Single photons in neutrinonucleus scattering: overview and some theory considerations

Richard Hill, for single photon working group INT, Seattle 11 December 2013

Outline

- history/introduction/motivation
- neutrino oscillation implications (sterile neutrino?)
- other new physics implications (proton decay?)
- astrophysical implications (pulsar kicks?)
- nucleon-level knowledge
- nuclear issues

Motivations **FIG. 1: The EQUATE CONCLUDENT CONCLUSION FOR EXAMPLE 2007**

[MiniBooNE, PRL 102, 211801 (2009)]

~ irreducible background for v_e appearance

1 MiniBooNE(other) experiments are(will be) sensitive to this cross section

theoretical:

Any fields coupling to anomalous symmetries must have peculiar interactions γ

 $\partial_{\mu}J^{\mu}_{5} \propto \epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma} \Rightarrow \mathcal{L} \sim \epsilon^{\mu\nu\rho\sigma} \pi F_{\mu\nu}F_{\rho\sigma}$

Similarly, for any field coupled to baryon number

 $\partial_{\mu}J_{\text{baryon}}^{\mu} \propto \epsilon^{\mu\nu\rho\sigma}\partial_{\mu}Z_{\nu}F_{\rho\sigma} + \ldots \quad \Rightarrow \qquad \mathcal{L} \sim \epsilon^{\mu\nu\rho\sigma}\omega_{\mu}Z_{\nu}F_{\rho\sigma}$ \Rightarrow

[Harvey, Hill & Hill, PRL 99, 261601 (2007)]

If Z was much lighter, would see e.g. ω→*Z*γ *directly.*

$$
Br(\omega \to \gamma \nu \bar{\nu}) \sim \left(\frac{g_{\text{weak}}^2}{m_W^2}\right)^2 \frac{f_{\pi}^6}{m_{\omega}^2} \sim \frac{G_F^2 f_{\pi}^6}{m_{\omega}^2} \sim \text{tiny}
$$

But in practice, Z is heavy (weak interactions are weak !)

Compare Primakoff effect:

scattering off baryon number

 ω

 γ

My My

Oscillation implications

Fig. 2. The normalization assumes an energy- and angletan braductio ton productio **1σ 0.2 0.4 0.6 0.8 1 1.2 1.4 -0.2** \blacksquare (color online). Single-photon events at \blacksquare 200 and the seen from this table that table the seen from this table table table that the seen from this table the direct estimate of the number of single-photon events broguction. simple model for single photon production:

$\mathbb{P}_{\mathbb{P}}$. The effects of a larger incoherent $\mathbb{P}_{\mathbb{P}}$ $p_{\rm eff}$ and direct estimate (i.e., $p_{\rm eff}$ estimate (i.e., $p_{\rm eff}$) and $p_{\rm eff}$ **0** *[RJH PRD 84, 017501 (2011)]*

not matter whether the MiniBooNE ! **incoh.** ∆ **coh.** ω **20 incoh.** ∆ $\overline{\mathbf{m}}$ **incoh.** ω **coh.** ∆ *[MiniBooNE, PRL 105, 181801 (2010)]* [MiniBooNE, PRL 102, 211801 (2009)]

 $\mathbf{1}$ incoherent processes. In the latter coherent processes of the latter case, th difference between the !0-constrained background and the direct early in the figure by including 0.5 times the direct estimate for nd chollid ha $\mathbf H$ ild silould be MiniBooNE data [5] with other backgrounds subtracted in MiniBooNE data [28] with other backgrounds subtracted in icloan/nucloan ucleon/nuclear MiniBooNE !-mode in ranges of EQE. Ranges in square brackets **events 30 50 ix/r neutron Compton proton Compton** that can and should be debated: Within nucleon/nuclear/flux/reconstruction/.. uncertainties

 $\overline{}$ so which $\overline{}$ so which $\overline{}$ so $\overline{}$ \sim - and under II IJ. GIJLI II $475-125$ MeV bins, respectively. If no additional incoassured hackgrou easul eu *D*al $M:$... Neglected single-photon events give a significant con-1\$, non-! 85[17–26] 151[30, 45] 159[32, 48] **ASSUPAD hackord** casul cu *b*achgi c **LASSER CO DUCKS** CATE WICH APPT OAT \mathcal{L}_{max} \mathcal{L}_{M} : \mathcal{D}_{max} ION OT MINIBOOI MB !"e ! !"e 6.1 4.3 6.4 **0** - an unmeasured background with approximate size and kinematic distribution of MiniBooNE's excess

 $\overline{}$ $\overline{\$ \blacksquare = 2DDCO) $\mathbf{u} \mathbf{v}$ \mathbf{v} been assumed, in accordance with a comparison to MAC BACKGROUNDS IN TABLE IN THE BACKGROUNDS IN THE BACKGROUNDS IN THE BACKGROUNDS IN THE BACKGROUNDS IN THE BA direct estimate of α mate agreement m induction agriculture based on R - approximate agreement between neutrino and antineutrino modes for paper, and is consistent with the absence of a significant ennancement re required enhancement relative to MC

Astrophysical implications?

An enhanced coherent single-photon cross section has interesting implications

may also play a significant role in neutron star cooling similar dynamics may play a role in pulsar kicks - large velocities of important applications in various other physical regimes. supernova remnants, generated by asymmetric neutrino emission

effective electron magnetic moment (large)

elsewhere, including the detailed derivation of pCS and $\alpha\beta B$ *[Vilenkin ApJ 451, 700 (1995), ...]*

[1] J. S. Bell and R. Jackiw, Nuovo Cim. A 60, 47 (1969). **Example 2. Linuxerse mean fr Example 20** The case of the c $\overline{\mathbf{r}}$ inverse mean free path (small) $\overline{}$ contribution of electron to

parity violation and significant Interaction that has both significant parity violation *and* significant o. Generate observed kick contribution to scattering required to generate observed kick

 $j_{pv}/j_0 \sim \alpha \beta B$

Implications for proton decay

Experimental reach limited by atmospheric backgrounds

These backgrounds differ in the hadronic final state, in particular neutron content

Significant overlap with neutrino cross section problem: energy range, need to understand final state interactions

Could imagine a situation where a few signal-like events are detected, but proton decay interpretation relies on O(1) factors in predicted neutron fraction of neutrino backgrounds

Any new experimental handles are useful

Nucleon level knowledge

Why is it so #?! hard to calculate?

- what are the errors ? \approx what is the expansion ?
- need to get creative: $1/N_c$, z (dispersive), $1/A$ (nucleus), ...
- model independent approach: decompose into helicity amplitudes. but 12 of them, depending on multiple kinematic invariants - need dynamical model/small parameter expansion

Caution is warranted. E.g., in the case of axial-vector form factor entering CCQE. Only one poorly constrained invariant amplitude F_A a function of only *one* kinematic variable Q2, yet significant (~40%) cross section uncertainty 13

It is now straightforward to write down the Lagrangian \mathbf{L} Systematic expansion at low energy:

$$
\mathcal{L}^{(0)} = -c^{(0)}\bar{N}N, \qquad \mathcal{L}^{(1)} = \bar{N}[c_1^{(1)}i\vec{p} - c_2^{(1)}A\gamma_5]N,
$$
\n
$$
\mathcal{L}^{(2)} = \bar{N}\Big[-c_1^{(2)}\frac{i}{2}\sigma^{\mu\nu}\operatorname{Tr}([iD_{\mu},iD_{\nu}]) - c_2^{(2)}\frac{i}{2}\sigma^{\mu\nu}\tau^a\operatorname{Tr}(\tau^a[iD_{\mu},iD_{\nu}]) + \cdots\Big]N,
$$
\n
$$
\mathcal{L}^{(3)} = \bar{N}[c_1^{(3)}\gamma^{\nu}[iD_{\mu},\operatorname{Tr}([iD^{\mu},iD_{\nu}])] + c_2^{(3)}\gamma^{\nu}[iD_{\mu},\tau^a\operatorname{Tr}(\tau^a[iD^{\mu},iD_{\nu}])] + c_3^{(3)}\gamma^{\nu}\gamma_5[iD_{\mu},[iD^{\mu},A_{\nu}]] + c_4^{(3)}i\epsilon^{\mu\nu\rho\sigma}\gamma_\sigma\operatorname{Tr}(\{A_{\mu},[iD_{\nu},iD_{\rho}]\}) + c_5^{(3)}i\epsilon^{\mu\nu\rho\sigma}\gamma_\sigma\tau^a\operatorname{Tr}(\tau^a\{A_{\mu},[iD_{\nu},iD_{\rho}]\}) + c_6^{(3)}\gamma^{\nu}\gamma_5[[iD_{\mu},iD_{\nu}],A^{\mu}] + c_7^{(3)}\frac{1}{4m}\gamma^{\nu}\gamma_5([[iD_{\mu},iD_{\nu}],A_{\rho}],\{iD^{\mu},iD^{\rho}\} + \cdots]N.
$$

coherent coupling of vector tax where \mathbf{w} restrictions, the isovector gauge couplings of the set of \mathbf{w} coherent coupling of vector+axial-vector fields to baryons

cian broake down at energies of sion breaks down at elier gies of $\tau_{\rm r}$ der f $_{\rm r} \sim 100$ MeV Expansion breaks down at energies of order f_π ~ 100 MeV $\qquad \qquad$ \qquad

del by resonance insertions ("sticking in form i og den større og den stø
Nordelsen og den større og s *j* or dispersive analysis to relat udes to observables amplitudes to observables $\overline{\tilde{f}}$ z_{p} is neutral gauge fields such as the z_{p} factors") or dispersive analysis to relate invariant $\frac{Z}{\sqrt{N}}$ ⇒ model by resonance insertions ("sticking in form

illustrative variations for Delta resonance modeling

Nuclear issues

Why is it so #?! hard to calculate?

- nuclear cross sections at 1 GeV (#?!)
- must translate nucleon-level amplitudes to nuclear cross sections
- final state interactions: $O(1)$ factors relating nucleonlevel ratio of pi0/gamma to nuclear-level
- experimental handles in electron scattering?

Dipping a toe into the nuclear realm...

$$
\frac{1}{p^2 - m_\Delta^2 + i m_\Delta \Gamma_\Delta} \qquad \qquad \Gamma_\Delta \sim \Gamma_0 (p_\Delta / p_0)^3
$$

$$
m_\Delta \to m_\Delta + \delta \Sigma
$$

 $\delta \Sigma = V(E_\gamma)F(q^2)$ Model self-energy by phenomenological model (calibrated from pion photoproduction on helium, carbon)

Gross features unchanged. This

Single photon production in ν-N overview

- ~irreducible background to v_e appearance searches: must be directly measured (cf. Katori's talk)
- other motivations to measure and constrain neutron content in neutrino nucleus scattering: e.g., important background for proton decay
- potentially interesting astrophysical implications of an enhanced neutral current interaction in presence of e.m. fields and baryons
- difficulties at both nucleon and nuclear levels
- nucleon level: invariant amplitude decomposition and hadronic modeling (cf. talks of Zhang, Nieves and Ruso)
- nuclear level: final state interactions significantly affect pi0/gamma ratio emerging from nucleon-level interactions
- the stakes are large: important backgrounds for sterile neutrinos, proton decay, potential astrophysical implications within SM
- requires dedicated efforts at particle, nucleon, nuclear, detector levels