Selecting Quasielastic Events at MINERvA

Gabriel Perdue Fermilab 2013.December.3

The Five-Slide Version (It is Four Slides long ;)

CCQE in the Future

- Low Energy:
 - Two-track $d\sigma/dQ^2$ with Michel veto.
 - Include non-MINOS-matched muons, reconstructing Q² via the proton arm.
 - Separate set of ratio measurements in the nuclear targets.
 - $d^2\sigma/dT_{\mu}d\theta_{\mu}$ for neutrino and antineutrino.
 - $d^2\sigma/dT_Pd\theta_P$ for neutrino? (Statistics are a major challenge.)
- Repeat everything in the Medium Energy beam.
 - Not underway yet...

MINERvA Summary

QE Characteristics	Values					
Event Selection	I Muon, Recoil consistent with QE Q ² . The number of tracks and vertex energy are not used in event selection. (No Michel veto in current publication.)					
Nuclear Target	Mostly CH.					
Neutrino Flux Range	[1.5 GeV, 10 GeV] (Higher energy is possible. Lower energy is accessible via proton-arm reconstruction.)					
Sign Selection	Yes.					
Muon Angular Range	[0 degrees, ~20 degrees]* (*MINOS-matched sample. [0 degrees, 180 degrees] accessible via proton-arm)					
Muon Energy Range	~[1.5 GeV, 10 GeV] (Higher energy is possible. Lower energy is accessible via proton-arm reconstruction.)					
Proton Detection Threshold	~80 MeV KE for tracking. ~50 MeV KE for Isolated Shower. ~? to see anything					
Neutrino Energy Determination	QE Formula with RFG assumptions.					
Q ² Determination	QE Formula - unfold to true muon kinematics.					
MC Generator	GENIE. (+ some NuWro for specific studies and comparisons at the generator level.)					
QE Measurements & Publications	Future: Two-track $d\sigma/dQ^2$, $d^2\sigma/dT_{\mu}d\theta_{\mu}$ $d\sigma/dQ^2$: <u>10.1103/PhysRevLett.111.022501</u> , <u>10.1103/PhysRevLett.111.022502</u>					

Now, with details...

Detector & Event Selection

Another Module

MINERVA

One Module

- Fine-grained resolution for excellent kinematic measurements.
- Low-energy cross-section program well-suited to nextgeneration oscillation experiments.
- Nuclear effects with a variety of target materials ranging from Helium to Lead.
 Especially important for ME run.

The Best Thing Since Sliced Bread...

MINERvA CCQE

- Single muon/anti-muon momentum and sign analyzed in MINOS.
- Reconstructed topology cuts to remove extra particles.
- Recoil (tracker + E-cal) consistent with CCQE at event Q^2 .
 - The region around the vertex is special.

CCQE Selection

Antineutrino

- I0 g/cm2 vertex region
 - Contains < 120 MeV KE protons
 - Contains < 65 MeV KE pions
- ✓ I isolated shower outside the vertex.

Neutrino

- 30 g/cm2 vertex region
 - Contains < 225 MeV KE protons
 - Contains < 100 MeV KE pions
- ≤ 2 isolated showers outside the vertex.

Module Number \rightarrow

1

Selection Performance

Results

*

Neutrino (Left), Antineutrino (Right)

Vertex Energy

- Energy near the vertex is not used as part of the event selection because we are not confident in our MC to produce a realistic hadron spectrum.
- Indeed, in the data, we see a harder vertex energy distribution for neutrinos, and a slightly softer distribution for antineutrinos.

Back-Up

Quasi-Elastic Scattering

Constraining Non-QE Backgrounds

 Given the challenge and large uncertainties on cross-section models and especially FSI, *constraining backgrounds with data* is very valuable

David Schmitz, UChicago

Fermilab Joint Experimental-Theoretical Seminar - May 10, 2013

Constraining Non-QE Backgrounds

Perform a fit in bins of Q²_{QE} to set the relative signal – background fraction

David Schmitz, UChicago

Fermilab Joint Experimental-Theoretical Seminar - May 10, 2013

43

Final Recoil Distributions

Monday, December 2, 13

David Schmitz, UChicago

Fermilab Joint Experimental-Theoretical Seminar - May 10, 2013

Beam Flux

- Tune the hadron production spectrum (FTFP) to world data (mostly NA49 for MINERvA).
- Complicated by relatively sparse data, and the problems associated with thick targets.

Beam Flux

MINERvA Modules

Modules have an outer detector frame of steel and scintillator...

...and an inner detector element of scintillator strips and absorbers/ targets.

- Four basic module types:
- *Tracker:* two scintillator planes in stereoscopic orientation.
- Hadronic Calorimeter: one scintillator plane and one 2.54-cm steel absorber.
- Electromagnetic Calorimeter: two scintillator planes and two 2-mm lead absorbers.
- *Nuclear Targets:* absorber materials (some with scintillator planes).
- Instrumented outer-detector steel frames.
- 120 Total Modules: 84 Tracker, 10 ECAL, 20 HCAL, 6 Nuclear Targets.

Plastic Scintillator Strips: The Active Detector Elements.

Charge-sharing for improved position resolution (~3 mm) & alignment.

Fibers bundled into cables to interface with 64 channel multi-anode PMTs.

Strips are bundled into PLANES to provide transverse position location across a module.

Monday, December 2, 13

Target Installation

Water target installed in November, 2011.

Liquid Targets

Liquid helium target installed in Spring, '11. Filled Summer '11.

TargetID	TargetZ	Fiducial Area (cm^2)	Areal Mass (g/cm^2)	Mass (kg)	N Protons	N Neutrons	N Nucleons
2	26	1.60E+04	2.01E+01	3.21E+02	9.00E+28	1.03E+29	1.93E+29
2	82	9.03E+03	2.91E+01	2.63E+02	6.27E+28	9.57E+28	1.58E+29
3	6	1.25E+04	1.33E+01	1.66E+02	4.99E+28	5.00E+28	9.99E+28
3	26	8.34E+03	2.02E+01	1.68E+02	4.71E+28	5.41E+28	1.01E+29
3	82	4.17E+03	2.89E+01	1.21E+02	2.88E+28	4.39E+28	7.27E+28
4	82	2.50E+04	8.98E+00	2.25E+02	5.35E+28	8.17E+28	1.35E+29
5	26	1.60E+04	1.01E+01	1.62E+02	4.53E+28	5.20E+28	9.73E+28
5	82	9.03E+03	1.49E+01	1.34E+02	3.20E+28	4.89E+28	8.08E+28