Neutral Current Single Photon Production (NCγ)

Teppei Katori

...and today, experimentalists ate the forbidden fruit called the cascade model...

excerimenta

GibUU is Nature

- **1. Oscillation physics**
- 2. NOMAD

3. T2K/MINERvA

4. MicroBooNE

5. MiniBooNE+

6. Conclusion

1. Introduction

NC γ , as ν_e appearance background

- all generators estimate NC γ from radiative Δ -decay $\Delta \rightarrow N\gamma$
- cross section is roughly ~0.5% of NC1 π° channel

1. Oscillation 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+

6. Conclusion

radiative ∆-decay

generalized Compton scattering

anomaly mediated triangle diagram

Teppei Katori

1. MiniBooNE

Oscillation
 NOMAD
 T2K/MINERvA
 MicroBooNE
 MiniBooNE+

6. Conclusion

NC γ , as v_e appearance background

- all generators estimate NC γ from radiative Δ -decay $\Delta \rightarrow N\gamma$
- cross section is roughly ~0.5% of NC1 π^{o} channel

MiniBooNE

- Final oscillation paper estimates NC γ is roughly ~20% of NC π° background in v_{e} candidate sample.
- To explain all excess by NC γ , NC γ cross section needs to be higher x2 to x3.

University of London

1. Oscillation

1. Oscillation

1. MiniBooNE

University of London

2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6. Conclusion

1. MiniBooNE

2. NOMAD 3. T2K/MINERvA MicroBooNE 5. MiniBooNE+ 6. Conclusion

1. Oscillation 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6. Conclusion

NC γ , as ν_e appearance background

Queen Mary

University of London

- all generators estimate NC γ from radiative Δ -decay $\Delta \rightarrow N\gamma$
- cross section is roughly ~0.5% of NC1 π^{o} channel

MiniBooNE

- Final oscillation paper estimates NC γ is roughly ~20% of NC π° background in v_{e} candidate sample.
- To explain all excess by NC γ , NC γ cross section needs to be higher x2 to x3.

T2K

- With $sin^2 2\theta_{13}$ =0.1, oscillation candidate is 17.3 events whereas NC gamma background is ~0.2.
- If NEUT NC γ model is modified to explain MiniBooNE excess, background is ~0.6 to ~0.8.
- Therefore, NC_{γ} model which can explain MiniBooNE excess at most reduce sin²2 θ_{13} 2.3 to 3.5%.

1. Model comparison

Generator comparison

Total NCγ cross section on carbon target at 600 MeV muon neutrino (unit 1E-42cm²)

NEUT: ~20 NUANCE: ~25 GENIE:~30

1. Oscillation

2. NOMAD 3. T2K/MINERvA 4. MicroBooNE

1. Model comparison

Generator comparison

Total NCγ cross section on carbon target at 600 MeV muon neutrino (unit 1E-42cm²)

NEUT: ~20 NUANCE: ~25 GENIE:~30

Theory comparison

Wang, Alvarez-Ruso, Nieves: 33-44 (error from ANL-BNL pion data) Zhang, Serot: 37-41 (error from theoretical parameters) Hill: 44-58 (error from radiative Δ -decay BR)

The cross section needed to explain MiniBooNE excess is 60-108.

The cross section needed to change $sin^22\theta_{13}(T2K)\sim10\%$ is ~200 (NEUT needs to be wrong $\sim1000\%$)

Total muon neutrino NCγ cross section on ¹²C 0.018 5 (10⁻³⁸ cm²/¹²C) 0.016 UANCE 0.014 Wang et al. Zhang and Serot Hill 0.012 0.01 0.008 0.006 0.004 0.002 1.5 2.5 0.5 2 3 GeV 12/12/2013 Teppei Katori 17

Oscillation NOMAD T2K/MINERvA

- 12K/MINERV
 MicroBooNE
 MiniBooNE+
- 6. Conclusion

1. Oscillation physics

2. NOMAD

3. T2K/MINERvA

4. MicroBooNE

5. MiniBooNE+

6. Conclusion

Single gamma search

Queen Mary University of London

Very simple, but robust analysis. They identified all issues on this measurement.

3m

- single e⁺-e⁻ pair
- fiducial cut
- W<50 MeV

Oscillation
 NOMAD
 T2K/MINERvA

4. MicroBooNE
 5. MiniBooNE+
 6. Conclusion

Single gamma search

Very simple, but robust analysis. They identified all issues on this measurement.

- single e⁺-e⁻ pair
- fiducial cut
- W<50 MeV

PAN=measure of energy asymmetry between $E_{\!_{\gamma}}$ and $E_{_{NC}}$

- E_{γ} = measured gamma energy
- E_{NC}^{\cdot} = ECAL energy deposit by neutral particles

PAN is big \rightarrow less likely to be DIS and more interesting data

Teppei Katori

Single gamma search

Very simple, but robust analysis. They identified all issues on this measurement.

- single e⁺-e⁻ pair
- fiducial cut
- W<50 MeV

PAN=measure of energy asymmetry between $E_{\!_{\gamma}}$ and E_{NC}

- E_{γ} = measured gamma energy
- E_{NC}^{\cdot} = ECAL energy deposit by neutral particles

Signal box is defined to be PAN>0.9

3 major backgrounds

- NC coherent π^o production (Cohpi)
- outside of fiducial volume background (OBG)

- NC-DIS π^o production (NC-DIS)

Teppei Katori

Single gamma search

Very simple, but robust analysis. They identified all issues on this measurement.

- single e⁺-e⁻ pair
- fiducial cut
- W<50 MeV

PAN=measure of energy asymmetry between $E_{\!_{\gamma}}$ and E_{NC}

- E_{γ} = measured gamma energy
- E_{NC}^{\cdot} = ECAL energy deposit by neutral particles

3 major backgrounds

- NC coherent π^o production (Cohpi)
 - → Cohpi model in MC is tuned to the distribution of measured 2γ sample
- outside of fiducial volume background (OBG)
 - → Data sample outside of fiducial volume is used for normalization
- NC-DIS π^o production (NC-DIS)
 - → Tune using the region ζ_{γ} =E_{γ}(1-cos θ_{γ})>0.5

NOMAD Collaboration, PLB706(2012)268

University of London

2. NOMAD

Result

- no excess, set limit, $xs(NC\gamma/CC) < 4x10^{-4}$

Result

- no excess, set limit, $xs(NC\gamma/CC) < 4x10^{-4}$

Lesson

- There will be 2 types of backgrounds, internal and external background

- internal background is dominated by NC π^o production with single γ final state

→ NC π° production rate needs to be constraint from the own data (In general, NC γ cross section is ~0.5% of NC π° , so you need to reject 99% of π° with 10% error, then NC γ would be ~2 σ significance (assuming no other background)

- external background is γ coming from outside of the fiducial volume (also mostly π^{o} origin)
 - ightarrow External background needs to be tuned from the own data
 - \rightarrow 3mx3mx4m is not big enough to suppressed external background

1. Oscillation physics

2. NOMAD

3. T2K/MINERvA

4. MicroBooNE

5. MiniBooNE+

6. Conclusion

Fine Grained Detector (FGD1)

- The main vertex detector of ND280
- extruded scintillator+WLS fiber X-Y tracker
- $v_{\mu}CC$ inclusive cross section analysis
- 2.3x2.4x0.4m³

University of London

- 1.75x1.75x0.33m³ fiducial volume (1.1 ton)

Teppei Katori

Fine Grained Detector (FGD1)

- The main vertex detector of ND280
- extruded scintillator+WLS fiber X-Y tracker
- $\nu_{\mu}CC$ inclusive cross section analysis
- 2.3x2.4x0.4m³
- 1.75x1.75x0.33m³ fiducial volume (1.1 ton)

Argon gas TPC

- Capable to track charged particles
- 0.2T magnetic field

1. Oscillation 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE FGD1 5. MiniBooNE+ 6. Conclusion SMRI UA1 Magnet Yoke POD Downstream (π⁰-ECAL detector) Solenoid Coil Beam **Barrel ECAL** P0D ECAL

Eutrie 1800

1600

1400

1200

1000

800

600

400

200

Gamma selection

- Background control sample for $\nu_e \text{CCQE}$ measurement
- e⁺ and e⁻ tracks are reconstructed, invariant mass is reconstructed
- >95% purity gamma sample!

Gamma selection

- Background control sample for $\nu_e \text{CCQE}$ measurement
- e⁺ and e⁻ tracks are reconstructed, invariant mass is reconstructed
- >95% purity gamma sample!

...however, majority may be

- NC1 π° with one gamma missing (asymmetry decay, detector efficiency)
- from outside of FGD1 (π^{o} production outside of FGD1)

Internal background

- performance of π^o measurement by FGD-TPC is unknown
- angular distribution of gamma may help to reduce internal background, but small acceptance

External background

- smaller fiducial volume is a disadvantage

3. MINERvA

MINERvA

- The main vertex detector is extruded scintillator+WLS fiber U-V tracker
- no magnetic field
- Fiducial volume is (5.57 ton)

3. MINERvA

MINERvA

- The main vertex detector is extruded scintillator+WLS fiber U-V tracker
- no magnetic field
- Fiducial volume is (5.57 ton)

Internal background

- reconstruction efficiency of gamma is not high (no magnetic field)
- π^o measurement performance is unknown

External background

- although fiducial volume is bigger than T2K, beam energy is also higher, so external background is still a lot

- **1. Oscillation physics**
- 2. NOMAD

3. T2K/MINERvA

4. MicroBooNE

5. MiniBooNE+

6. Conclusion

4. MicroBooNE

Future neutrino cross section measurement experiments argon target vs carbon target vs TBD

Table 6: Current and proposed experiments for ν cross section measurements or related studies. The upper (lower) part of table summarizes the intermediate- (low-) energy regime.

		Experiment	Physics ¹	ν Source	Energy (GeV)	Target	$Detector^2$	Host	Status
	\longrightarrow	MiniBooNE [193]	MedE	π DIF	0.4-2	CH_2	Ch/calo	Fermilab	Current
	\longrightarrow	T2K [194]	MedE	π DIF	0.3-2	CH	Scitrk/	J-PARC	Current
							TPC/calo		
	\longrightarrow	MINERvA [195]	MedE	π DIF	1-20	many ³	Scitrk/calo	Fermilab	Current
	\longrightarrow	MINOS [196]	MedE	π DIF	1-20	CH	Scitrk	Fermilab	Current
	\longrightarrow	ArgoNeuT [197]	MedE	π DIF	1-10	Ar	TPC	Fermilab	Current
	\longrightarrow	NOvA NDOS [198]	MedE	π DIF	1	CH_2	Scitrk	Fermilab	Current
	\longrightarrow	NOvA near [108]	MedE	π DIF	1.5-2.5	CH_2	Scitrk	Fermilab	In constr.
	\rightarrow	MicroBooNE [199]	MedE	π DIF	0.2-2	Ar	TPC	Fermilab	In constr.
	\rightarrow	LArIAT [200]	MedE	N/A ⁴	0.2-2	Ar	TPC	Fermilab	In constr.
	\longrightarrow	MINERvA [201]	MedE, PDFs	π DIF	1-10	H,D	Scitrk/calo	Fermilab	Proposed
	\longrightarrow	nuSTORM [192]	MedE, ν_e xs	π DIF	0.5-3.5	TBD	TBD	Fermilab	Proposed
	\longrightarrow	SciNOvA [202]	MedE	π DIF	1.5-2.5	CH	Scitrk	Fermilab	Proposed
	\longrightarrow	MiniBooNE+ [203]	MedE	π DIF	0.3-0.5	CH_2	Ch/calo	Fermilab	Proposed
	\longrightarrow	CAPTAIN [204]	MedE	π DIF	1-10	Ar	TPC	Fermilab	Proposed
	\longrightarrow	LBNE near [87]	MedE	π DIF	0.5-5	TBD	TBD	Fermilab	Proposed
	\longrightarrow	CAPTAIN [204]	LowE	π DAR	0.01-0.05	Ar	TPC	ORNL	Proposed
	\longrightarrow	OscSNS [205]	LowE	π DAR	0.01-0.05	CH_2	Ch/calo	ORNL	Proposed
<u>}</u>		IsoDAR [111]	LowE	⁸ Li DAR	0.002 - 0.05	TBD	TBD	TBD	Proposed
		CENNS [206]	νA coh.	π DAR	0.01-0.05	Ar	Calo	Fermilab	Proposed
	- Universit	CSI [207]	νA coh.	π DAR	0.01-0.05	TBD	TBD	ORNL	Proposed

4. MicroBooNE

Liquid Argon Time Projection Chamber (LArTPC)

- MicroBooNE exists! (under installation)
- Modern bubble chamber, amazing resolution
- 2.3x2.6x10.4m³ (86 ton TPC volume), fiducial volume may be smaller than that

ArgoNeuT $\nu_e\text{CC}$ candidate event

4. MicroBooNE

1. Oscillation 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6. Conclusion

Liquid Argon Time Projection Chamber (LArTPC)

- MicroBooNE exists! (under installation)
- Modern bubble chamber, amazing resolution
- 2.3x2.6x10.4m³ (86 ton TPC volume), fiducial volume may be smaller than that

Internal background

- π° measurement performance is unknown but probably really good. This constrains most of internal backgrounds. There might be some uncertainty photo-nuclear absorption on Ar? - It is not clear how "high resolution" helps to reduce internal background. Both NC π° and NC γ reactions have coherent and incoherent, so vertex activity may not help to reject backgrounds (Is there any parameters we overlook?)

- angular distribution measurement is tough due to small acceptance.

External background

- fiducial volume is small, external background will be a lot

1. Oscillation physics

2. NOMAD

3. T2K/MINERvA

4. MicroBooNE

5. MiniBooNE+

6. Conclusion

Neutrino working group snowmass report, arXiv:1310.4340

MiniBooNE with neutron tagging

5. MiniBooNE+

1. Oscillation 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6. Conclusion

- MiniBooNE+PPO (scintillator), total cost ~\$75k - delayed (τ ~186µs) neutron capture is observed

 $n + p \rightarrow d + \gamma$ (2.2MeV)

- Now, MiniBooNE can effectively separate NC γ from v_e CCQE

Neutrino working group snowmass report, arXiv:1310.4340

5. MiniBooNE+

 $n + p \rightarrow d + \gamma (2.2 MeV)$

- Now, MiniBooNE can effectively separate NC γ from $\nu_e CCQE$
- ${}^{12}N_{g.s.}$ de-excitation measurement provide flux normalization

 $12N_{g.s.} \rightarrow {}^{12}C + v_e + e^+$ (16.3 MeV end point)

1. Oscillation 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6. Conclusion Neutrino working group snowmass report, arXiv:1310.4340

5. MiniBooNE+

MiniBooNE with neutron tagging

- MiniBooNE+PPO (scintillator), total cost ~\$75k
- delayed (τ ~186µs) neutron capture is observed

 $n + p \rightarrow d + \gamma$ (2.2MeV)

- Now, MiniBooNE can effectively separate NC γ from v_e CCQE
- ${}^{12}N_{q.s.}$ de-excitation measurement provide flux normalization

Internal background

- MiniBooNE already shows ~5% relative measurement of NC1 π° , say NC γ :NC π° :~1:5 in data sample, then >3 σ NC γ signal is possible
- I don't know how much scintillation helps to separate NC γ from NC π°
- flux normalization

External background

- large volume (12m diameter sphere) is really good to suppress external background

1. Oscillation 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6. Conclusion

6. Conclusions

Experimental performance summary

	γ reconstruction	internal background	external background	status
NOMAD	magnet		HE, big	done
T2K	magnet	???	LE, small	running
MINERvA	no magnet	???	HE, small	running
MicroBooNE	LArTPC	???	LE, small	start 2014
MiniBooNE+	neutron tagging	high stat πº	LE, big	???

NC_γ measurement is challenging for every experiments

Thank you for your attention!

Teppei Katori

12/12/2013

40

Backup

Teppei Katori