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Signature

 Low separation energy for one or more 
neutrons, core tightly bound

 Large cross section for transfer and break-up 
reactions, large matter radius

 Enhanced charge radius and dipole moment
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Motivation

 Nuclear reactions of astrophysical significance

 Nuclear structure away from the line of stability

 “Universality” – connection to other systems 
with large scattering length (nucleons, cold 
atoms near Fesbach resonance...)

Signature

 Low separation energy for one or more 
neutrons, core tightly bound

 Large cross section for transfer and break-up 
reactions, large matter radius

 Enhanced charge radius and dipole moment
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Matter radii of nuclei deduced by 
Glauber model calculations from 
reaction cross section data. 

Al-Khalili and Tostevin (1996)
Al-Khalili et al (1996) 
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Matter radii of nuclei deduced by 
Glauber model calculations from 
reaction cross section data. 

Al-Khalili and Tostevin (1996)
Al-Khalili et al (1996) 

19C break-up on Pb. Curves are 
calculated using Woods-Saxon 
wavefunction at Sn = 0.53 MeV.

Nakamura et al, RIKEN (2003) 

Momentum distribution of 18C 
from neutron removal of 19C.

 Chiba et al (2004) 
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Typel and Baur (2001,2008)

  Theory of Coulomb Dissociation Experiments 

● Direct reaction. Eikonal or semiclassical approximation.

● Perturbation theory to first order. Higer orders small.

● Virtual photons → real photons

● Dipole excitation, e.g. higher multipoles smaller by factor of 105 for 11Li.
Bertulani (2009)
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● Degrees of freedom: halo neutron and the core.

● Symmetries: invariance under Galilean transformation, translation, rotation...

● Exploit separation of scales: √(mB)~Mlo  << Mhi ~R-1.

● Systematic expansion in Mlo /Mhi.

● Short distance physics (at scale Mhi and beyond) of the core unresolved, but its 
impact on low energy observables taken care of by renormalization.

Halo EFT
Bertulani, Hammer and van Kolck (2002)
Bedaque, Hammer and van Kolck (2003)
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● Degrees of freedom: halo neutron and the core.

● Symmetries: invariance under Galilean transformation, translation, rotation...

● Exploit separation of scales: √(mB)~Mlo  << Mhi ~R-1.

● Systematic expansion in Mlo /Mhi.

● Short distance physics (at scale Mhi and beyond) of the core unresolved, but its 
impact on low energy observables taken care of by renormalization.

Halo EFT

19C: Jπ = 1/2+, B = 0.58 MeV

18C: R = 2.7 fm†, Jπ = 0+, E* =  1.62 MeV

  Mlo /Mhi ~ 0.5  

NNDC, BNL
†Simple estimate based 1.2 A1/3 law

Bertulani, Hammer and van Kolck (2002)
Bedaque, Hammer and van Kolck (2003)
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Kaplan, Savage and Wise (1998);
Gegelia (1998); van Kolck (1998);
Birse, McGovern and Richardson (1998)
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Kaplan, Savage and Wise (1998);
Gegelia (1998); van Kolck (1998);
Birse, McGovern and Richardson (1998)

Assume naturalness: shape parameter, P, enters at N3LO. Stay at N2LO.
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cf. Beane and Savage (2001); Hammer and Phillips (2011);
Rupak and Higa (2011); Rupak, Fernando and Vaghani (2012) 
for similar analysis and calculations with other nuclei

LO

N3LO

N5LO

(Mlo/Mhi)-1

(Mlo/Mhi)2

(Mlo/Mhi)4
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Extracting Effective Range Parameters

cf. Bertulani and Baur (1988) for LO result
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Data: Nakamura et al, RIKEN (1999,2003);
Calculation: Acharya and Phillips (2013)

Extracting Effective Range Parameters

cf. Bertulani and Baur (1988) for LO result



19

Data: Bazin et al, NSCL (1998);
Calculation: Acharya and Phillips (2013)

Prediction: Momentum Distribution

● Width sensitive to B ; ANC only affects height.
● Data with normalization unavailable for high Z target. 

Nuclear break-up background too strong for low Z ones.
● Uncertainty in absolute energy scale → also fit position → 

width is the only prediction. 
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● At LO, dressed two-body propagators are renormalized 
by using two-body scattering lengths as input.

● Three-body contact interaction enters at LO.

Two-Neutron Halos

Bedaque, Hammer and van Kolck (1998)
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Canham and Hammer (2008)
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Canham and Hammer (2008)
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The Point Core Limit
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cf. Yamashita et al (2004) for an earlier attempt

The Point Core Limit
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20C 21C 22C

bound unbound bound

    Spin and Parity 0+ 1/2+ 0+

Binding/Virtual Energy Sn = 2.9 MeV
NNDC, BNL (2013)

Enc = ?
S2n = 0.42(94) MeV

Horiuchi and Suzuki (2006)
S2n = -0.14(46) MeV

Gaudefroy et al (2012)

RMS matter radius 2.97(5) fm
Ozawa et al (2001)

_ 5.4(9) fm
Tanaka et al, RIKEN (2010)
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20C 21C 22C

bound unbound bound

    Spin and Parity 0+ 1/2+ 0+

Binding/Virtual Energy Sn = 2.9 MeV
NNDC, BNL (2013)

Enc = ?
S2n = 0.42(94) MeV

Horiuchi and Suzuki (2006)
S2n = -0.14(46) MeV

Gaudefroy et al (2012)

RMS matter radius 2.97(5) fm
Ozawa et al (2001)

_ 5.4(9) fm
Tanaka et al, RIKEN (2010)

● √(mS2n [22C]) ~ Mlo ,√(mSn [20C]), (√< r2[20C]>)-1 ~ Mhi

● Enc unknown → treat as free parameter; √(mEnc) as Mlo .

● B = S2n [22C] not well constrained by experiments → Treat as free 
parameter.
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● 1-σ experimental error bar →  B < 100 keV

● Excited Efimov states not possible unless Enc < 1 keV.

● |anc| < 2.8 fm. 

Acharya, Ji and Phillips (2013)

Mosby et al (2013)

cf. Hagen, Hagen, Platter and Hammer for study of Efimov states in Ca 
isotopic chain using Halo EFT, coupled cluster theory and interactions 
from Chiral EFT.
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Coulomb dissociaton of Carbon-22
cf. Ershov et al (2012) for a non-EFT calculation (hyperspherical harmonic model)
     Hagen, Platter and Hammer (2013) for charge form factor calculation
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Coulomb dissociaton of Carbon-22
cf. Ershov et al (2012) for a non-EFT calculation (hyperspherical harmonic model)
     Hagen, Platter and Hammer (2013) for charge form factor calculation
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Final State Interactions

●  | l - λ | ≤ 1 ≤  l + λ in the final state.

● l = 1 suppressed. But l = 0, λ = 1 enters at LO.

● Final state wavefunction has to be constructed with all S-wave 
two-body interactions included.
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● We applied Halo EFT to study Coulomb dissociation of 19C and 
determined the Sn and the ANC of the 18C – n system with high 
accuracy. Sn agrees with momentum distribution data; ANC  remains 
to be tested.

● 1-σ experimental error on the matter radius of 22C puts an upper 
bound of about 100 keV on its S2n .

● Absence of low lying virtual states in 21C rules out Efimov states in 
22C.

● Forthcoming data on Coulomb dissociation of  22C is expected to 
provide better estimates of the  22C two-neuton separation energy 
and the 21C virtual state energy.

Conclusions and Outlook
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Backups
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