(A short) theoretical summary

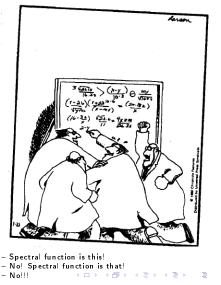
Jan T. Sobczyk

Wrocław University

December 9, 2013

イロト イロト イヨト イヨト 三日

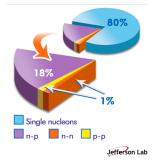
1/18


INT Workshop, Seattle

Goals:

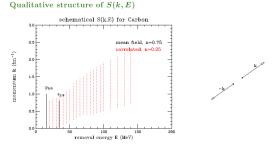
- not a politically correct resumé with one slide from every talk
- focus on topics that were most intensively discussed
- focus on topics important for users: hints for future MC developments
- hopefully, an introduction to even more discussions!

Goals:


- not a politically correct resumé with one slide from every talk
- focus on topics that were most intensively discussed
- focus on topics important for users: hints for future MC developments
- hopefully, an introduction to even more discussions!

- I. Treatment of nucleon-nucleon correlations
- la. Several talks gathered experience from electron scattering experiments:

¹²C From (e,e'), (e,e'p), and (e,e'pN) Results


- 80 +/- 5% single particles moving in an average potential
 - 60 70% independent single particle in a shell model potential
 - 10 20% shell model long range correlations
- 20 +/- 5% two-nucleon short-range correlations
 - 18% np pairs (quasi-deuteron)
 - 1% pp pairs
 - 1% nn pairs (from isospin symmetry)
- · Less than 1% multi-nucleon correlations

INT Workshop 4 December 2013

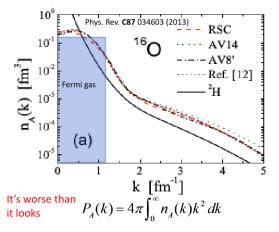
I. Treatment of nucleon-nucleon correlations

Ib. Spectral function approach to describe lepton scattering in impulse approximation was discussed many times:

Understanding of structure at high k

large k cannot occur in nuclear mean-field large k occur in 2N-collisions, scattering N to k outside Fermi sphere

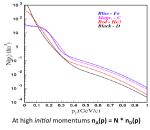
if remove one N with large k then second N is set free costs energy $E \sim (-k)^2/2M \rightarrow \text{large } E$ verified by (e,e'pp) Shneor et al.


イロト イポト イヨト イヨト

4/18

Large k only appear at large E !!

- I. Treatment of nucleon-nucleon correlations
- lc. FG versus SF


For example: The nucleon momentum distribution

- I. Treatment of nucleon-nucleon correlations
- Id. If this were the whole story with correlations, life would be easy:
 - SF can be (relatively) easily implemented in MC simulations tools (NuWro, recent work in GENIE and NEUT)
 - there are clear ideas how to cook SF for various nuclei
 - correlated contribution is universal, always deuteron-like

Momentum Distributions

C. Ciofi degli Att and S. Simula, Phys. Rev. C 53 (1996) 1689.

INT Workshop 4 December 2013

Jefferson Lab

D. Higinbotham

・ロ > ・ (部) ・ (書) く言 > 言 の Q () 6/18

I. Treatment of nucleon-nucleon correlations

le. Correlations seem to play also a crucial role in two-body current contribution to lepton-nucleus cross section:

q (MeV/c)	³ He		⁴ He		⁶ Li	
	1	1 + 2	1	1 + 2	1	1 + 2
300	0.929	1.31	0.893	1.67	0.912	1.57
400	0.987	1.30	0.970	1.62	0.974	1.52
500	1.01	1.28	1.00	1.55	0.999	1.46
600	1.01	1.25	1.01	1.49	1.01	1.41
700	1.01	1.23	1.01	1.44	1.011	1.37

TABLE II. Transverse sum rule obtained with one body only and with both one- and two-body current operators.

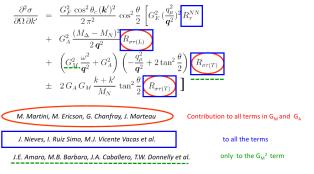
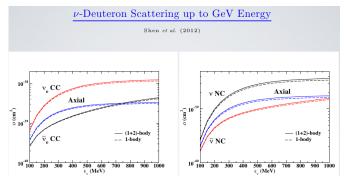

J. Carlson

TABLE VII. Excess-strength contributions ΔS_L and ΔS_T to the Fermi-gas sum rules from terms involving two-nucleon currents.

q (MeV/c)	ΔS_L	ΔS_T
300	0.004	0.114
400	0.007	0.081
500	0.011	0.066
600	0.017	0.060
700	0.024	0.056

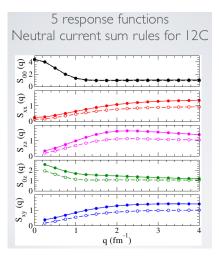
II.a A lot of discussion about similaries and differences between existing approaches:


2p-2h contributions in the different approaches

M. Martini

One may add: transverse enhancement – only all G_M containing terms. J. Carlson: axial part is enhanced as well!

II.b A lot of insight is provided by more rigorous computations



J. Carlson

Good news, because much of what is known about M_A comes from old deuteron experiments.

Would be nice to see also an impact on Q^2 distribution.

II.c A lot of insight is provided by more rigorous computations

Vocabulary:

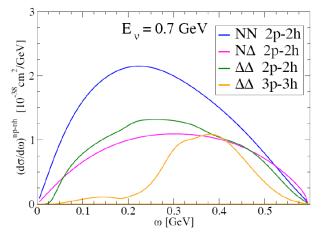
$$R_{CC} = W^{00}$$

 $R_{CL} = -\frac{1}{2} (W^{03} + W^{30})$
 $R_{LL} = W^{33}$
 $R_T = W^{11} + W^{22}$
 $R_{T'} = -\frac{i}{2} (W^{12} - W^{21})$

J. Amaro

On the left enhancement due to two-body current is shown.

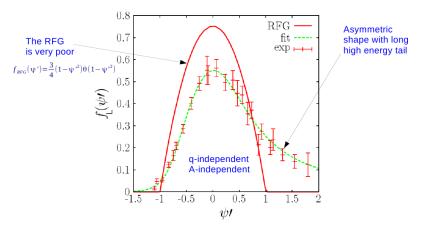
II.d There is some worry that existing microscopic computations depart from (local) Fermi gas ground state:


 however, computations include contribution from *correlation diagrams* Nucleon-Nucleon correlations

M. Martini

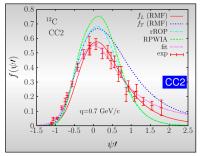
• is *enough* correlation introduced via this diagram? is the whole picture consistent?

II.e In the Marco Martini model the correlation (N-N) contribution dominates:



- II. Two-body current neutrino computations
- II.f Another serious source of worries: consistency of existing approaches
 - in MCs (also in GiBUU) two body current contribution is always implemented as another *independent* reaction channel (CCQE, RES, DIS, COH)
 - J. Carlson: interference with the one body contribution is large
 - MCs need a parametrization of both two body current and interference contribution together
 - in impulse approximation in SF approach there is a correlation contribution with two nucleon knock out without FSI effects – how wrong is to use this together with Martini/Nieves model?

III. Other topics

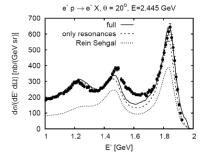

III.a A series of presentations on (super-)scaling approach:

A **phenomenological super-scaling function** has been extracted from the *longitudinal* (e,e') word data [Jourdan,NPA603, 117 ('96)]

III. Other topics

III.b It was reminded many times (see also Arie Bodek presentation) that models used in MC should agree with superscaling function:

Only the description of FSI provided by RMF leads to an asymmetric function $f(\psi')$ in accordance with the behavior shown by data. Moreover, $f_T > f_L$


J. Cabbalero

What about LFG+RPA?...

III. Other topics

III.b Pion production (a transition region topic, with presentations in the first and in the second week)

- important to understand CCQE a background from pion absorption
- precise data is badly needed
- Rein-Sehgal model is not reliable at all
 - nothing new but should be remembered again and again
- important work is being done in GENIE

L. Alvarez-Ruso

IV. A message for MC generators:

- improvements in treatment of nuclear effects (NN correlations) should be done
- spectral function should probably become a default option
- before more rigorous computations are done, existing treatments of two body contribution should be applied
 - comparison to MiniBooNE ν_μ and ν
 _μ data is a necessary consistency check
- it will be very difficult to get everything that is required in the completely satisfactory way
 - rigorous computations are non-relativistic
 - experimentalists need to know results for oxygen, argon, ...
 - MCs need predictions for final state nucleons
 - any hints from ³He and ⁴He computations?...

Summary:

Summary:

Correlations have many consequences and must be seriously taken into account!

