Measurements of Quasi-Elastic Interactions in the NOMAD Experiment

R. Petti University of South Carolina, USA

"Neutrino-Nucleus Interactions for Next Generation Neutrino Oscillation Experiments" INT, Seattle WA, December 3, 2013

THE NOMAD DETECTOR

- Low-density magnetic spectrometer B = 0.4 T, $\rho \sim 0.1$ g/cm³, $X_0 \sim 5 m$
 - high resolution tracking \implies mom. resolution ~3.5% (p<10 GeV/c);
- **II** fine-grained calorimeter $\implies \sigma(E)/E = 3.2\%/\sqrt{E[\text{GeV}]} \oplus 1\%;$
- **III** excellent lepton identification & charge measurement \implies can detect $\left| \nu_{\mu}, \nu_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{e} \right|$ **CC**

DETERMINATION OF (ANTI)NEUTRINO FLUXES

- Detailed calculations developed for $\nu_{\mu} \rightarrow \nu_{e}$ appearance search (LSND at high Δm^{2}):
 - FLUKA+GEANT3 description of primary target, beam focusing elements and secondary particle propagation along beam line
 - Constraints on K/π vs. p from dedicated SPY/NA56 hadroproduction experiment (p on Be target at 450 GeV)
- + Validation of ν and $\bar{\nu}$ fluxes from comparison with different CC spectra in NOMAD:
 - Standard/reversed horn polarity (focusing);
 - Horn / Reflectors switched off
- Normalization of absolute flux ν_{μ} flux to world average DIS cross-section $\sigma(E)/E$ in the range 40 GeV < E_{ν} < 150 GeV (~ 2.1% precision) \implies Need only extrapolation of relative flux below 40 GeV

MONTE CARLO SIMULATION

Quasi-Elastic (QE) neutrino scattering:

- Based upon the Smith-Monitz approach
- Vector form factors F_V and F_M parameterized following the well-known GKex(05) form
- Axial form factor with the dipole parameterization $F_A(Q^2) = F_A(0) \left[1 + Q^2/M_A^2\right]^{-2}$

Single pion production via intermediate resonance state

- Based upon the Rein-Sehgal (RS) model
- Set of 18 baryon resonances with masses below 2 GeV as in RS with parameters updated from PDG

Deep Inelastic Scattering (DIS)

- Primary interaction with modified LEPTO 6.1
- Hadronization and decays with JETSET 7.4
- Structure functions re-weighted with LO GRV 98 Bodek-Yang (BY), as well as with full NNLO calculation Alekhin, Kulagin and P. (AKP)
- \bullet Benhar-Fantoni parameterization of momentum distribution n(k) in nucleus
- Final State Interactions (FSI) modeled with the DPMJET package based on the concept of the formation zone intra-nuclear cascade
- Cross-check signal and background efficiencies with NUANCE and GENIE event generators interfaced with the NOMAD detector simulation and reconstruction

SELECTION OF QE EVENTS: 2-TRK SAMPLE

 u_{μ}

- ← Topologies classified based on # of reconstructed tracks with $N_{\rm HITS} \ge 7 \longrightarrow L \sim 18$ cm
 - 1 track sample $(\mu) \implies$ complementary (control)
 - 2 track sample $(\mu + p) \Longrightarrow$ golden sample
 - 3 track sample etc.
- Muon ID and $0 \le \phi_{\mu} \le \pi$
- Proton ID with momentum-range relations
- Pre-selection cuts:
 - Angle in transverse plane $0.8 \le \alpha/\pi \le 1$
 - Missing transverse momentum $P_{\perp}^{\rm miss} \leq 0.8~{\rm GeV/c}$
 - Proton angle with beam $0.2 \le \theta_h/\pi \le 0.5$
- Energy range $3 \le E_{\nu} \le 100$ GeV

SELECTION OF QE EVENTS: 1-TRK SAMPLE

- Only one reconstructed track with # of hits $N_{\rm HITS} \ge 7 \longrightarrow L \sim 18 \ cm$
 - Tighter fiducial volume cut than 2-trk sample
 - No reconstructed track segments other than the muon
- → $\varphi_{\mu} \geq 2\pi$ ◆ Calculate neutrino energy E_{ν} and missing kine-matic variables (θ_h etc.) assuming OE (P_{μ}) with nucleon at rest
- Transverse momentum of muon $P_{\mu}^{\rm T} > 0.2 \text{ GeV/c}$
- Calculated energy (QE) range $3 \le E_{\nu} \le 100$ GeV
- Muon emission angle $\theta_{\mu}/\pi \leq 0.1$
- Calculated proton angle $0.35 \le \theta_h/\pi \le 0.5$
 - \implies Selected 10358 QE candidates in data with $\varepsilon_{\rm QE} = 21\%$ and purity of 50%.

$$E_{\nu} = \frac{ME_{\mu} - m_{\mu}^2/2}{M - E_{\mu} + P_{\mu} \cos \theta_{\mu}}$$
$$Q^2 = 2M \left(E_{\nu} - E_{\mu}\right)$$

PUBLISHED NOMAD MEASUREMENT (2009)

- Overall ν_{μ} CC QE candidates selected in data 14021 (1-trk + 2-trk) with total QE selection efficiency $\varepsilon_{\text{QE}} = 34\%$ and purity of about 50%
- Overall $\bar{\nu}_{\mu}$ CC QE candidates selected in data 2237 (1-trk) with total QE selection efficiency $\varepsilon_{\text{QE}} = 64\%$ and purity of about 38%
- Measurement of total QE cross-sections:

 $\sigma_{\rm QE}^{\nu} = [0.92 \pm 0.02(stat.) \pm 0.06(syst.)] \times 10^{-38} cm^2$ $\sigma_{\rm QE}^{\bar{\nu}} = [0.81 \pm 0.05(stat.) \pm 0.08(syst.)] \times 10^{-38} cm^2$

igstarrow Determination of the effective axial mass M_A from fit to $\sigma(E)\oplus d\sigma/dQ^2$:

 $M_A(\nu) = [1.06 \pm 0.02(stat.) \pm 0.06(syst.)] GeV$ $M_A(\bar{\nu}) = [1.06 \pm 0.07(stat.) \pm 0.10(syst.)] GeV$

NEW IMPROVED ANALYSIS

- A new measurement of QE cross-sections in NOMAD has been completed and is expected to be published next year
 - Use complete kinematic range $0 \le \phi_{\mu} \le 2\pi$ and larger fiducial volume
 - More efficient kinematic selection (likelihood function and pre-selection)
 - Better understanding of reconstruction systematics
 - Calibration of backgrounds in control regions
 - \implies Total 2-trk QE candidates selected ~ 16800 with efficiency $\varepsilon_{\rm QE} = 25\%$ and purity of 57%
 - \implies Total 1-trk QE candidates selected ~ 18600 with efficiency $\varepsilon_{\rm QE} = 29\%$ and purity of 57%
 - ⇒ High purity samples with tighter kinematic cuts
- Measurement of total QE cross-section $\sigma(E)$: $\sigma_{QE}^{\nu} = [0.914 \pm 0.013(stat.) \pm 0.038(syst.)] \times 10^{-38} cm^2$ avg. 1-trk + 2-trk
- Measurement of differential cross-section $d\sigma/dQ^2$
- Model-independent study of nuclear effects and Final State Interactions (FSI) from comparison of 2-trk and 1-trk samples

Difference between measured 2-trk energy and calculated QE energy with nucleon at rest provides measurement of nuclear effects and FSI

Characteristics of selected v_{μ} QE events	NOMAD values
QE event selection	2-trk sample: 1 identified muon + 1 identified proton 1-trk sample: 1 identified muon without any other rec. trk
Nuclear target	64% C, 22% O, 6% N, 5% H, 1.7% Al
Neutrino flux range	$2.5 < E_v < 300 \text{ GeV}$
Sign-selection?	yes
Muon angular range	$0^0 < \theta_{\mu} < 180^0$ track reconstruction $0^0 < \theta_{\mu} < 50^0$ acceptance muon ID
Muon energy range	$E_{\mu} > 2 \text{ GeV for muon ID}$
Proton detection threshold	P ~ 200 MeV/c
How is E_v determined?	 i) Sum of muon E_μ + proton E_p from p fit in B field (0.4 T) ii) Comparison with E_v from QE kinematics (from muon only) gives direct measurement of nuclear effects iii) Comparison of 2-trk vs. 1-trk gives measurement of FSI
How is Q ² determined?	2-trk sample: $Q^2 = -m_{\mu}^2 + 2E_{\nu} (E_{\mu}-p_{\mu}cos\theta_{\mu})$ 1-trk sample: Q^2_{QE}
Monte Carlo generator	NOMAD generator (LEPTO/JETSET/DPMJET) checked with NUANCE (tuned with NOMAD data, resonance Rein-Sehgal)
QE measurements and associated publications	$\sigma(E_v)$: Eur.Phys. J. C 63 (2009) 355-381 d σ/dQ^2 , nuclear effects and FSI in C (new analysis)

FUTURE QE MEASUREMENTS WITH LBNE ND

 Next generation High-Resolution Near Detector (ND) for LBNE based upon the NOMAD concept:

- Low density magnetic spectrometer: B = 0.4 T, $\rho \sim 0.1$ g/cm³, target $(C_3H_6)_n$
- Straw Tube Tracker with $\times 12$ higher granularity than NOMAD
- Complete 4π coverage of calorimetry and muon ID
- \implies Improved p resolution and recontruction efficiency w.r.t. NOMAD
- Expect to collect ~ $10(5) \times 10^6 \nu(\bar{\nu})$ QE events in 5y ν + 5y $\bar{\nu}$ data taking with energy range $0.5 \le E_{\nu} \le 20$ GeV

- Protons easily identified by the large dE/dx in tracker & range
- ♦ New NOMAD QE analysis also used for sensitivity studies in LBNE ND
 ⇒ Same reconstruction & selection
- Use multi-dimensional likelihood functions incorporating the full event kinematics to reject DIS & Res backgrounds
 - $\implies \text{On average } \varepsilon = 52\% \text{ and } \eta = 82\%$ for CC QE at LBNE (New NOMAD $\varepsilon = 54\%$, $\eta = 57\%$)