Quasielastic e/ν Scattering and Two-Body Currents

- Nuclear interactions and electroweak currents: a review
- Role of two-body currents in inclusive e/ν scattering: the enhancement of the one-body response
- Connection between the short-range structure of nuclei and the excess strength induced by two-body currents
- Summary

In collaboration with:

A. Lovato S. Gandolfi L.E. Marcucci S. Pastore J. Carlson S.C. Pieper G. Shen R.B. Wiringa

Nuclear Interactions

- $v = v_0(\text{static}) + v_p(\text{momentum dependent}) \rightarrow v(\text{OPE})$ fits large NN database with $\chi^2 \simeq 1$
- \bullet $\;NN$ interactions alone fail to predict:
	- 1. spectra of light nuclei
	- 2. Nd scattering
	- 3. nuclear matter $E_0(\rho)$

• 2π -NNN interactions:

 NNN Interactions: Beyond 2π -Exchange

Pieper and Wiringa, private communication

IL7 model has important $T = 3/2$ terms

$$
\mathbf{V}^{2\pi} + \mathbf{A}^{3\pi}
$$

parameters (\sim 4) fixed by a best fit to the energies of low-lying states (\sim 17) of nuclei with $A \leq 10$

AV18/IL7 Hamiltonian reproduces well:

- spectra of $A=9-12$ nuclei (attraction provided by IL7 in $T = 3/2$ triplets crucial for p-shell nuclei)
- low-lying p-wave resonances with $J^{\pi}=3/2^-$ and $1/2^$ respectively, as well as low-energy s-wave $(1/2^+)$ scattering

EM Current Operators I

- Static part v_0 of v from π -like (PS) and ρ -like (V) exchanges
- \bullet Currents from corresponding PS and V exchanges, for example

$$
\mathbf{j}_{ij}(v_0; PS) = i G_E^V(Q^2) (\boldsymbol{\tau}_i \times \boldsymbol{\tau}_j)_z v_{PS}(k_j) [\boldsymbol{\sigma}_i \n- \frac{\mathbf{k}_i - \mathbf{k}_j}{k_i^2 - k_j^2} (\boldsymbol{\sigma}_i \cdot \mathbf{k}_i)] (\boldsymbol{\sigma}_j \cdot \mathbf{k}_j) + i \leftrightharpoons j
$$

with $v_{PS}(k) = v^{\sigma \tau}(k) - 2 v^{t \tau}(k)$ projected out from v_0 terms $j^{(2)}(v)$ \Longrightarrow

EM Current Operators II

• Currents from v_p via minimal substitution in i) explicit and ii) implicit ^p-dependence, the latter from

$$
\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j = -1 + (1 + \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j) e^{i(\mathbf{r}_{ji} \cdot \mathbf{p}_i + \mathbf{r}_{ij} \cdot \mathbf{p}_j)}
$$

 Currents are conserved, contain no free parameters, and are consistent with short-range behavior of v and $V^{2\pi}$, but are not unique

$$
\mathbf{q} \cdot \left[\mathbf{j}^{(1)} + \mathbf{j}^{(2)}(v) + \mathbf{j}^{(3)}(V^{2\pi}) \right] = \left[T + v + V^{2\pi} , \rho \right]
$$

• EM current (and charge) operators also derived in χ EFT up to one loop (Pastore et al. 2009-2013; Kölling et al. 2009-2011)

Isoscalar and Isovector Magnetic Form Factors of ³He/³H

- Isoscalar two-body current contributions small
- Leading isovector two-body currents from OPE

EM Charge Operators

Leading two-body charge operator derived from analysis of the virtual pion photoproduction amplitudes:

$$
\mathcal{F} \left| \bigcap_{(a)} \mathcal{F} \left| \bigcap_{(b)} \mathcal{F} \right| \right| \longrightarrow \text{ pseudovector coupling}
$$
\n
$$
\text{diagram (a)} = v_{ij}^{\pi} \underbrace{\frac{1}{E_i - E}}_{2} \xrightarrow{F_1^S + F_1^V \tau_{i,z}}_{2} \rightarrow \text{included in IA}
$$
\n
$$
- \frac{v_{PS}(k_j)}{2m} \sigma_i \cdot \mathbf{q} \sigma_j \cdot \mathbf{k}_j \tau_i \cdot \tau_j \xrightarrow{F_1^S + F_1^V \tau_{i,z}}_{2} + \mathcal{O}(E_i - E)
$$

- Crucial for predicting the charge f.f.'s of ${}^{2}H$, ${}^{3}H$, ${}^{3}He$, and ${}^{4}He$
- Additional (small) contributions from vector exchanges as well as transition mechanisms like $\rho \pi \gamma$ and $\omega \pi \gamma$

Lovato et al. (2013)

Weak Current Operators

Charge-changing (CC) and neutral (NC) weak currents (ignoring ^s-quar^k contributions)

$$
j_{CC}^{\mu} = j_{\pm}^{\mu} + j_{\pm}^{\mu 5}
$$

 $j_{NC}^{\mu} = -2 \sin^2 \theta_W j_{\gamma}^{\mu}{}_{S} + (1 - 2 \sin^2 \theta_W) j_{\gamma, z}^{\mu} + j_{z}^{\mu 5}$

with $j_{\pm} = j_x \pm i j_y$ and the CVC constraint $\left[T_a \, , \, j_{\gamma,z}^{\mu}\,\right] = i \, \epsilon_{azb} \, j_b^{\mu}$

• Contributions to two-body axial currents from π and ρ exchange, $\rho \pi$ transition, and Δ -excitation

- Axial currents in χ EFT at N³LO depend on a single LEC d_R
- Common strategy: fix g_A^* or $d_R(\Lambda)$ in χ EFT by fitting the GT m.e. in ${}^{3}H$ β -decay

Predictions for μ -Capture Rates on ²H and ³He

Marcucci et al. (2011–2012)

• Including radiative corrections from Czarnecki, Marciano, and Sirlin (2007)

 Γ (3 H_e) s^{-1}

• Chiral potentials (N3LO/N2LO) and currents lead to conservatively $\Gamma(^2H)=399(3) \text{ sec}^{-1}$ and $\Gamma(^3He)=1494(21) \text{ sec}^{-1}$

Inclusive e/ν Scattering

• Inclusive $\nu/\overline{\nu}$ (-/+) cross section given in terms of five response functions

$$
\frac{d\sigma}{d\epsilon' d\Omega} = \frac{G^2}{8\pi^2} \frac{k'}{\epsilon} \left[v_{00} R_{00} + v_{zz} R_{zz} - v_{0z} R_{0z} + v_{xx} R_{xx} \mp v_{xy} R_{xy} \right]
$$

$$
R_{\alpha\beta}(q,\omega) \sim \overline{\sum_{i} \sum_{f} \delta(\omega + m_A - E_f) \langle f | j^{\alpha}(\mathbf{q},\omega) | i \rangle^* \langle f | j^{\beta}(\mathbf{q},\omega) | i \rangle}
$$

- In (e, e') scattering, interference $R_{xy} = 0$, current conservation implies $j^z_\gamma \sim (\omega/q) j^0_\gamma$, and only $R_{00} = R_L$ and $R_{xx} = R_T$ are left
- Theoretical analysis via:
	- 1. Sum rules
	- 2. "Explicit" calculations of $R_{\alpha\beta}$ (EM only in ⁴He for now)

Ab Initio Approaches to Inclusive Scattering (IS)

Response functions require knowledge of continuum states: hard to calculate for $A \geq 3$

- Sum rules: integral properties of response functions
- Integral transform techniques

$$
E(q,\tau) = \int_0^\infty \mathrm{d}\omega \, K(\tau,\omega) \, R(q,\omega)
$$

and suitable choice of kernels (i.e., Laplace or Lorentz) allows use of closure over $| f \rangle$, thus avoiding need of explicitly calculating nuclear excitation spectrum

While in principle exact, both these approaches have drawbacks

Sum Rules

Schiavilla et al. (1989); Carlson et al. (2002–2003)

$$
S_{\alpha}(q) = C_{\alpha} \int_{\omega_{\text{th}}^{+}}^{\infty} d\omega \frac{R_{\alpha}(q,\omega)}{G_{Ep}^{2}(q,\omega)}
$$

= C_{\alpha} \left[\langle 0 | O_{\alpha}^{\dagger}(\mathbf{q}) O_{\alpha}(\mathbf{q}) | 0 \rangle - | \langle 0 | O_{\alpha}(\mathbf{q}) | 0 \rangle |^{2} \right]

- \bullet $O_{\alpha}(\mathbf{q}) = \rho_{\gamma}(\mathbf{q})$ or $\mathbf{j}_{\gamma}^{\perp}(\mathbf{q})$ for $\alpha = L$ or T (divided by G_{Ep})
- C_{α} are normalization factors so as $S_{\alpha}(q \to \infty) = 1$ when only one-body are retained in ρ_{γ} and $\mathbf{j}_{\gamma}^{\perp}$
- $S_{\alpha}(q)$ only depend on ground state and can be calculated exactly with quantum Monte Carlo (QMC) methods
- Direct comparison between theory and experiment problematic:
	- 1. $R_{\alpha}(q,\omega)$ measured by (e,e') up to $\omega_{\text{max}} \leq q$
	- 2. Present theory ignores explicit pion production mechanisms, crucial in the Δ -peak region of R_T

The Coulomb Sum Rule in ¹²C

Lovato et al. (2013)

- Theory and experiment in reasonable agreement (when using $\rm{free}\;G_{Ep})$
- Contribution for $\omega > \omega_{\text{max}}$ estimated by assuming

 $R_{L}(q,\omega>\omega_{\text{max}};A) \propto R_{L}(q,\omega;\text{deuteron})$

The Transverse Sum Rule in ¹²C

Lovato et al. (2013)

- Large contribution from two-body currents
- Comparison with experiment problematic
- Divergence at small q fictitious due to normalization factor

$$
C_T = \frac{2}{Z \,\mu_p^2 + N \,\mu_n^2} \frac{m^2}{q^2}
$$

Response Functions

Carlson and Schiavilla (1992,1994)

 $\bullet\,$ Direct calculation in $^{2}{\rm H};$ calculation of Euclidean response functions in $A \geq 3$

$$
\widetilde{E}_{\alpha}(q,\tau) = \int_{\omega_{\text{th}}^{+}}^{\infty} d\omega \, e^{-\tau(\omega - E_{0})} \frac{R_{\alpha}(q,\omega)}{G_{Ep}^{2}(q,\omega)}
$$
\n
$$
= \langle 0 | O_{\alpha}^{\dagger}(\mathbf{q}) e^{-\tau(H - E_{0})} O_{\alpha}(\mathbf{q}) | 0 \rangle - (\text{elastic term})
$$

- $e^{-\tau(H-E_0)}$ evaluated stochastically with QMC
- No approximations made, exact
- At $\tau = 0$, $\widetilde{E}_{\alpha}(q; 0) \propto S_{\alpha}(q)$; as τ increases, $\widetilde{E}_{\alpha}(q; \tau)$ is more and more sensitive to strength in QE region
- Inversion of $\widetilde{E}_{\alpha}(q;\tau)$ is a numerically ill-posed problem; Laplace-transform data instead

A few % increase due to two-body currents at the top of the QE peak in R_T , much larger as ω increases

Sum Rules of NC Weak Response Functions in ¹²C

Lovato et al., in preparation (2013)

- What portion of the excess strength $\Delta S_T = S_T S_T^{\text{1b}}$ is in the QE region?
- Is the A-dependence of ΔS_T understood?

Short-Range Structure of $T, S = 0, 1$ Pairs in Nuclei

- short-range repulsion of v_{NN} (common to many systems)
- \bullet tensor character of v_{NN} (unique to nuclei)

 $\langle O_{ij}\rangle_A \simeq R_A \langle O_{ij}\rangle_d$, where O_{ij} is any short-range operator effective in the $T = 0, S = 1$ channel (like the electroweak O_{ij})

Scaling

Two-Nucleon Density Profiles in $T, S \neq 0,1$ States

- Scaling persists in T, $S=1,0$ channel (¹S₀ state) for $r \leq 2$ fm
- But no scaling occurs in remaining channels (interaction either repulsive or weakly attractive)

A-Systematics of ΔS_T

$$
\Delta S_T \propto \langle 0 | \sum_{l < m} \left[(j_l^{\dagger} + j_m^{\dagger}) j_{lm} + \text{h.c.} \right] + \sum_{l < m} j_{lm}^{\dagger} j_{lm} + \dots | 0 \rangle
$$

• Neglecting 3- and 4-body terms (represented by \dots)

$$
\Delta S_T{}^A(q) \simeq C_T \int_0^\infty dx \,\text{tr}\left[F(x;q)\,\rho^A(x;pn)\right]_{\sigma\tau} \equiv \int_0^\infty dx \, I^A(x)
$$

F=matrix in NN $\sigma\tau$ -space depending on j_{lm} (range $x \lesssim 1/m_{\pi}$) ρ^{A} =A-dependent NN density matrix in $\sigma\tau$ -space

• Scaling property $\rho^{A}(x;pn, T=0) \simeq R_A \rho^{d}(x)$ and similarly for $T = 1$ pn pairs with $\rho^d \to \rho^{qb}$; hence

$$
I^A(x)
$$
 scales as $\frac{R_A}{Z \mu_p^2 + N \mu_n^2}$

Tensor Correlations and Two-Nucleon Momentum Distributions

$$
\rho^{NN}(\mathbf{q}, \mathbf{Q}) = \frac{1}{2J+1} \sum_{M_J} \langle \psi_{JM_J} \mid \sum_{i < j} P_{ij}^{NN}(\mathbf{q}, \mathbf{Q}) \mid \psi_{JM_J} \rangle
$$

where **q** and **Q** are respectively the <u>relative</u> and total momenta of the NN pair, and

$$
P_{ij}^{NN}(\mathbf{q},\mathbf{Q}) \equiv \delta(\mathbf{k}_{ij}-\mathbf{q})\delta(\mathbf{K}_{ij}-\mathbf{Q})\,P_{NN}(ij)
$$

- *np* (*pp*) pairs predominantly in T=0 deuteron-like $(T=1^{-1}S_0)$ state \longrightarrow large differences between ρ^{np} and ρ^{pp}
- Pair-momentum distributions useful for estimates of NN-knockout x-sections
- ρ^{NN} can be calculated exactly with QMC

NN momentum distributions at $Q=0$ (back-to-back)

Schiavilla, Wiringa, Pieper, and Carlson, PRL98, ¹³²⁵⁰¹ (2007)

Effects of Tensor Correlations on NN Knock-Out Processes

- JLab measurements on ¹²C(*e*, *e'pp*)^a and (*e*, *e'np*)^b
- Analysis of ¹²C(p, pp) and (p, ppn) BNL data^c
- Possibly also seen in π -absorption: $\sigma(\pi^-, np)/\sigma(\pi^+, pp) \ll 1^d$

Summary

- Large enhancement due to two-body electroweak currents in the sum rules of electromagnetic and weak response functions
- There is ^a direct connection between this enhancement and the short-range structure of np pairs in nuclei
- This short-range structure (presumably!) also drives the increase of the one-body response due to two-body currents
- Calculations of ⁴He (Euclidean) EM response functions show that excess strength may be as large 20–30% in QE region
- Similar enhancement of the NC (and CC) one-body response functions is expected for ${}^{12}C$ (next stage of calculations)