Neutrino Interactions with Nucleons and Nuclei

Olga Lalakulich, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik

Motivation and Contents

n Determination of neutrino oscillation parameters and particle production cross sections (axial properties of nucleons and resonances) requires knowledge of neutrino energy

n Modern experiments use nuclear targets

n Nuclear effects affect event cross section measurements, event characterization and neutrino energy reconstruction

Motivation and Contents

- **Intro**
- **n** GiBUU: physics and techniques
- **n Spectral functions in GiBUU (and elsewhere)**
- **Pions**
- **Energy reconstruction**
- **n** Oscillation signal

Neutrino Oscillations

n 2-Flavor Oscillation:

$$
P(\nu_{\mu} \to \nu_{e}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E_{\nu}}\right)
$$

Know: L, need E_{ν} to determine Δm^2 , θ

Even more interesting: 3-Flavor Oscillation allows for CP violating phase $\delta_{CP} \rightarrow$ matter/antimatter puzzle

Observable Oscillation Parameters

 $4E_{V}$

JUSTUS-LIEBIG-UNIVERSIT. GIESSEN

$$
P(\nu_{\mu} \to \nu_{e}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)
$$

Neutrino Oscillations

$$
P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}[(1-\hat{A})\Delta]}{(1-\hat{A})}
$$
\n
$$
- \alpha \sin 2\theta_{13} \xi \sin \delta \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}
$$
\n
$$
+ \alpha \sin 2\theta_{13} \xi \cos \delta \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}
$$
\n
$$
+ \alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(\hat{A}\Delta)}{\hat{A}}
$$
\n
$$
= O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .
$$
\n
$$
= O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .
$$
\n
$$
= O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .
$$
\n
$$
= O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .
$$
\n
$$
= O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .
$$
\n
$$
= O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .
$$
\n
$$
= O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .
$$
\n
$$
= O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .
$$
\n
$$
= O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .
$$
\n
$$
= O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .
$$
\n
$$
= O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .
$$
\n
$$
= O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .
$$
\n
$$
= O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .
$$
\n
$$
= O
$$

LBNE, δ **_{CP} Sensitivity**

Need to know neutrino energy to better than about 100 MeV

Need energy to distinguish between different δ_{CP}

INT 12/2013

Theoretische Physik

Oscillation Signal Dependence on Hierarchy and Mixing Angle

INT 12/2013 Energy has to be known better than 50 MeV Shape sensitive to hierarchy and sign of mixing angle

Fig. 2. \mathcal{P}_{ue} in matter versus neutrino energy for the T2K experiment. The blue curves depict the normal hierarchy, red the inverse hierarchy. Solid curves depict positive θ_{13} , dashed curves negative θ_{13}

D.J. Ernst et al., arXiv:1303.4790 [nucl-th]

Neutrino-Nucleon Interactions

Institut für **Theoretische Physik**

Neutrino-nucleon cross section

Neutrino Beams

Neutrinos do not have fixed energy nor just one reaction mechanism

Have to reconstruct energy from final state of reaction Different processes are entangled

INT 12/2013

Theoretische Physik

UNIVERSIT

Final State Interactions in Nuclear Targets

Nuclear Targets (K2K, MiniBooNE, T2K, MINOS, Minerva, ….) Complication to identify QE, entangled with π production Both must be treated at the same time!

Pion Production

n 13 resonances with $W < 2$ GeV, non-resonant single-pion background, DIS

pion production dominated by P₃₃(1232) resonance (not just a heavier nucleon)

$$
J^{\alpha\mu}_{\Delta} = \left[\frac{C_3^V}{M_N} (g^{\alpha\mu} \not q - q^{\alpha} \gamma^{\mu}) + \frac{C_4^V}{M_N^2} (g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu}) + \frac{C_5^V}{M_N^2} (g^{\alpha\mu} q \cdot p - q^{\alpha} p^{\mu}) \right] \gamma_5
$$

+
$$
\frac{C_3^A}{M_N} (g^{\alpha\mu} \not q - q^{\alpha} \gamma^{\mu}) + \frac{C_4^A}{M_N^2} (g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu}) + C_5^A g^{\alpha\mu} + \frac{C_6^A}{M_N^2} q^{\alpha} q^{\mu}
$$

C^V(Q²) from electron data (MAID analysis with CVC)

n C^A(Q²) from fit to neutrino data (experiments on hydrogen/deuterium), so far only C^A₅ determined, for other axial FFs only educated guesses

Pion Production

discrepancy between elementary data sets \rightarrow impossible to determine 3 axial formfactors New pion data on elementary target desparately needed

INT 12/2013

Institut für Theoretische Physik **LISTUSJ IFRIG**

UNIVERSITÄ

SIS - DIS

Shallow Inelastic Scattering, interplay of different reaction mechanisms Curves: GiBUU

Now to Nuclear Targets

Energy Reconstruction

n Energy reconstruction

- 1. Through QE: needs event identification
- 2. Calorimetric: needs simulation of thresholds and non-measured (e.g. neutral) events

n In both methods nuclear many-body structure and reaction theory are needed to generate full final state, inclusive X-section not sufficient

Energy Reconstruction by QE

■ In QE scattering on nucleon at rest, only *l* +*p*, no π, is outgoing. lepton determines neutrino energy:

$$
E_{\nu} = \frac{2M_N E_{\mu} - m_{\mu}^2}{2(M_N - E_{\mu} + p_{\mu}\cos\theta_{\mu})}
$$

Trouble: all presently running exps use nuclear targets 1. Nucleons are Fermi-moving 2. Final state interactions may hinder correct event identification

A wake-up call for the high-energy physics community:

"Wake up, Dr. Erskine-you're being transferred to low energy physics."

Nuclear Physics determines response of nuclei to neutrinos

Now to Transport

FSI and Transport Theory

■ All modern experiments use nuclear targets ■ Need to model final state interactions

- 1. to identify reaction mechanism
- 2. to reconstruct incoming neutrino energy from final state

Quantum mechanical description not possible to describe $v + A \rightarrow X +$ many hadrons \rightarrow Need Transport Theory

Transport Equation

n Kadanoff-Baym equation for space-time development of one particle spectral phase space density *F* after gradient expansion in Wigner repres.:

$$
\mathcal{D}F(x,p) + \text{tr}\left\{\text{Re}\tilde{S}^{\text{ret}}(x,p), -\mathrm{i}\tilde{\Sigma}^{\lt}(x,p)\right\}_{\text{pb}} = C(x,p).
$$

F = spectral phase-space density:

$$
F(x, p) = -2f(x, p)\text{tr}[\text{Im}(\tilde{S}^{\text{ret}}(x, p))\gamma^{0}],
$$

$$
\mathcal{D}F = \{p_0 - H, F\}_{\rm pb} \quad \text{with } H = E^*(x, p) - \text{Re}\tilde{\Sigma}_V^0(x, p).
$$

Transport Equation

Collision term

$$
\mathcal{D}F(x, p) + \text{tr}\left\{\text{Re}\tilde{S}^{\text{ret}}(x, p), -\text{i}\tilde{\Sigma}^{\lt}(x, p)\right\}_{\text{pb}} = C(x, p).
$$
\nDrift term

\n
$$
\left(1 - \frac{\partial H}{\partial p_0}\right)\frac{\partial}{\partial t} + \frac{\partial H}{\partial p}\frac{\partial}{\partial x} - \frac{\partial H}{\partial x}\frac{\partial}{\partial p} + \frac{\partial H}{\partial t}\frac{\partial}{\partial p^0} + \text{KB term}\right]F(x, p)
$$
\n
$$
= -\text{loss term} + \text{gain term}
$$

Kadanoff-Baym equation

- LHS: drift term + backflow (KB) terms
- RHS: collision term = loss + gain terms (detailed balance)

INT 12/2013

LISTUSJ IFRIG

UNIVERSITÄT

GIESSEN

Theoretical Basis: GiBUU

Time evolution of spectral phase space density (for $i = N$, Δ , π , ρ , ...) given by KB equation in Botermans-Malfliet form:

 $\int \frac{\partial}{\partial t} + \oint \hspace{-0.18cm} \frac{\partial H}{\partial p} \frac{\partial}{\partial x} - \frac{\partial H}{\partial x} \frac{\partial}{\partial p} + \frac{\partial H}{\partial t} \frac{\partial}{\partial p_0} \Bigg] \, F_i(x,p) = C [F_i(x,p), F_j(x,p)]$

Hamiltonian *H* includes off-shell propagation correction and potentials

8D-Spectral phase space density

Collision term

Off shell transport of collision-broadened hadrons included with proper asymptotic free spectral functions

Collision term

$$
C^{(2)}(x, p_1) = C^{(2)}_{\text{gain}}(x, p_1) - C^{(2)}_{\text{loss}}(x, p_1) = \frac{\mathcal{S}_{1'2'}}{2p_1^0 g_{1'} g_{2'}} \int \frac{d^4 p_2}{(2\pi)^4 2p_2^0} \int \frac{d^4 p_{1'}}{(2\pi)^4 2p_{1'}^0} \int \frac{d^4 p_{2'}}{(2\pi)^4 2p_{2'}^0}
$$

× $(2\pi)^4 \delta^{(4)} (p_1 + p_2 - p_{1'} - p_{2'}) \overline{| \mathcal{M}_{12 \to 1'2'}|^2} [F_{1'}(x, p_{1'}) F_{2'}(x, p_{2'}) \overline{F}_1(x, p_1)$
× $\overline{F}_2(x, p_2) - F_1(x, p_1) F_2(x, p_2) \overline{F}_{1'}(x, p_{1'}) \overline{F}_{2'}(x, p_{2'})]$

with

$$
F(x,p) = 2\pi g A(x,p) f(x,p)
$$

$$
F(x,p) = 2\pi g A(x,p) [1 - f(x,p)]
$$

Theoretical Basis of GiBUU

Kadanoff-Baym equation (1960s) \sim full equation can not be solved yet – not (yet) feasible for real world problems Boltzmann-Uehling-Uhlenbeck (BUU) models ○ Boltzmann equation as gradient expansion of Kadanoff-Baym equations, in Botermans-Malfliet representation (1990s): **GiBUU** Cascade models (typical event generators, NUANCE, GENIE, NEUT,..)

Simplicity

no mean-fields, primary interactions and FSI not consistent

GiBUU : **Theory and Event Generator** based on a BM solution of Kadanoff-Baym equations

 Physics content and details of implemntation in: **Buss et al, Phys. Rept. 512 (2012) 1- 124** Mine of information on theoretical treatment of potentials, collision terms, spectral functions and cross sections, useful for any generator

- **GiBUU** describes (within the same unified theory and code)
	- heavy ion reactions, particle production and flow
	- pion and proton induced reactions
	- low and high energy photon and electron induced reactions
	- neutrino induced reactions

using the same physics input! And the same code! NO TUNING!

Factorization of GiBUU

n GiBUU is factorized into

- \blacksquare initial, first interaction
- \blacksquare final state interactions (2nd, 3rd, ... coll.)
- **n** Particular strength: FSI treatment
- **n** Detailed infos from **Buss et al, Phys. Rept. 512 (2012) 1- 124** and website gibuu.hepforge.org

Practical Basis: GiBUU

- **one transport equation for each particle species** (61 baryons, 21 mesons)
- coupled through the potential in *H* and the collision integral *C*
- W < 2.5 GeV: Cross sections from resonance model (PDG and MAID couplings), consistent with electronuclear physics
- § W > 2.5 GeV: particle production through string fragmentation (PYTHIA)

INT 12/2013

Theoretische Physil

GiBUU Ingredients

- **n** In-medium corrected primary interaction cross sections, boosted to rest frame of bound nucleon, moving in local **Fermigas**
- **n** Includes spectral functions for baryons and mesons (binding + collision broadening)
- **Hadronic couplings for FSI taken from PDG**
- **Vector couplings taken from electro-production (MAID)**
- **n** *Axial* couplings modeled with PCAC

GiBUU: numerical implementation

- Hadrons feel potentials (nuclear + Coulomb), either RMF or Skyrme-type pots: essential for nucleon spectral functions
- Wigner functions represented by testparticles (100 1000 per nucleon). Collision criterion respects relativity (as far as possible), not just $\sigma = \pi r^2$ prescription. **n** Off-shell transport of hadrons (spectral functions) with proper asymptotics

GiBUU Ingredients

- **Narious options in code are controlled by extended job** card with all relevant switches.
- **n** Output are (many) cross sections, reconstructed and true event distributions, full final state with four-vectors of all particles in Les Houches or ROOT format.
- **n** Website *gibuu.hepforge.org* contains extensive documentation for code and explanation of output

GiBUU

- ⁿ Code can be obtained from *gibuu.hepforge.org*
- Inclusive X-section needs only initial interaction: Running time for a full flux distribution \approx 1 hour on PC
- About 200.000 full events (incl all semi-incl. X-sections) need running time of order weeks for reasonable statistics, statistics can also be obtained by several shorter parallel runs
- **n Code is open source, users are encouraged** to find bugs, improve code, implement new features

INT 12/2013

UNIVERSIT

Spectral Functions

■ Single particle spectral functions absorb effects of interactions in particle properties **n** Free Fermi gas (in generators):

$$
P_h({\bf p},E) = \Theta({\bf p_F}-{\bf p})\,\delta(E+T_p)
$$

spiky E-dep. leads to artifacts in response

Now: dress particle with interactions, mean field and/or additional interactions \rightarrow quasiparticles

Spectral Function in GiBUU

$$
P_h(\mathbf{p}, E) = \int d^3x \left[\Theta(\mathbf{p}_F(\mathbf{x}) - \mathbf{p}) \, \delta(E + T_p + V(\mathbf{x}, \mathbf{p})) \right]
$$

Two essential features:

- 1. Local TF momentum distribution removes artifacts of sharp cut at p_F
- 2. Particles bound in momentum- and coordinate-dependent potential, integration removes delta-function spikes in energy

Spectral function in GiBUU contains interactions in mean field There may be contribs from correlations in addition at large E

n Local Fermi Gas Momentum Distribution

More strength at low momenta

INT 12/2013

Theoretische Physik

2p-2p excitations and spectral functions

Can also be obtained by cutting selfenergy diagrams (Cutkosky rules)

2p-2p excitations and spectral functions

No selfenergy, Vertex correction, not included in spectral function

Interference of ISI and FSI

The MiniBooNE QE Puzzle Explanations

Martini et al, PRC80, 2009

Exp: both σ and E_v are reconstructed!

2p-2h in Generators

- **n** Mandatory: same nuclear ground state for 1p-1h and 2p-2h processes
	- Generators: free Fermi gas
	- **Nieves 2p-2h model: dressed Fermi gas in mean field potential**
- **n** Nieves model cannot be simply added to generators: inconsistent \rightarrow inconclusive

Check of GiBUU

K. Gallmeister, U. Mosel / Nuclear Physics A 826 (2009) 151–160 155 **Check: pions in HARP**

HARP small angle analysis 12 GeV protons

Curves: GiBUU

K. Gallmeister et al, NP A826 (2009)

JUSTUS-LIEBIG-

Check: pions, protons

Check: Pion DCE FIG. 3: Influence of the density distribution on the angular distributions for the double charge exchange process π⁺P b → π[−]X at Ekino \bullet shows the result obtained with obtained with \bullet

 \mathbf{F} as function of the inclusive double construction as function of the nuclear target mass at Ekin \mathbf{F} and 180 Mev. The lines connection of the lines of alleft panels are taken from Ref. **C74 (2006) 044610** and Ref. \blacksquare

on the surface, a neutron skin causes and α matrix α reaction while A(π−)X is suppressed.

JLAB Rho Production

Exp: Hafidi et al, **Phys.Lett. B712 (2012) 326-330**

GiBUU: Gallmeister et al. **Phys.Rev. C83 (2011)**

The inner error bars are statistic uncertainties and the outer ones are INT 12/2013

JLAB Pion Production

Exp: B. Clasie et al. **TA, Phys. Rev. Left, 99, 27** Phys. Rev. Lett. 99, 242502 (2007).

GiBUU: Kaskulov et al, **Dhug Day C70 (2000)** shadowing corrections. The dash-dotted **Phys.Rev. C79 (2009) 015207**

HERMES@27 GeV and GiBUU Airapetian et al.

JLAB@5, π^+ : selected (v,Q^2) bins

Data:

CLAS preliminary (Brooks et al) no error bars shown

Calculations: not tuned !!! no potentials

Electrons as Benchmark for GiBUU $\bm{\eta}$, outing a state-of-the-art parameter $\bm{\eta}$

No free parameters! no 2p-2h, contributes in dip region and under Δ

tering angle energy loss under as a function of the energy loss w. The energy loss w. The data points are from R
The data points are for the data points are from Ref. [13]. The data points are for the data points are for Applying the same scheme employed to obtain the solid line of Fig. 2 to neutrino \sim

Comparison shows that NN correlations are not Comparison shows that NN correlations are not reso important the cosenation of the same spectral functions and same spectral functions and so important the s $\mathcal{L}_{\mathcal{C}}$ is a calculation of the electron scattering cross section of the electron scattering cross section section of the electron scattering cross section section section section section section section section se

INT 12/2013 **Of Fig. 2, and the dipole parameterische priysik Maximide parameterische priysik**

Experiments

Neutrino Beams

Neutrinos do not have fixed energy nor just one reaction mechanism

Have to reconstruct energy from final state of reaction Different processes are entangled

INT 12/2013

Theoretische Physik

UNIVERSIT

0-pion Constraint in Experiments

Experimental analyses impose condition of 0 pions for QE identification (QE-like)

n 0-pion events can involve pion production with subsequent pion absorption \rightarrow , stuck pion events'

All published QE data have removed these stuck pion events in a model-dependent way

2p-2h Processes

The MiniBooNE QE Puzzle Explanations

n Model for $v + p_1 + p_2 \rightarrow p_3 + p_4 + l$ (no recoil)

$$
\frac{d^2\sigma}{dE'_l d(\cos\theta')} \propto \frac{k'}{k} \int_{NV} d^3r \int \prod_{j=1}^4 \frac{d^3p_j}{(2\pi)^3 2E_j} f_1 f_2 \overline{|M|^2} (1 - f_3)(1 - f_4) \delta^4(p)
$$

with flux averaged matrix element

$$
\overline{|M|^2} = \int \Phi(E_\nu) L_{\mu\nu} W^{\mu\nu} dE_\nu
$$

Flux smears out details in hadron tensor *W W* contains 2p-2h and poss. RPA effects

INT 12/2013

Theoretische Physil

Only adhoc, tune' in GiBUU

- **Educated guess for 2p2h in GiBUU with** tuned strength
- **Big open question: up to which neutrino** energies (or Q², v) are models good? **n Compare with Lightbody-Bosted analysis**

The MiniBooNE QE Puzzle Explanations

ⁿ

 $M = const$ $M = M(E,q), W^{\mu\nu} \sim P_T^{\mu\nu}(q)$

Phase-space model for 2p-2h Absolute value fitted to data.

The MiniBooNE QE Puzzle Explanations

ME12, MB flux averaged

Data corrected for stuck-pion events!

W^{μν} ~ P_T^{μν} (q) F(Q²), educated guess

Inclusive double-differential X-sections fairly insensitive to details of interaction

INT 12/2013

Institut für Theoretische Physik

0 Pion Events from GiBUU

From Coloma & Huber: arXiv:1307.1243v1

Institut für

The MiniBooNE QE Puzzle

How to decide if this explanation is correct?

n Must not only consider inclusive X-sections, but also exclusive ones:

Nucleon Knock-out, numbers and spectra

QE Identification

1p xn xπ: fairly clean QE event 1p 0n 0π: very clean QE event

Pion Production

Pion Production

from: Phys.Rev. C87 (2013) 014602

1p-1h-1π X-section:

$$
\mathrm{d}\sigma^{\nu A \to \ell' X \pi} = \int \mathrm{d}E \int \frac{\mathrm{d}^3 p}{(2\pi)^3} P(\mathbf{p}, E) f_{\text{corr}} \, \mathrm{d}\sigma^{\text{med}} P_{\text{PB}}(\mathbf{r}, \mathbf{p}) F_{\pi}(\mathbf{q}_{\pi}, \mathbf{r}) \; .
$$

Hole spectral function

$$
P(\mathbf{p}, E) = g \int \limits_{\text{nucleus}} d^3 r \, \Theta \left[p_{\text{F}}(\mathbf{r}) - |\mathbf{p}| \right] \Theta(E) \delta \left(E - m^* + \sqrt{\mathbf{p}^2 + m^{*2}} \right)
$$

Pion fsi (scattering, absorption, charge exchange) handled by transport, Includes Δ transport, consistent width description of Delta spectral function, detailed balance

Pi-N inv. Mass Distributions inv. Mas distribution di territori di te V. Mass Distributi

(a)

 \Box (b)

(b)

ν n → µ- \Rightarrow (c)

(c)

Lalakulich et al., **Phys. Rev. D 82, 093001 (2010)**

curve) and Delta pole contribution (dash-dotted curve) are shown. The experimental data from [2] are shown as histograms. curve) and Delta pole contribution (dash-dotted curve) are shown. The experimental data from [2] are shown as histograms. ANL data BNL data $\frac{1}{2}$ the theoretical curve and experimental histogram, as it was in $\frac{1}{2}$ and $\frac{1}{2}$ as it was in $\frac{1}{2}$ and $\frac{1}{2}$ and resonances and their interferences. The relative importance of these events is estimated by comparing the areas under

Pion Production

Upper line: BNL input Lower line: ANL input

Tendency for theory too low, more so for π +, at $E > 1$ GeV

DIS and higher resonances contribute for E > 1 GeV, not contained in Hernandez calcs.

Discrepancy mainly in tail of flux distributions (large uncertainty)

Pion Production in MB

Pion Production in MB

Flux renormalization (data x 0.9 (cf. Nieves QE analysis))

Institut für Theoretische Physik **ILISTUSJ IFRIG**

UNIVERSITĂ

GIESSEN

T2K vs MB Flux

INT 12/2013

Institut für **Theoretische Physik**

Pion Production in T2K

Δ dominant only up to 0.8 GeV

Measurement of pion production between about 0.5 and 0.8 GeV would be clean probe of Δ dynamics.

Pion Production in T2K

T2K pion data may help to distinguish between ANL and BNL input

MINERvA, MINOS, NOVA & LBNE

ArgoNeuT

All events, large DIS contribution

ArgoNeuT

0 pion events suppresses DIS

ArgoNeuT

Reaction mechanism can be distinguished by proton number, for QE and DIS

Experiments at higher energies

Q² dependence reaches out farther than at lower-energy MB experiment: DIS effect

INT 12/2013

Theoretische Physik

MINERvA Results

- 1. 2p2h accounts only for small part of total X-section
- 2. DIS dominates for $Q^2 > 0.3$ GeV, $QE = Delta$

MINERvA Results

Semi-inclusive pion production Entertainment of the Kaon production

fsi brings X-section up!

Institut für **Theoretische Physik**

Energy Reconstruction by QE Energy Reconstruction by QE n CCQE scattering on neutron at rest **n Energy** $E_v^{\text{rec}} = \frac{2(M_n - E_B)E_\mu - (E_B^2 - 2M_nE_B + m_\mu^2 + \Delta M^2)}{E_v^{\text{rec}}}$ \blacksquare as shown in the previous section, the absolute contrimatics and being applied to Cherenkov $\mathcal{L}_\mathbf{C}$ $\left[\begin{array}{ccc} \n2 & 1 \\ \n\end{array} \right]$ $\left[\begin{array}{ccc} \n\mu & \mu \\ \n\mu & \nu \end{array} \right]$ $Q_{\text{rec}}^2 = -m_{\mu}^2 + 2E_{\nu}^{\text{rec}}(E_{\mu} - |\vec{k}_{\mu}| \cos \theta_{\mu})$ model calculation that includes only true-QE and 2p-2h $\overline{}$ sections. Even with this fit, as illustrated in Fig. 4, as illustrated in Fig. the measured do $f_{\rm eff} = E_{\rm max}$ by the dashed ("all") line and includes all processes that bution of fake stuck-pion QE-like events (that is, the difat rest 25 even though nuclear targets with binding and α uering on $E_{\nu}^{\text{rec}} = \frac{2(M_n - E_B)E_{\mu} - (E_B^2 - 2M_nE_B + m_{\mu}^2 + \Delta M^2)}{2\left[1 + \left(\frac{E_B^2}{\mu} - \frac{E_B^2}{\mu^2} + \frac{E$ 2 $\overline{\mathcal{L}}$ $M_n - E_B - E_\mu + |\vec{k}_\mu|\cos\theta_\mu$ ⁱ *.* (1) \overrightarrow{a} \overrightarrow{a} \overrightarrow{b} \overrightarrow{a} \overrightarrow{b} \overrightarrow{a} $Q^2_{\rm rec} = -m_\mu^2 + 2 E_\nu^{\rm rec} (E_\mu - |k_\mu| \cos \theta_\mu)$

E Energy reconstruction tilts spectrum, affects Q² distribution at small Q² sults (open circles), however, show c into a constant removal energy $E = \frac{1}{2}$ alsulpuudil at siilali sentima is justified to realize the sense of the sense of the sense of the sense of the s

INT 12/2013 \blacksquare if the reaction mechanism has been identified as been identified as be-negative mechanism has been identified as be-

momentum of the outgoing muon. This formula, the outgoing muon. This formula, the outgoing \mathcal{L}_∞

Migration Matrix for C and MB flux

Distributions for 0 pion events!

Energy Reconstruction by QE

- **n** All modern experiments use heavy nuclei as target material: C, O, $Fe \rightarrow$ nuclear complications
- **n** Quasifree kinematics used for QE on bound nucleons: Fermi-smearing of reconstructed energy expected
- \blacksquare For nuclear targets QE reaction must be identified to use the reconstruction formula for *E*_ν
- *But:* exp. definition of QE cannot distinguish between true QE (1p-1h), N* and 2p-2h interactions

MiniBooNE QE puzzle

MB measured: 0π events MB extracted: 0π events – stuck pions (NUANCE generator dep.)

E_v NUANCE generator dependence

Problem: Difference between data points (= stuck pion events) α decreases with E_{v} !?

Duke 02/2013

Tnstitut für Theoretische Physil

Reconstructed energy shifted to lower energies for all processes beyond QE Reconstruction must be done for 0 pion events Not only 2p-2h important

NOT contained in Nieves model

MiniBooNE flux

Event rates $=$ flux \times crosssection

Event rates = flux x crosssection

Energy reconstruction does not just change energy-axis, but also tilts funtional dependence of X-section on neutrino energy

Data: plotted vs *reconstructed* energy

Curves: plotted vs. *true* energy

Explains strange energy-dependence of stuck pion events

Duke 02/2013

Energy reconstruction does not just change energy-axis, but also tilts funtional dependence of X-section on neutrino energy

MINERvA Results

MINERvA Results

Minerva QE analysis, big error in Q^2 analysis if event sample is not clean QE

INT 12/2013

Theoretische Physik

Energy Reconstruction and Oscillation Analysis

GiBUU is Nature

n GiBUU is used to simulate nature: generate events with known, *true energy* \blacksquare Analyze these events with exp. methods, obtain *reconstructed energy* for each event **n** Compare event rates as functions of true and reconstructed energies

Oscillation and Energy Reconstruction

T2K migration matrix

T2K Flux Target: ¹⁶O

Oscillation signal in T2K ν**^µ disappearance**

GiBUU Martini

Institut für Theoretische Physik

Oscillation signal in T2K ν^µ **disappearance**

Sensitivity of oscillation parameters to nuclear model

P. Coloma, P. Huber, arXiv:1307.1243, July 2013 Analysis based on GiBUU

T2K

Oscillation signal in T2K δ**CP sensitivity of appearance exps**

Uncertainties due to energy reconstruction as large as δ_{CP} dependence

Sensitivity of T2K to Energy Reconstruction

Fig. 2. $\mathcal{P}_{\mu e}$ in matter versus neutrino energy for the T2K experiment. The blue curves depict the normal hierarchy, red the inverse hierarchy. Solid curves depict positive θ_{13} , dashed curves negative θ_{13}

Energy Reconstruction for LBNE

Energy Reconstruction for LBNE

Muon survival

Dashed: reconstructed, solid: true energy

Energy Reconstruction for LBNE

electron appearance

 $\delta_{CP} = 0$ $\delta_{CP} = + - \pi/2$

Summary

Energy reconstruction essential for precision determination of neutrino oscillation parameters (and neutrino-hadron cross sections)

n Energy reconstruction requires reliable event generators, of same quality as experimental equipment.

n Precision era of neutrino physics requires much more sophisticated generators and a dedicated effort in theory

