CCQE Analyses In MINOS and **NOvA**

Dr. Nathan Mayer Tufts University

Outline

• MINOS

- Detector
- Spectra and Flux
- Selecting QE and Non-QE
	- Characterizing Non-QE
- Fit Procedure
- Systematics
- NOvA
	- Detector
	- Spectra and Flux
	- Event Selection
	- Unfolding and Sytematics
- Summary Tables
- NuMI Flux Tables

MINOS CCQE Analysis

The MINOS Near Detector (ND)

- 1km from target.
- 0.98 kton (0.03 kton fiducial).
- 282 2.5 cm thick steel planes.
- Magnetized.
- P_{μ} from range and curvature.

Selecting ν μ -CC Events

- Select the majority of CC events by requiring a reconstructed track and then further enrich the sample using a multi-variate technique (kNN).
- The kNN combines variables that differentiate between muon tracks and the pion or proton tracks.
- 98% purity, 95% efficiency

Energy Spectra and Flux Tuning

- Moving target longitudinally and varying horn current allows changing of neutrino spectrum.
- Different beam configurations sample different regions in parent hadron x_f and p_{τ} .
	- We tune our FLUKA hadron production model to match data.
	- The fits also include nuisance parameters for beam optics effects, cross section and energy scales.

Energy Spectra and Flux Tuning

- Flux tuning procedure supported by cross section work.
- All of the MC distributions shown in my talk will use the tuned hadron production model.

Our shape only result does not significantly depend on this tuning.

Kinematics

- MINOS can reconstruct everything about the muon: $E_{\mu}^{\text{}}$, p μ , cos(θ μ).
- Just the energy of the hadron shower: E_{had} .
- From these reconstructed variables we can calculate the above kinematic quantities.

Analysis Overview

- Sideband Samples
	- **•** Simple selections on v_{μ} -CC sample using reconstructed quantities motivated by how different models are joined together in MC.
	- Designed to isolate interaction types (RES, DIS) that are backgrounds in the signal sample.
	- Tune modeling of these backgrounds by comparing Data and MC.
- QE-like Sample
	- **•** Selections to enrich quasi-elastic fraction of v_{μ} -CC sample.
	- Apply tuning of background from sideband samples.
	- Extract M $_{\text{A}}^{\text{QE}}$ from shape fit.

Sideband Samples

- **Δ/N^{*}** Enhanced **Selection**
	- $E_{\text{had}} > 250 \text{ MeV},$
	- \bullet $\,$ W $_{\rm{Reco}}$ < 1.3 GeV
- RES to DIS Transition **Selection**
	- \bullet 1.3 < W $_{\mathrm{Reco}}$ < 2.0 GeV
- DIS Selection
	- \bullet W $_{\rm Reco}$

- These selections allow us to explore the different regions of our model using reconstructed variables.
- 10 • In this way we can compare how well different parts of our model are simulating the data.

Sideband Samples and Resonance **Background**

Two RES dominated subsamples have very different QE and DIS background mixes. MC prediction is high in lowest Q^2 bins for both.

Fitting the Low Q² Region

- Attempt to correct MC.
- Start with candidate shape derived from the Δ Enhanced and Transition sideband samples, in true Q^2 .
- Apply these requirements:
	- Only tune the resonances.
	- Suppression turns off near 0.6 GeV^2 .
	- Suppression function is smooth.
	- No other model parameters are tuned. Any correlations are dealt with in the error band.

Background Weighting with Error Band

- Two alternative suppression shapes were considered.
	- A linear function that turns off at lower $Q^2 \sim 0.3$ GeV².
	- And a function that turns off at higher Q' \sim 0.67 GeV².
- These two shapes define the initial error band.
- We considered a variety of effects when constructing the error band. These include migration effects such as:
	- $\bullet\quad$ E_, scale, $\mathsf{E}_{\mathsf{Had}}$ scale, and low Q $^{\scriptscriptstyle{2}}$ DIS migration.
- And model differences such as:
	- Final state interactions, CC coherent, and the axial mass parameters.

Quasielastic-like Selection

- Low E_{had}: Select from ν μ -CC sample events with Reconstructed e e la E had < 225 MeV.
- Select events with muon tracks that stop in ND.
- Includes the RES re-weighting function.

Quasielastic-like Selection

- Low E_{had}: Select from ν μ -CC sample events with Reconstructed e e la E had < 225 MeV.
- Select events with muon tracks that stop in ND.
- Includes the RES re-weighting function.
- Selects QE Interactions with 44% Efficiency and 63% Purity

Best Fit Results

Result from the principal fit configuration.

Best Fit Results

Results from the principal and alternative fit configurations.

Systematic Error Table

Best Fit: ${M}_{A}^{\mathrm{QE}}\!=\!1.21^{+0.18}_{-0.10}\!(\,\mathit{fit})^{+0.13}_{-0.15}\!(\,\mathit{syst})$ GeV

NOvA CCQE Analysis

NOvA NDOS Detector

NOvA NDOS Spectrum

NOvA Preliminary

Finding NuMI Events In NDOS

- Clear peak in timing distribution at expected position withing trigger time window.
- Clear excess of tracks along beam direction.

Selecting CCQE Interactions

- Multivariate analysis based reconstructed quantities with power to separate CCQE from Non-CCQE interactions.
- Shapes of MC distributions agree well with data.

NDOS CCQE Cross-Section Measurement

24 • Distributions have been unfolded back to true, with efficiency corrections applied.

NDOS CCQE Cross-Section **Measurement**

Normalizing by predicted flux shows reasonable agreement to previous measurements for higher values of energy, but the flux prediction is still under investigation.

25 The ~25% uncertainty on the flux shown above is determined by comparing two MC simulations (Fluka to GEANT4).

MINOS

NOVA

NuMI Flux Generator

- MINOS
	- Generator-FLUGG
		- GEANT4 Geometry
		- FLUKA hadron production
- MINERvA
	- Generator-GEANT4
- NOvA
	- Generator-FLUGG

- ArgoNeuT
	- Generator-FLUGG

Summary

- MINOS
	- Shape Fit to Q^2 spectrum.
	- Iron Target.
	- Significant effort into characterizing non-QE background.

•
$$
M_A^{QE}
$$
 = 1.21^{+0.18}_{-0.10} (*fit*)^{+0.13}_{-0.15}(*syst*)*GeV*

• NOvA

- Cross Section Measurements.
- Large statistical uncertainty.
- Large uncertainty on the Flux.

ArgoNeuT NuMI Flux

ARGONEUT collaboration,*"First Measurements of Inclusive Muon Neutrino Charged Current Differential Cross sections on Argon",* Phys. Rev. Lett. 108 **(2012) 161802**

• The flux from **E**=3-50 GeV is from:

 *P. Adamson et al. [MINOS Collaboration], Phys. Rev. D 77, 072002 (2008), "*low hadronic energy transfer *(*ν*)" method*

- The For the 0-3 GeV range, the flux prediction is determined using a Monte Carlo simulation of the NuMI beamline (provided by the MINOS collaboration)
- The fractional error on the 0-3 GeV range is conservatively set to 35%

ArgoNeuT NuMI Flux (antineutrino mode)

- Flux is simulated using the FLUGG package, which combines GEANT4 geometry with FLUKA hadron production. II% systematic error accounting for uncertainties in hadron production and beam line modeling (e.g. horn focusing) and is consistent with the MINERvA results
- Another flux constrained with MINOS Near Detector data^{*} and NA49^{**} hadron production measurements is considered for systematics
	- The difference between this flux and FLUGG flux is taken as a signed systematic error.
	- For antineutrinos, this additional error is less than 10%
	- For neutrinos, this additional error is up to 40%

* P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett. 107, 021801 (2011). ** C. Alt et al. (NA49 Collaboration), Eur. Phys. J. C 49, 897 (2007).

backup: Minerva/ArgoNeuT flux comparisons

Minerva/ArgoNeuT flux comparisons

MINERvA Flux: Executive Summary

- GEANT4 FTFP with central value re-weighting using NA49 data scaled to 120 GeV.
- \bullet ~10% uncertainty on the absolutely normalized d σ / $dQ²$, roughly flat across $Q²$. \sim 1% uncertainty on the shape-only dσ/dQ2.
- Total uncertainties are computed by varying the event-weights within parameter uncertainties and redoing the analysis. The RMS spread of the different outputs around the central value builds the uncertainty band and correlation matrix.

MINERvA Flux: Central Values

- The FTFP model of GEANT4 9 2 p03 is our baseline MC.
- We then re-weight proton-Carbon to charged-pion $+$ X, charged Kaon $+$ X, and proton/anti-proton $+$ X over 12-120 GeV assuming that the data/MC ratio for invariant cross sections measured at 158 GeV can be used at all energies with a scaling correction.
- We use mostly data published by the NA49 collaboration for XF $<$ 0.5, and other data for x_F > 0.5, and we compute the scaling factor using FLUKA. We cross-check the scaling by using NA61 measurements at 31 GeV and find agreement.

Beam Flux

• Hadron production re-weighting is complicated by relatively sparse data, and the problems associated with thick targets.

Special Runs / Beam Fits

- MINERvA recorded data with different horn currents and target positions to sample different regions of pion x_F and p_T . \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F}
- We adjust charged pion and kaon yields as functions of x_F and p_T , with some hadron production constraints (pion/kaon ratios) enforced. *p^T* . Can nuisance parameters (e.g., horn focusing errors).

Beam Flux

Other Refinements & Cross-Checks

- Low-nu measurements.
	- See, for example: A. Bodek et al Eur Phys J C72 (2012) 1973, and D. Naples et al Phys Rev D 81 (2010) 072002
- Neutrino-electron scattering.
	- Precision process, but low statistics.

Uncertainties

- Three pieces:
	- NA49 Published uncertainties on the data used for re-weighting.
	- Beam-Focusing MINOS Thesis (Z. Pavlovic).
	- Tertiary Production All production not re-weighted by NA49. Computed by model spread from different MC predictions.

