INTRODUCTION TO THE EXPERIMENTAL TALKS ON QE SCATTERING

Sam Zeller Fermilab

INT workshop December 3, 2013





# **QE Scattering**

2

#### • electron scattering:

- inclusive (e,e') at low ω
  or exclusive (e,e'p), (e,e'pp)
- beam energy is known, monochromatic
- energy & momentum transferred to the nucleus can be precisely measured

#### • neutrino scattering:

- $v_{\mu}$  CC scattering with low v (or no  $\pi$ 's) or  $v_{\mu}$  n  $\rightarrow \mu^{-}$  p,  $\mu^{-}$  p p
- beam energy is <u>not</u> known, <u>not</u> monochromatic (spectrum of  $E_v$ )
- infer  $E_v$  from  $E_{lep} + E_{had}$  or  $E_{lep}$ ,  $\theta_{lep}$
- addition of axial-vector contribution
- have poorer kinematic specification





(Benhar, Day, Sick, Rev. Mod. Phys. 80, 189 (2008))



## Neutrino QE Scattering



3

#### Why important?

#### • important for v oscillation experiments

- biggest piece of the cross section at energies  $E_v \leq 1$  GeV, so typically gives the largest contribution to signal samples in many osc exps
- can infer  ${\rm E}_{\!_{\rm V}}$  from the out-going lepton kinematics
- once thought of as the simplest neutrino process to calculate



(typically thought of as a process with a <u>single knock-out nucleon</u>)



(heavily studied in 1970's and 80's, one of the  $1^{st}$  v interactions measured)



#### Neutrino QE Measurements

4

| Experiment | $\langle E_{\nu} \rangle$ | Target                                             | Detector(s)                                                                                                     | Years        | Reference(s) |                              |
|------------|---------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|--------------|------------------------------|
| ANL        | 0.5 GeV                   | Fe, D <sub>2</sub>                                 | Spark chamber, bubble chamber                                                                                   | 1969-1982    | 2, 13, 14    | measurements                 |
| BEBC       | 54 GeV                    | D2                                                 | Bubble chamber                                                                                                  | 1990         | 15           |                              |
| BNL        | 1.6 GeV                   | D <sub>2</sub> , H <sub>2</sub>                    | Bubble chamber                                                                                                  | 1980-1981    | 16           | T                            |
| FNAL       | 27 GeV                    | $D_2$ , Ne-H <sub>2</sub>                          | Bubble chamber                                                                                                  | 1982-1984    | 17           |                              |
| GGM        | 2.2 GeV                   | C <sub>3</sub> H <sub>8</sub> , CF <sub>3</sub> Br | Bubble chamber                                                                                                  | 1964-1979    | 18           |                              |
| Serpukhov  | 3-30 GeV                  | Al                                                 | Spark chamber                                                                                                   | 1985         | 19           |                              |
| SKAT       | 9 GeV                     | CF <sub>3</sub> Br                                 | Bubble chamber                                                                                                  | 1988-1992    | 20           |                              |
| ArgoNeuT   | 3.3 GeV                   | Ar                                                 | Liquid argon time-projection<br>chamber                                                                         | 2009–2010    | 21           | 1                            |
| K2K        | 1.3 GeV                   | CH <sub>2</sub> , H <sub>2</sub> O                 | Tracking detectors: solid<br>scintillator strips plus scintillating<br>fiber tracker                            | 2003–2004    | 22           |                              |
| MicroBooNE | 0.8 GeV                   | Ar                                                 | Liquid argon time-projection<br>chamber                                                                         | 2013-        | 23           |                              |
| MINERvA    | 3.3 GeV                   | C, Fe, Pb                                          | Tracking detector (solid scintillator<br>strips) plus electromagnetic and<br>hadronic calorimetery              | 2009–present | 24           | modern                       |
| MiniBooNE  | 0.8 GeV                   | CH <sub>2</sub>                                    | Cherenkov detector                                                                                              | 2002-present | 25, 26       | measurements                 |
| MINOS      | 3.3 GeV                   | Fe                                                 | Tracking calorimeter: iron plates<br>plus solid scintillator strips                                             | 2004–present | 27           |                              |
| NOMAD      | 26 GeV                    | С                                                  | Drift chambers                                                                                                  | 1995-1998    | 7            |                              |
| NOvA ND    | 2 GeV                     | CH <sub>2</sub>                                    | Tracking detector: liquid<br>scintillator cells                                                                 | 2010-present | 28           | exploring these              |
| SciBooNE   | 0.8 GeV                   | СН                                                 | Tracking detector (solid scintillator<br>strips) plus electromagnetic<br>calorimeter                            | 2007–2008    | 29           | differences is a             |
| T2K ND     | 2.1 GeV                   | C, H <sub>2</sub> O                                | Tracking detectors: solid<br>scintillator plus time-projection<br>chambers plus electromagnetic<br>calorimeters | 2010–present | 30           | main goal of<br>this session |

(Gallagher, Garvey, Zeller, Ann. Rev. Nucl. Part. Sci, 61, 355 (2011))

#### Deuterium



5



FIG. 19. Spectator momentum distributions for events fitting  $\nu d \rightarrow \mu \bar{p} p_s$ . The shaded area represents the events with a visible spectator. The curve is the Hulthén wave function normalized to the total number of events.

(ANL, S.J. Barish et al., PRD 16, 3103, 1977)

- many of these early neutrino experiments used bubble chambers filled with deuterium as their neutrino target (less influenced by nuclear effects)
- advantage is that can observe:  $\nu_{\mu} \text{ n} \not \rightarrow \mu^{-} \text{ p } \text{ p}_{\text{S}}$
- advantages:
  - event selection is more robust
  - 97-99% QE purities



• primary aim of these exps was to measure the free nucleon form factor

# $\nu_{\mu}$ QE Measurements



7

| Table 2 Sum               | mary of analysis t                         | echniques en          | ployed in the e      | xperimental study          | of neut      | rino quasi-  | elastic (O        | QE) scatt              | ering                                     |
|---------------------------|--------------------------------------------|-----------------------|----------------------|----------------------------|--------------|--------------|-------------------|------------------------|-------------------------------------------|
| Experiment                | Selection                                  | Number<br>of events   | QE purity            | Flux<br>(reference)        | $M_A$        | $F_A(Q^2)$   | $\sigma(E_{\nu})$ | $\frac{d\sigma}{dQ^2}$ | $\frac{d^2\sigma}{dT_{\mu}d\theta_{\mu}}$ |
| ANL                       | Two- and<br>three-track                    | 1,737                 | 98%                  | Hadro (14)                 | $\checkmark$ |              | $\checkmark$      | $\checkmark$           |                                           |
| BEBC                      | Three-track                                | 552                   | 99%                  | ν <sub>μ</sub> CC (15)     | $\checkmark$ |              | $\checkmark$      | $\checkmark$           |                                           |
| BNL                       | ν: three-track<br>ν̄: one-track            | v: 1,138<br>v: 13     | v: 97%<br>v: 76%     | ν <sub>μ</sub> QE<br>(49)  | $\checkmark$ |              | $\checkmark$      |                        |                                           |
| FNAL                      | v: two- and<br>three-track<br>v: one-track | ν: 362<br>ν̄: 405     | ν: 97%<br>ν: 85%     | ν <sub>μ</sub> QE<br>(50)  | $\checkmark$ |              | $\checkmark$      |                        |                                           |
| GGM                       | ν: two-track<br>ν̄: one-track              | v: 337<br>v: 837      | v: 97%<br>v: 90%     | Hadro<br>(51)              | $\checkmark$ | $\checkmark$ | $\checkmark$      | $\checkmark$           |                                           |
| Serpukhov                 | One-track                                  | v: 757<br>v: 389      | v: 51%<br>v: 54%     | Hadro, $\nu_{\mu}$ CC (19) | $\checkmark$ | $\checkmark$ | $\checkmark$      |                        |                                           |
| SKAT                      | ν: two-track<br>ν̄: one-track              | v: 540<br>v: 159      |                      | ν <sub>μ</sub> CC<br>(20)  | $\checkmark$ |              | $\checkmark$      | $\checkmark$           |                                           |
| K2K                       | One- and<br>two-track                      | 5,568                 | 62%                  | Hadro, $\nu_{\mu}$ CC (52) | $\checkmark$ |              |                   |                        |                                           |
| MiniBooNE                 | One-track                                  | 146,070               | 77%                  | Hadro (53)                 | $\checkmark$ |              |                   | $\checkmark$           |                                           |
| SciBooNE<br>(preliminary) | One- and<br>two-track                      | 16,501                | 67%                  | Hadro (53)                 |              |              | $\checkmark$      |                        |                                           |
| MINOS<br>(preliminary)    | One-track                                  | 345,000               | 61%                  | ν <sub>μ</sub> CC (27)     | $\checkmark$ |              |                   |                        |                                           |
| NOMAD                     | ν: one- and<br>two-track<br>ν̄: one-track  | v: 14,021<br>v: 2,237 | v: 42%/74%<br>v: 37% | Hadro, DIS,<br>IMD<br>(7)  | $\checkmark$ |              | √<br>             |                        |                                           |

(Gallagher, Garvey, Zeller, Ann. Rev. Nucl. Part. Sci, 61, 355 (2011))

was the main focus

• trends:

QE event selection
 varies from exp
 to exp

- much larger event samples have become available
- purities are typically lower in modern exps (due to use of heavier nuclear targets)

+ new MINERvA QE results!

# $v_{\mu}$ QE Cross Section as a Function of $E_{\nu}$

• reporting  $\sigma(E_v)$  has the advantage that can compare measurements from different experiments



(Review of Particle Properties, to appear in 2014 edition)

- but are we all really measuring the same thing? what is it that we're each calling QE?
- also, now recognized that M<sub>A</sub>, σ(E<sub>v</sub>) are model-dependent quantities, especially when scattering off nuclear targets; diff'l σ in term s of µ,p preferred

#### Main Goal



- 9
  - there are multiple modern experimental measurements of neutrino QE scattering, all use targets heavier than D<sub>2</sub>
    - much higher statistics
    - more well-known incoming neutrino flux predictions
    - but the use of **nuclear targets** brings additional complications
  - the goal is to leave this first day of the workshop with a crisp understanding of what each experiment measures and defines as QE scattering

# what is v quasi-elastic scattering?

#### Line-Up of Talks

10



- (Roberto Petti) NOMAD
- (Kendall Mahn) SciBooNE and T2K

coffee break

- (Nate Mayer) MINOS and NOvA
- (Ornella Palamara) ArgoNeuT
- (Gabe Perdue) MINERvA

 (Debbie Harris) Looking Forward to the Future **Needs of Oscillation Experiments** 

what do we need to know moving forward?

what have

we measured?

## Line-Up of Talks

11

- (Sam Zeller) Introduction and MiniBooNE
- (Roberto Petti) NOMAD
- (Kendall Mahn) SciBooNE and T2K

coffee break

- (Nate Mayer) MINOS and NOvA
- (Ornella Palamara) ArgoNeuT
- (Gabe Perdue) MINERvA

- what are the exp'l results telling us?
- to what extent are the different exps observing the same or diff interactions?
- to what extent are the measurements in tension?
- (Debbie Harris) Looking Forward to the Future Needs of Oscillation Experiments

# ‡

#### Four Questions



12

- (1) How do you select QE events?i.e., how do you define a QE scattering event?
- (2) How do you determine your neutrino flux?
- (3) What are your primary QE measurements and what do you find most important about your data?
- (4) What additional QE measurements do you have planned for the future that could shed further light on these issues?

Plus, each experiment will present a summary table so that we have this detailed information at our fingertips for discussion

## To Help Kick Things Off



• let's consider MiniBooNE as a case example ...

S. Zeller, INT Workshop, Dec 2013

13



# (1) MiniBooNE QE Selection

Aguilar-Arevalo et al., NIM A599, 28 (2009)

14



- $\nu$  interactions on  $CH_2$
- Čerenkov detector ring imaging for event reconstruction & PID

#### spherically symmetric detector

- lower beam energy  $+4\pi$  coverage leads to full  $\mu$  angular coverage
- use particle decays for event ID
  (QE requirement = μ + 1 Michel e<sup>-</sup>)
  - no p or π detection thresholds, just
    require particles to decay → this
    lessens some of the model-dependence
- with this, QEs in MB are defined as  $\nu_{\mu}$  CC with no  $\pi$ 's, any # nucleons
- dominant background from CC  $\pi^+$ events with  $\pi^+$  absorbed: constrain with data & subtract-off but report



#### flux of neutrinos seen by the detector:

- $\bullet$  both  $\nu$  and  $\overline{\nu}$  modes
- < E<sub>v</sub> $> \sim 0.8 \text{ GeV}$
- 99% of the flux is below 2.5 GeV, excellent for studying QE events
- 98% of v events in QE analysis come from π decays in the beam (90% from primary interactions in beam)



# (2) MiniBooNE Flux, cont'd

• need to know your v flux to make v cross section measurements (we spent>5+ years on this on MiniBooNE)



(HARP data, D. Schmitz, Columbia, Ph.D. thesis)

- made dedicated hadro-production meas at CERN specifically for MB
  - M. Catanesi et al., Eur. Phys. J. C52, 29 (2007)
    - same beam energy
    - exact replica target
- plus, data from BNL E910
- comprehensive MB v flux paper Aguilar-Arevalo et al., PRD 79, 072002 (2009)
- $\bullet$  there was no tuning of the  $\nu$  flux based on MiniBooNE  $\nu$  data
- flux known to  $\sim 11\%$  at the peak (larger errors at lower and higher  $E_{\nu}$ )

16

# (3) MiniBooNE's Main QE Measurement

• because of high statistics (MB QE sample is 146k v events, 71k  $\overline{v}$  events) can measure double diff'l  $\sigma$ 's for the first time (like  $E_e$ ,  $\theta_e$ )

 $\textrm{d}^2\sigma/\textrm{d}\textrm{T}_{\mu}\textrm{d}\theta_{\mu}$ 

- historically, never had enough statistics to do this
- provides a more rigorous point of comparison than  $\sigma(E_v)$  or  $M_A$ and less model-dependent  $(T_{\mu\nu}, \theta_{\mu} \text{ directly measured quantities})$



Aguilar-Arevalo et al., PRD 81, 092005 (2010)



# (3) MiniBooNE's Main QE Measurement

• because of high statistics (MB QE sample is 146k v events, 71k  $\overline{v}$  events) can measure double diff'l  $\sigma$ 's for the first time (like  $E_{e}$ ,  $\theta_{e}$ )

 $d^2\sigma/dT_{\mu}d\theta_{\mu}$ 

- historically, never had enough statistics to do this
- provides a more rigorous point of comparison than  $\sigma(E_v)$  or  $M_A$ and less model-dependent  $(T_{\mu\nu}, \theta_{\mu} \text{ directly measured quantities})$



Aguilar-Arevalo et al., PRD 81, 092005 (2010)

with this broader defn of QE, observe a substantially larger cross section than IA-based predictions (effect is larger for larger  $\mu$  scattering angles) - an effect 1<sup>st</sup> seen by K2K, NuInt01

# (4) What's Most Interesting?

- there may be important connections to electron scattering (G. Garvey)
- while this physics is new to v scattering, have known for over 2 decades from e-A scattering that more complicated processes can take place



Carlson et al., PRC **65**, 024002 (2002)

- **longitudinal** part of  $\sigma_{QE}$  can be described in terms of scattering off independent nucleons
- in contrast, there is a large enhancement in **transverse** part more info in both QE peak and dip region (due to nucleon pair correlations, MEC)
  - MB results suggest that these effects may also play a role in v-nucleus scattering

19

# Some Examples

20

• this is the 1<sup>st</sup> time we've had this sort of information available; providing the rigorous model tests

ð



S. Zeller, INT Workshop, Dec 2013



correlations is largest at large  $\theta_{\mu}$ 

# Some Examples

21

• this is the 1<sup>st</sup> time we've had this sort of information available; providing the rigorous model tests

ð



S. Zeller, INT Workshop, Dec 2013



needed: diff'l  $\sigma$  measurements like this ulletat other  $E_{v}$ , A + for outgoing proton(s)

## MiniBooNE QE Summary



22

| characteristics of selected $v_{\mu}$ QE events | values                                                                                                                                                                                        |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| QE event selection                              | 1 muon and 1 Michel electron<br>(this selects CC events with no pions and any # of nucleons in the final state)                                                                               |  |  |  |  |
| Nuclear target                                  | CH <sub>2</sub>                                                                                                                                                                               |  |  |  |  |
| Neutrino flux range                             | $0.4 < E_v < 2 \text{ GeV}$                                                                                                                                                                   |  |  |  |  |
| Sign-selection?                                 | no                                                                                                                                                                                            |  |  |  |  |
| Muon angular range                              | 0 < θ <sub>μ</sub> < 360 <sup>0</sup>                                                                                                                                                         |  |  |  |  |
| Muon energy range                               | $0.2 < T_{\mu} < 2 \text{ GeV}$                                                                                                                                                               |  |  |  |  |
| Proton detection threshold                      | N/A                                                                                                                                                                                           |  |  |  |  |
| How is $E_v$ determined?                        | $E_{v}^{QE,RFG}$ (reported $E_{v}$ is corrected back to true $E_{v}$ from RFG)                                                                                                                |  |  |  |  |
| How is Q <sup>2</sup> determined?               | $Q_{QE}^2 = -m_{\mu}^2 + 2E_{\nu}^{QE} (E_{\mu} - p_{\mu} \cos\theta_{\mu})$<br>(corrected back to Q <sup>2</sup> using true $\mu$ kinematics)                                                |  |  |  |  |
| Monte Carlo generator                           | <b>NUANCE</b><br>(modified to include CC $\pi^*$ background constraint from MB data)                                                                                                          |  |  |  |  |
| QE measurements & associated publications       | $ \frac{d^2\sigma}{dT_{\mu}d\cos\theta_{\mu}^{*}, d\sigma}{dQ^2}_{QE}, \sigma(E_{\nu}^{RFG}): PRD 81, 092005 (2010) \\ earlier M_A extraction: PRL 100, 032301 (2008) \\ * main measurement $ |  |  |  |  |

## What Have We Learned?

- 23
- implications  $\rightarrow$  something as simple as QE scattering is not so simple
- nuclear effects can significantly <u>increase</u> the QE cross section (this was certainly not part of our thinking prior to the MB measurements)
- idea that could be missing ~40% of  $\sigma$  at low E<sub>v</sub> in our simulations is a big deal
- <u>good news</u>: expect larger event yields
- <u>bad news</u>: need to understand the underlying physics
  - (1) impacts  $E_{v}$  determination
  - (2) effects can be different for v vs.  $\overline{v}$  (at worse, could produce a spurious  $\mathscr{P}$  effect)



Mosel, arXiv: 1203.2935

• caveat: these effects not evident in all experiments (e.g., NOMAD QE)

# Rest of the Morning Session ...

 the goal is to leave this first day of the workshop with a crisp understanding of what each experiment measures and defines as QE scattering

what are we each really measuring?

what are the results telling us?

hope to better understand some of the differences between QE measurements & approaches

S. Zeller, INT Workshop, Dec 2013

- (Sam Zeller) Introduction and MiniBooNE
- (Roberto Petti) NOMAD
- (Kendall Mahn) SciBooNE and T2K

coffee break

- (Nate Mayer) MINOS and NOvA
- (Ornella Palamara) ArgoNeuT
- (Gabe Perdue) MINERvA
- (Debbie Harris) Looking Forward to the Future Needs of Oscillation Experiments

24