friar (1977), Pachucki (2011)
```

Related to the dipole response function

May 9th 2014

Sonia Bacca

Monday, 12 May, 14

12

Finite Nucleon Size Corrections

• In point nucleon limit ΔV

RIUMF

it $\Delta V = -\alpha \sum_{i}^{Z} \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_i|}$

• Consider finite nucleon size by including charge distributions

$$\Delta V = -\alpha \sum_{i}^{Z} \int d\mathbf{R}' \, \frac{n_p(\mathbf{R}' - \mathbf{R}_i)}{|\mathbf{r} - \mathbf{R}'|} - \alpha \sum_{j}^{N} \int d\mathbf{R}' \, \frac{n_n(\mathbf{R}' - \mathbf{R}_j)}{|\mathbf{r} - \mathbf{R}'|}$$

• Low-q approximation of the nucleon form factors

$$\begin{split} G_p^E(q) &\simeq 1 - \frac{\langle r_p^2 \rangle}{6} q^2 \\ G_n^E(q) &\simeq -\frac{\langle r_n^2 \rangle}{6} q^2 \end{split}$$

May 9th 2014

Sonia Bacca

Nuclear Polarizability Corrections

The accuracy of the extracted radius depends on the accuracy of the nuclear polarizability

$$\Delta E^{2S-2P} = \delta_{QED} + \delta_{pol} + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

• Experimental requirement δ_{pol} must be known with 5% accuracy

To estimate the nuclear polarizability one needs information on the excitations of the nucleus — nuclear response function

• Theoretically calculate it

• Extract it from data

May 9th 2014

Sonia Bacca

Previous Work

• Simple potential models

µ-¹²C (Square-well) Rosenfelder '83

µ-D (Yamaguchi) Lu & Rosenfelder '93

• From experimental photo-absorption cross section

 μ -⁴He Bernabeu & Karlskog '74; Rinker'76; Friar '77 $\delta_{pol} = -3.1 \text{ meV} \pm 20\%$ μ -D Carlson, Gorchtein, Vanderhagen 2014 7% Uncertainty

Zero-range expansion (pion-less EFT)
 μ-D Friar 2013 Accuracy roughly estimated ~ 2%

 µ-D (AV14) Leidemann & Rosenfelder '95 (AV18) Pachucki 2011

Ab-initio calculations of the nuclear polarization with stateof-the-art potentials

Accuracy < 2% or less

May 9th 2014

Monday, 12 May, 14

Ab-initio Theory Tools

Traditional Potentials

Chiral EFT Potentials

RTRIUMF

Lorentz Integral Transform Method

Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

Reduce the continuum problem to a bound-state problem

$$S(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| J^{\mu} \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$
$$L(\sigma, \Gamma) = \int d\omega \frac{S(\omega)}{(\omega - \sigma)^{2} + \Gamma^{2}} = \left\langle \tilde{\psi} \right| \tilde{\psi} \right\rangle < \infty$$

where
$$\left| ilde{\psi}
ight
angle$$
 is obtained solving

$$(H - E_0 - \boldsymbol{\sigma} + i\boldsymbol{\Gamma})|\tilde{\Psi}\rangle = J^{\mu}|\Psi_0\rangle$$

- Due to imaginary part Γ the solution $| ilde{\psi}
 angle$ is unique
- Since $\langle \tilde{\psi} | \tilde{\psi} \rangle$ is finite, $| \tilde{\psi} \rangle$ has bound state asymptotic behaviour

$$L(\sigma,\Gamma) \xrightarrow{\text{inversion}} S(\omega)$$

The exact final state interaction is included in the continuum rigorously!

Hyperspherical Harmonics

 $|\psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_A)\rangle = |\varphi(\vec{R}_{CM})\Psi(\vec{\eta}_1, \vec{\eta}_2, \dots, \vec{\eta}_{A-1})\rangle$

Recursive definition of hyper-spherical coordinates

$$\rho, \Omega \qquad \rho^2 = \sum_{i=1}^A r_i^2 = \sum_{i=1}^{A-1} \eta_i^2$$

$$\Psi = \sum_{[K],\nu}^{K_{max},\nu_{max}} c_{\nu}^{[K]} e^{-\rho/2} \rho^{n/2} L_{\nu}^{n}(\frac{\rho}{b}) [\mathcal{Y}_{[K]}^{\mu}(\Omega) \chi_{ST}^{\bar{\mu}}]_{JT}^{a}$$

In nuclear physics we are able to use HH for A up to 6 and 7 Antisymmetrization by Barnea and Novoselsky (1998)

May 9th 2014

^{& TRIUMF} ⁴He Photo-absorption cross section

Sonia Bacca

⁴He Photo-absorption cross section

Theory can be more precise than experiment

May 9th 2014

Sonia Bacca

RTRIUMF

Nuclear Polarizability Corrections in $\mu^4 { m He}^+$

We performed the first ab-initio calculations of the nuclear polarizability corrections in muonic Helium

Ji, Nevo Dinur, S.B. and Barnea, PRL 111, 143402 (2013)

Few-body methods: Lorenz Integral Transform method Hyperspherical Harmonics expansion

Hamiltonians:

AV18+UIX and EFT NN(N3LO)+3N(N2LO) (C_D =1 and C_E =-0.029) We used the difference from the two Hamiltonians to estimate the uncertainty in nuclear physics

Lanczos algorithm: the nuclear polarization is like an energy-dependent sum rule δ This can be calculated directly without first obtaining the response function and the convergence is fast if $g(\omega)$ is smooth

$$\delta_{\hat{O}} \propto \int_{\omega_{th}}^{\infty} g(\omega) S_{\hat{O}}(\omega) d\omega$$

Nevo Dinur, Ji, S.B. and Barnea, arXiv:1403.7651

May 9th 2014

Sonia Bacca

CTRIUMF

Nuclear Polarizability Corrections in $\mu^4 { m He}^+$

[meV]	AV18/UIX	χEFT^*	
$\delta^{(0)}$	-3.743	-3.981	
$\delta^{(1)}$	0.741	0.809	
$\delta^{(2)}$	0.077	0.101	
δ_{NS}	0.517	0.530	
δ_{pol}	-2.408		

- Systematic convergence from $\delta^{(0)}$ to $~\delta^{(2)}$

• The difference between the two potentials for $\delta_{pol}\,$ is 5.5%

• Uncertainty from nuclear physics

$$\frac{5.5\%}{\sqrt{2}} \to \pm 4\%$$

★ C_D=1 and C_E=-0.029

May 9th 2014

Sonia Bacca

Nuclear Polarizability Corrections in $\mu^4 { m He}^+$

The work is not yet finished ...

May 9th 2014

Sonia Bacca

Monday, 12 May, 14

TRIUMF

Nuclear Polarizability Corrections in $\mu^4 { m He}^+$

Numerical accuracy — HH expansion

May 9th 2014

Sonia Bacca

Nuclear Polarizability Corrections in $\mu^4{ m He}^+$

Atomic Physics Uncertainty

- \rightarrow $(Z\alpha)^6$ effects (beyond second order perturbation theory)
 - Relativistic and Coulomb effects to multipoles other than dipole
 - Higher order nuclear size effects

Combined they give an additional 3-4 %

May 9th 2014

RTRIUMF

Nuclear Polarizability Corrections in $\mu^4{ m He}^+$

Error Budget

Nuclear Physics	4%
Numerical Accuracy	0.4%
Atomic Physics	4%
Total	6%

• Dramatic improvement from pervious work based on experimental data

Bernabeu & Karlskog '74; Rinker'76; Friar '77 $\delta_{pol} = -3.1 \, \mathrm{meV} \pm 20\%$

• We almost meet the experimental requirement (5% accuracy)

May 9th 2014

Possible Refinements

To further understand the uncertainty in nuclear physics

- Use chiral EFT at different orders to track the convergence
- At a fixed order vary the cutoff to assess the theoretical error Epelbaum, Gloeckle, Meissner, NPA (2005)

We will first apply this analysis to μD

May 9th 2014

lphaTRIUMF Nuclear Polarizability Corrections in μD

Previous Work

PRL 106, 193007 (2011)

PHYSICAL REVIEW LETTERS

week ending 13 MAY 2011

Nuclear Structure Corrections in Muonic Deuterium

Krzysztof Pachucki Faculty of Physics, University of Warsaw, Hota 69, 00-681 Warsaw, Poland (Received 16 February 2011; published 13 May 2011)

correction	value in meV		
$\delta_0 E$	1.910		
$\delta_{C1}E$	-0.255		
$\delta_{C2}E$	-0.006		
$\delta_R E$	-0.035		
$\delta_{Q0}E$	-0.045		
$\delta_{Q1}E$	0.151		
$\delta_{Q2}E$	-0.066		
$\delta_M E$	-0.016		
$\delta_P E$	0.043(3)		
ΔE	1.680(16)		

with AV18 total error very small and mostly coming from atomic physics

May 9th 2014

Sonia Bacca

Nuclear Polarizability Corrections in μD

with Javier Hernandez

May 9th 2014

Sonia Bacca

RIUMF Nuclear Polarizability Corrections in μD with Javier Hernandez

• Magnetic correction

$$\delta_M = \frac{1}{3} m_r^3 \alpha^5 \left(\frac{g_p - g_n}{4m_p}\right)^2 \int_{\omega_{\rm th}}^{\infty} d\omega \sqrt{\frac{\omega}{2m_r}} S_{M1}(\omega)$$

• MEC are important in magnetic transitions $S_{M1} \rightarrow \langle \psi_f | \mathbf{j} \times \mathbf{q} | \psi_0 \rangle$

Operator	LO	NLO	N2LO	N3LO	N4LO
j	IA-NR	OPE	IA-RC	OPE	
				TPE	
				CT	
ρ	IA-NR		IA-RC	OPE	TPE

Appearance of two-body currents in Chiral EFT

Sonia Bacca

$^{\mbox{\ensuremath{\mathcal{R}}}_{ extsf{relumf}}}$ Nuclear Polarizability Corrections in μD

Hernandez, Ji, S.B., Nevo-Dinur, Barnea, in preparation

Error Budget

- More solid estimate of the total error, that includes the nuclear physics error
- More accurate than evaluation based on experimental data µ- D Carlson, Gorchtein, Vanderhagen (2014) 7% Uncertainty

May 9th 2014

Conclusions and Outlook

• Lamb shifts in muonic atoms

- ★ Raise interesting questions about lepton symmetry
- Connect nuclear, atomic and particle physics

μ⁴He⁺

RIUMF

- \star We have performed the first ab-initio calculation obtaining $\,\delta_{pol}=-2.47{
 m meV}\pm6\%$
- * Much more accurate than earlier estimates based on experimental data

• μD

- ★ Based on EFT expansion we provide more solid estimates of uncertainty
- Much more accurate than estimates based on experimental data

Our calculations are key to the charge radius extractions of the CREMA experiment

Future

- * Investigate $\mu^3 He^+$
- Narrow uncertainty in nuclear physics (including MEC, higher order chiral forces, explore correlations of observables)

May 9th 2014

TRIUMF: Alberta | British Columbia | Calgary Carleton | Guelph | Manitoba | McMaster Montréal | Northern British Columbia | Queen's Regina | Saint Mary's | Simon Fraser | Toronto Victoria | Winnipeg | York

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Thank you!

Merci