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Correlations in nuclei

or: on the importance of using S(k,E)

Ingo Sick

Historical development of nuclear physics

strongly influenced by mean-field ideas

existence of Quasi-Particle orbits

when use fitted effective interactions

can explain many features of nuclei

but: limited to region Z/A where parameters fitted

More fundamental approach: start from N-N interaction

Faddeev, Variational, MC for A<<

Greens-function MC

Bethe-Bruckner-Goldstone for NM

Correlated Basis Function (CBF) theory for NM

applicable to yet unknown nuclei

decisive at higher densities as e.g. in stars

Main difference

account for short-range N-N correlations

scattering of N to orbits E ≫ EF , k ≫ kF



Ideal approach to expose correlations: CBF theory

appear explicitly as variational functions f(rij) in wave function

|N) = G|N ], G = S
∏
j>i

F (i, j), F (i, j) =
∑
n
fn(rij)O

n(i, j)

Effect of correlations

on components of potential on f(rij)

G = many-body

correlation operator

|N ] = MF state

O = operators of VNN

f = correlation

functions

variationally det.

F = two-body

correlation operator

correlation hole for some components, short-range enhancements for others



Consequences

Important high-k components

VNN in some channels strongly repulsive at small r

channel dependence complicates exact solution of Schrödinger equation

core leads to high-k tail of n(k)

rather universal for nuclei A=2...∞

→ search for high-k popular theme... leading mostly to failures!



Important difference quasi-particle ↔ correlated strength

at low E observe QP states

behave in most respects like shell-model states

at large E observe correlated states

✷✷✷✷ QP orbital, observed e.g. in 4He(e, e′p)3H

drops off rapidly at large k

✸✸✸✸ correlated strength in continuum at large E

falls off much less quickly, dominates large-k totally

E in continuum ⇒ cannot describe properly using n(k)



Must describe using spectral function S(k,E)

for nuclear matter:

• correlations give strength at both large k and E

• strength very spread out, hard to identify experimentally

• correlated N have ∼20-25% probability (NM),

but give 37% of removal energy

47% of kinetic energy

• example: for 12C Ē= 25MeV from s+p-shells, Ē= 52MeV from FHNC



Qualitative structure of S(k,E)

Understanding of structure at high k

large k cannot occur in nuclear mean-field

large k occur in 2N-collisions, scattering N to k outside Fermi sphere

if remove one N with large k then second N is set free

costs energy E ∼ (−k)2/2M → large E

verified by (e,e’pp) Shneor et al.

Large k only appear at large E !!



Drastic consequences for n(k)

study n(k) with different cutoffs in E

E < 30MeV - - -

E < 100MeV .....

E < 200MeV -.-.-.

E < 500MeV ——-

At low E find only mean-field strength

to get at correlations, i.e. high-k need really large E!



Alternative insight for coupling 〈T 〉, 〈E〉

Koltun sumrule BE/A = 0.5 (〈E〉 – 〈T 〉)

large 〈T 〉 implies large 〈E〉 since BE/A small

average E much larger than usually assumed (→ position q.e. peak, EMC, ...)

Consequences: partial occupation of MF orbits ∼0.75

Rest of strength

not detectable in transfer reaction experiments (E <10MeV)

can be seen in (e,e’p)



Importance of high-k,E for tails of quasi-elastic peak

High-k strength is moved to large energy loss ω

disappears under MF piece at low ω

low-ω tail dominated by low-k (+FSI+...)

Idea of observing high-k in low-ω tails of q.e. peak naive

Large-ω tail is only place to observe high-k

but is usually obscured by MEC, FSI, ...



Tail visible in longitudinal response

from superscaling

Oh et al.

Shape of quasi-elastic peak asymmetrical, far from Fermi-gas!

rarely appreciated

neglect of tail = main reason for troubles with CSR

affects other observables such as in ν-scattering



What do we know even without measuring high-k, high-E?

1. n(k) from exact calculations for A=3÷11,16,∞

can today solve Schrödinger equation for best NN-potentials

Faddeev, CBF, AFMC, GFMC, ..

calculations are phenomenally successful

explain many observables

in particular explain binding energy

Koltun sumrule BE/A = (〈E〉 – 〈T 〉)/2

± 1MeV ∼50MeV

〈T 〉 quite accurate → can trust 〈E〉 and predictions for large k,E

2. S(k,E) for A=3,4 and ∞

calculated using exact methods

situation similar to the one for n(k)



3. Large-k fall-off same as for deuteron

same short-range VNN → same fall-off

know quite well from experiment

4. Integrated correlated (high-k,E) strength known

occupation sMF of mean-field orbits measured

1–sMF yields integrated correlated strength

agrees well with theoretical predictions

We know a lot!

new work must start from this knowledge

Minimum requirement when trying to extract large k, E:

calculate observable with S(k,E) in PWIA (easy!)

If σPWIA deviates by more than 30% from σexp then non-IA processes dominate

no point in trying to determine S(k,E) or n(k)



Sources for S(k,E) for nuclei

Calculations using NMBT
3He: Dieperink et al., Sauer et al., Prosperi et al.
4He: ATMS

SCGF theory: finite nuclei such as 12C, Müther et al.

NM: CBF Benhar + Fabrocini

both total S(k,E) and correlated S(k,E)corr

Model-S(k,E) for finite nuclei

Ciofi degli Atti + Simula

HF-type calculation for MF piece + convoluted deuteron large-k tail

+ fitted amplitude

Combination MF from data + correlated part from NMBT

get MF n(k) of individual shells from (e,e’p), or WS-fit of (e,e)

alternative: from MF calculations such as DDHF

add correlated part, calculated for different NM densities, in LDA

excellent approximation as NN-correlations = short-range properties

where LDA makes sense

Extreme example: S(k,E for 4He



Calculation of S(k,E) in LDA

integrate to get n(k) in order to compare to MC

excellent agreement MC... LDA although LDA for A=4 really questionable



Experimental measurements of S(k,E): rare

a priori best tool: (e,e’p)

with highest p energies possible to minimize FSI

Difficulties

strength very spread out

cross section small

rescattering of proton

moves strength to larger (apparent) E

can only be minimized by optimal kinematics

perpendicular kinematics worst!

even lowest-E MF states obscured by rescattered p

already for s/d-shell nuclei s-shell obscured

parallel kinematics best

(calculation by C. Barbieri)

note: parallel, not anti-parallel



Insight from data: study of all (e,e’p) experiments

compare experimental and calculated dσ/dΩdω

in IA, using realistic S(k,E)

use R(k)MF + Scorr
NM(ρ) in LDA

look if data ≃ or >> theory

find

• most experiments give σexp ≫ σIA

• standard perpendicular kinematics worst, parallel kinematics best

studies of kinematics of rescattering processes:

understand how (p, p′N) and (e, e′pπ) move strength

identify optimal kinematics: parallel (standard: perpendicular!)

same conclusion as from MC calculations of Barbieri



JLab hall-C experiment by Rohe et al., 2004

as close to parallel kinematics as was practical

Results: Spectral function

Find ± satisfactory correspondence with theory

in detail: find shift of S(k,E) to smaller E

at present not understood



Comparison of integrated strength: possible for restricted region
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outside used region:

mean-field dominates

∆ too important

or no data

# of correlated protons in 12C used total

region

integral over S from experiment 0.59

integral over S from CBF 0.64 1.32

integral over S from SCGF 0.61 1.27

→ good agreement

→ can believe total from theory

→ 21%, integrated over k,E

→ agrees with 1 − sMF



Momentum distribution in ”used region”

0.2 0.4 0.6
p

m
 [GeV/c]

10
-3

10
-2

10
-1

n(
p m

) 
[f

m
3  s

r-1
]

parallel

CBF theory
Greens function approach
exp. using cc1(a)
exp. using cc

measure believable high-k-tail for first time

find rather good agreement with theory

..... but both data and theory could stand some improvement

Question: can experimentally determine n(k) without ”detour” via S(k,E)?



Can measure n(k) at large k directly?

Popular topic since 1/2 century! Many simple-minded ideas:

(x,p) with high-k backward going p (x=γ, π, p,...)

(x,p) with energy of x subthreshold for reaction on N

(e,e’) at high q, x >1

.....

Common characteristics

1. All processes dont work once consider that large k involve large E

systematically ignored although known since the 70ies

2. PWIA calculation with realistic S(k,E) never done, although easy

if would do, would find σexp ≫ σPWIA

then would know that FSI, MEC, ... dominate

3. Low-q processes suffer from Amado-Woloshyn disease

in limit q ∼ 0 FSI cancels high-k contribution



Example: inclusive electron scattering at large q, low ω, x >1

Naive idea: low ω ∼ (~k + ~q)2/2M and large q

means ~k ∼ −~q i.e. large k

Problem: low ~k + ~q → large FSI

is important in tail of quasi-elastic peak

more difficult to calculate than S(k,E)

cannot be removed by taking ratios

is additive, not multiplicative! (remember sumrule)

rescattering moves strength from place where large to place where small

Elementary check:

first calculate cross section in PWIA

only if close to σexp think about correlated nucleons



Specific case: 3He(e,e’) in threshold region, x ∼ 1.5 ÷ 3

For 3He have exact S(k,E) from Faddeev calculation, as good as deuteron n(k)

Find σPWIA at large x factor 3÷10 too small

need FSI to get close to data

Cross section scales in terms of y

only explainable as consequence of FSI! σPWIA does not scale

experimental F (y, q) converges from above, but F (y, q) from S(k,E) from below



FSI in inclusive scattering

can be calculated, no need for hand waving arguments

FSI in q.e. scattering of thermal neutrons on L4He

Main interest to condensed matter physics:

% Bose condensate in superfluid L4He → δ(k = 0) peak

δ(y = 0) not visible in data. Reason: FSI

Detailed studies of FSI-effects

main effect: folding of IA (n,n’) response

width of folding function proportional to σtot of He-He interaction

smears out δ-function peak

FSI in q.e. electron scattering

see talk of Omar Benhar

derives convolution approach using zero’th order ladder approximation

folding function from particle spectral function

calculated in Eikonal approximation

for pedagogical, simplified case (zero-range interaction, no correlations)

folding width proportional to small-angle fNN , density

the only short-range ingredient is g(r − r′), reduces FSI

Moves strength from top of q.e. peak to tails



Example: recent 12C(e,e’) at x ∼ 2 ÷ 3: 4GeV, 30◦

σPWIA at large x much too small

Effect of large-k minimal, FSI dominates (Benhar 2013)

Difference between S(k,E) and n(k) huge

Cross section ratios σA
σA′

=⇒ ratios of FSI, not ratios of n(k)

Popular a2 measure FSI, not high-k



Deeper origin of problems with large k, E

k, E identified from kinematics via momentum+energy - conservation

valid for all processes

Since large k essentially occur at large E

cannot get k or E individually

Consequence for exclusive processes, e.g. (e,e’p)

can, in PWIA, determine k and E together, measure S(k,E)

if kinematics such that corrections to PWIA manageable

Consequences for inclusive processes, e.g. (e,e’), (x,p),...

cannot get k or n(k) (or similarly E or n(E))

must input S(k,E) to calculate σ

and then compare to data

Upshot

don’t even think about measuring n(k) at large k

it is not possible

If absolutely want n(k) at large k

measure S(k,E) over largest range in E

then integrate over E



More work needed on S(k,E)

several aspects not adequately covered

• S(k,E) for heavier nuclei and lower SM states

have no experimental information on lowest MF states

neither E, nor width, nor n(k)

could be obtained via (e,e’p)

certainly better than with (p,2p) (where deep MF orbits seen)

should have been a JLab Hall-A job



• Better data on large-E/large-k-region, only 1 experiment done

want: strictly parallel kinematics

want different ranges of outgoing-proton energies

→ better control of corrections beyond IA

• Transport code/Glauber calculations for (e,e’p) needed

must follow proton and reactions through nucleus

only then can remove rescattered strength



Orthogonal look:

where correlated strength in r-space?

motivation: difficulties with QP-R(r)

• QP radial wave functions fitted to ρ(r)

poorly explain F(q) of QP-dominated transitions

• QP wave functions poorly explain ρ(r) at small r

reason: ρ(r) contains correlated contribution

presumably radial shape correlated ρ 6= QP shape

⇒ question: radial distribution of correlated strength = ?

Two opposing tendencies:

• large E pulls correlated strength to small r

• higher (angular) momenta tend to shift it to larger r

which wins?

2 independent answers:

• study via selfconsistent Green’s function theory SGFT

H. Müther

• determine from (e,e) and (e,e′p)



S(k,E) from Green’s function method (Müther, Polls, ..)

split S into QP plus correlated piece

ρ(r) =
∑
lj

SQP
lj (r, r) +

∑
lj

∫ ∞

ε2h1p

dE Scont
lj (r, r;E)

= ρQP (r) + ρcorr(r) ,

CD-Bonn NN interaction → 1.0 correlated protons (low?)

observations

ρcorr concentrated much more towards small r

does not contribute at large r

there tail of QP dominates completely

ρcorr at small r despite contributions of large l

31% l=0, 37% l=1, rest large l

large E of states pulls R(r) to small r

at small r ρcorr contributes ∼30% of ρ(r)

explains failure of QP wave functions



ρcorr from (e,e)+(e,e′p) data

ρcorr(r) = ρ(r)point −
∑

QP−orbits

FBT (RQP (k))
2

point density of C

have very precise (e,e) data up to large q

have µ-X-ray data

do modelindependent analysis (SOG)

→ charge density with small δρ

unfold nucleon size to get point density

QP wave functions from (e,e′p)

extensive set of (e,e′p) data

• low-q from NIKHEF, Saclay

analyzed with DWBA

optical potentials from (p,p)

• high-q data from SLAC, JLAB

analyzed with theoretical transparencies

confirmed by data



ρcorr from (e,e)+(e,e′p)

start with point density

subtract QP contribution, Fourier-Bessel-transformed R(k)

using high-q (corrected) occupation

result



observations

ρcorr concentrated towards small r

as was seen in theory

ρcorr gives ∼30% contribution at small r

explains failure of QP models

reasonable agreement with theory

(uncertainty of ρcorr ∼20%)

in exp. density perhaps more l > 1 strength

important consistency check: large r

perfect agreement ρQP ... ρpoint

should occur as ρcorr cannot contribute

large-r = the region where MF ± OK



Conclusions of r-space study

shape of ρcorr differs strongly from shape of ρQP

ρcorr gives 30% contribution in nuclear interior

explains failure of QP models, cannot be ’compensated’ using eeff , etc.

reasonable agreement with Green’s function theory

Overall conclusions

for quantitative understanding must go beyond MF

to describe correlated N must use S(k,E)

only quantity that accounts for both large k and large E

have finally data on correlated strength

... some 15 years after CBF calculation

± agrees with modern many-body theories

... which were amazingly good!

for good S(k,E) of finite nuclei

look forward to results from FHNC, GFMC calculations
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