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Nuclear Interactions� v = v0(static) + vp(momentum dependent) → v(OPE) fits large NN

database with χ2
≃ 1� NN interactions alone fail to predict:

1. spectra of light nuclei

2. Nd scattering

3. nuclear matter E0(ρ)
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NNN Interactions: Beyond 2π-Exchange

Pieper and Wiringa, private communication

IL7 model has important T = 3/2 terms

SR

V
2π

+ A
3π + + V

parameters (∼ 4) fixed by a best fit to the energies of low-lying

states (∼ 17) of nuclei with A ≤ 10

AV18/IL7 Hamiltonian reproduces well:� spectra of A=9–12 nuclei (attraction provided by IL7 in

T = 3/2 triplets crucial for p-shell nuclei)� low-lying p-wave resonances with Jπ=3/2− and 1/2−

respectively, as well as low-energy s-wave (1/2+) scattering
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EM Current Operators I

Marcucci et al. (2005)

j j= (1)

+ j
(2)

(v) + +

+ j
(3)

(V
2π

)

π
π ρ,ω

transverse� Static part v0 of v from π-like (PS) and ρ-like (V ) exchanges� Currents from corresponding PS and V exchanges, for example

jij(v0;PS) = iGV
E(Q2) (τ i × τ j)z

vPS(kj)
[
σi

−
ki − kj

k2
i − k2

j

(σi · ki)
]
(σj · kj) + i ⇌ j

with vPS(k) = vστ (k) − 2 vtτ (k) projected out from v0 terms

)
long range

ππππ ++(v(2)j
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EM Current Operators II� Currents from vp via minimal substitution in i) explicit and

ii) implicit p-dependence, the latter from

τi · τj = −1 + (1 + σi · σj) ei(rji·pi+rij ·pj)� Currents are conserved, contain no free parameters, and are

consistent with short-range behavior of v and V 2π, but are not

unique

q ·
[
j(1) + j(2)(v) + j(3)(V 2π)

]
=

[
T + v + V 2π , ρ

]

� EM current (and charge) operators also derived in χEFT up to

one loop (Pastore et al. 2009-2013; Kölling et al. 2009-2011)
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Isoscalar and Isovector Magnetic Form Factors of 3He/3H
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� Isoscalar two-body current contributions small� Leading isovector two-body currents from OPE
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EM Charge Operators

Leading two-body charge operator derived from analysis of the

virtual pion photoproduction amplitudes:

�������� �� �� pseudovector coupling

(a) (b)

diagram (a) = vπ
ij

1

Ei − E

FS
1 + FV

1 τi,z
2

→ included in IA

−
vPS(kj)

2m
σi · qσj · kj τi · τj

FS
1 + FV

1 τi,z
2

+ O(Ei −E)� Crucial for predicting the charge f.f.’s of 2H, 3H, 3He, and 4He� Additional (small) contributions from vector exchanges as well

as transition mechanisms like ρπγ and ωπγ
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4He Charge Form Factor

Viviani et al. (2007)
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12C Charge Form Factor

Lovato et al. (2013)

0 1 2 3 4

q (fm
-1

)

10
-4

10
-3

10
-2

10
-1

10
0

|F
(q

)|

exp
ρ

1b
ρ

1b+2b

0 2 4
r (fm)

0.00

0.04

0.08

ρ
ch

 (
r)

10



Weak Current Operators� Charge-changing (CC) and neutral (NC) weak currents

(ignoring s-quark contributions)

jµ
CC = jµ

± + jµ5
±

jµ
NC = −2 sin2θW jµ

γ,S + (1 − 2 sin2θW ) jµ
γ,z + jµ5

z

with j± = jx ± i jy and the CVC constraint
[
Ta , j

µ
γ,z

]
= i ǫazb j

µ
b� Contributions to two-body axial currents from π and ρ

exchange, ρπ transition, and ∆-excitation

g*
A

� Axial currents in χEFT at N3LO depend on a single LEC dR� Common strategy: fix g∗A or dR(Λ) in χEFT by fitting the GT

m.e. in 3H β-decay
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Predictions for µ-Capture Rates on 2H and 3He

Marcucci et al. (2011–2012)� Including radiative corrections from Czarnecki, Marciano, and

Sirlin (2007)

Γ0(
3He) s−1

EXP 1496(4)

SNPA(AV18/UIX) 1496(8)

χEFT∗(AV18/UIX)

Λ = 500 MeV 1497(8)

Λ = 600 MeV 1498(9)

Λ = 800 MeV 1498(8)� Chiral potentials (N3LO/N2LO) and currents lead to

conservatively Γ(2H)=399(3) sec−1 and Γ(3He)=1494(21) sec−1
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Inclusive e/ν Scattering� Inclusive ν/ν (−/+) cross section given in terms of five

response functions

dσ

dǫ′dΩ
=

G2

8π2

k′

ǫ

[
v00R00 + vzz Rzz − v0z R0z + vxxRxx ∓ vxy Rxy

]

Rαβ(q, ω) ∼
∑

i

∑

f

δ(ω+mA−Ef )〈f | jα(q, ω) | i〉∗〈f | jβ(q, ω) | i〉

� In (e, e′) scattering, interference Rxy = 0, current conservation

implies jz
γ ∼ (ω/q)j0γ , and only R00=RL and Rxx=RT are left� Theoretical analysis via:

1. Sum rules

2. “Explicit” calculations of Rαβ (EM only in 4He for now)
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Ab Initio Approaches to Inclusive Scattering (IS)

Response functions require knowledge of continuum states: hard to

calculate for A ≥ 3� Sum rules: integral properties of response functions� Integral transform techniques

E(q, τ) =

∫ ∞

0

dωK(τ, ω)R(q, ω)

and suitable choice of kernels (i.e., Laplace or Lorentz) allows

use of closure over | f〉, thus avoiding need of explicitly

calculating nuclear excitation spectrum� While in principle exact, both these approaches have drawbacks
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Sum Rules
Schiavilla et al. (1989); Carlson et al. (2002–2003)

Sα(q) = Cα

∫ ∞

ω
+
th

dω
Rα(q, ω)

G 2
Ep(q, ω)

= Cα

[
〈0 | O†

α(q)Oα(q) |0〉− | 〈0 | Oα(q) |0〉 |2
]� Oα(q) = ργ(q) or j⊥γ (q) for α = L or T (divided by GEp)� Cα are normalization factors so as Sα(q → ∞) = 1 when only

one-body are retained in ργ and j⊥γ� Sα(q) only depend on ground state and can be calculated

exactly with quantum Monte Carlo (QMC) methods� Direct comparison between theory and experiment problematic:

1. Rα(q, ω) measured by (e, e′) up to ωmax ≤ q

2. Present theory ignores explicit pion production mechanisms,

crucial in the ∆-peak region of RT
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The Coulomb Sum Rule in 12C
Lovato et al. (2013)� Theory and experiment in reasonable agreement (when using

free GEp)� Contribution for ω > ωmax estimated by assuming

RL(q, ω > ωmax;A) ∝ RL(q, ω; deuteron)
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The Transverse Sum Rule in 12C
Lovato et al. (2013)� Large contribution from two-body currents� Comparison with experiment problematic� Divergence at small q fictitious due to normalization factor

CT =
2

Z µ2
p +N µ2

n

m2

q2
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Response Functions

Carlson and Schiavilla (1992,1994)� Direct calculation in 2H; calculation of Euclidean response

functions in A ≥ 3

Ẽα(q, τ) =

∫ ∞

ω
+
th

dω e−τ(ω−E0)
Rα(q, ω)

G2
Ep(q, ω)

= 〈0 | O†
α(q)e−τ(H−E0)Oα(q) |0〉 − (elastic term)� e−τ(H−E0) evaluated stochastically with QMC� No approximations made, exact� At τ = 0, Ẽα(q; 0) ∝ Sα(q); as τ increases, Ẽα(q; τ) is more and

more sensitive to strength in QE region� Inversion of Ẽα(q; τ) is a numerically ill-posed problem;

Laplace-transform data instead
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2H Longitudinal and Transverse Response Functions
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A few % increase due to two-body currents at the top of the QE

peak in RT , much larger as ω increases
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4He Longitudinal and Transverse Euclidean Response Functions

Eα(q, τ) = exp
[
τ q2/(2m)

]
Ẽα(q, τ)

and EL(q, τ) → Z for a collection of protons initially at rest� The τ & 0.015 MeV−1region is sensitive to QE strength; RT

enhancement much larger than in 2H
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Sum Rules of NC Weak Response Functions in 12C

Lovato et al., in preparation (2013)
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NC Weak Response Functions in 2H
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Excess Transverse Strength Systematics
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� What portion of the excess strength ∆ST =ST − S1b
T is in the

QE region?� Is the A-dependence of ∆ST understood?
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Short-Range Structure of T, S = 0, 1 Pairs in Nuclei� short-range repulsion of vNN (common to many systems)� tensor character of vNN (unique to nuclei)
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� 〈Oij〉A ≃ RA 〈Oij〉d, where Oij is any short-range operator

effective in the T = 0, S = 1 channel (like the electroweak Oij)

Scaling

RA N IP
T=0,S=1 〈vπ〉A/〈v

π〉d σπ
A/σ

π
d σγ

A/σ
γ
d

3He 2.0 1.5 2.1 2.4(1) ≃ 2

4He 4.7 3 5.1 4.3(6) ≃ 4

6Li 6.3 5.5 6.3

7Li 7.2 6.75 7.8 ≃ 6.5(5)

12C 18.5 18

16O 18.8 30 22 17(3) 16(3)
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Two-Nucleon Density Profiles in T, S 6=0,1 States� Scaling persists in T, S=1,0 channel (1S0 state) for r ≤ 2 fm� But no scaling occurs in remaining channels (interaction either

repulsive or weakly attractive)

0 1 2 3 4

r(fm)

0.00

0.02

0.04

0.06

0.08

ρ
1

,0
(r

)/
R

1
,0

 (
fm

-3
)

1
S

0
 VBS

4
He

6
Li

16
O

T,S=1,0

0 1 2 3 4 5

r(fm)

0.000

0.005

0.010

0.015

0.020

ρ
0

,0
(r

)/
R

0
,0

 (
fm

-3
)

4
He

6
Li

16
O

T,S=0,0

0 1 2 3 4 5

r(fm)

0.000

0.005

0.010

0.015

0.020

0.025

ρ
M

S

1
,1

(r
,θ

)/
R

1
,1

 (
fm

-3
)

4
He

6
Li

16
O

T,S=1,1

M
S
=0, θ=0

M
S
=0, θ=π/2

27



A-Systematics of ∆ST

Carlson et al. (2002)

∆ST ∝ 〈0 |
∑

l<m

[
(j†l + j†m)jlm + h.c.

]
+

∑

l<m

j†lmjlm + . . . |0〉

� Neglecting 3- and 4-body terms (represented by . . . )

∆ST
A(q) ≃ CT

∫ ∞

0

dx tr
[
F (x; q) ρA(x; pn)

]
στ

≡

∫ ∞

0

dx IA(x)

F=matrix in NN στ -space depending on jlm (range x . 1/mπ)

ρA=A-dependent NN density matrix in στ -space� Scaling property ρA(x; pn, T = 0) ≃ RA ρ
d(x) and similarly for

T = 1 pn pairs with ρd → ρqb; hence

IA(x) scales as
RA

Z µ2
p +N µ2

n
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A-Scaling Property
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Tensor Correlations and Two-Nucleon Momentum Distributions

ρNN (q,Q) =
1

2J + 1

∑

MJ

〈ψJMJ
|
∑

i<j

PNN
ij (q,Q) | ψJMJ

〉

where q and Q are respectively the relative and total momenta of

the NN pair, and

PNN
ij (q,Q) ≡ δ(kij − q)δ(Kij − Q)PNN(ij)� np (pp) pairs predominantly in T=0 deuteron-like (T=1 1S0)

state −→ large differences between ρnp and ρpp� Pair-momentum distributions useful for estimates of

NN -knockout x-sections� ρNN can be calculated exactly with QMC

30



NN momentum distributions at Q=0 (back-to-back)
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Effects of Tensor Correlations on NN Knock-Out Processes� JLab measurements on 12C(e, e′pp)a and (e, e′np)b� Analysis of 12C(p, pp) and (p, ppn) BNL datac� Possibly also seen in π-absorption: σ(π−, np)/σ(π+, pp) ≪ 1d
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Analysis of BNL data:

pn pX
P  / P  = 92   %+8

−18

a
Shneor et al., PRL99, 072501 (2007); b

Subedi et al., Science 320, 1476 (2008); c
Piasetzky et al.,

PRL97, 162504 (2006); d
Ashery et al., PRL47, 895 (1981)
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Summary� Large enhancement due to two-body electroweak currents in

the sum rules of electromagnetic and weak response functions� There is a direct connection between this enhancement and the

short-range structure of np pairs in nuclei� This short-range structure (presumably!) also drives the

increase of the one-body response due to two-body currents� Calculations of 4He (Euclidean) EM response functions show

that excess strength may be as large 20–30% in QE region� Similar enhancement of the NC (and CC) one-body response

functions is expected for 12C (next stage of calculations)
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