Inclusive Electron- and Neutrino-Nucleus Scattering: Correlations and Currents

- Motivation
- Interactions and currents
- Review of electron scattering
 - Sum rules
 - Euclidean Response
- Electron/Neutrino Scattering from the Deuteron
- Sum Rules for A=12
- Near Future

A. Lovato (ANL) S. Gandolfi (LANL) S. Pieper (ANL) R. Schiavilla (Jlab/ODU G. Shen (LANL - UW) J. Carlson

Response Functions probes of structure and dynamics

Extraction of condensate fraction in liquid He

FIG. 6. The energy spectrum of excitations. Curve A is the spectrum $E_2(k)$ computed from Eq. (61). Curve B is the spectrum $E_1(k)$ computed with the simpler wave function (5). Curve C is the Landau-type spectrum used by de-ENERGY Klerk et al.⁴ to fit the second sound and specific heat data. Curve Disa Landautype spectrum with p_0 taken the same as in A, and μ and Δ chosen to fit the specific heat data. For small k, all curves are asymptotic to the line $E = \hbar c k$

phonon-roton spectrum in liquid He

Sears, et al, PRL, 1982

S(Q) and g(r) for Simple Liquids

The 1994 Nobel Prize – Shull & Brockhouse more examples: High Tc Cold Atomic Gases, ...

Fig. 5.2 The pair-distribution function g(r) obtained from the experimental results in Fig. 5.1. The mean number density is $\rho = 2.13 \times 10^{26}$ atoms m⁻³. (After Yarnell *et al.*, 1973.)

Single nucleon couplings factored out Momenta of order inverse internucleon spacing: Large enhancement of transverse over longitudinal response

Requires beyond single nucleon physics

Longitudinal/Transverse separation in ¹²C

Nuclear Interactions:

AV18 : excellent fit of NN data pion exchange plus phenomenology TNI: Two-pion exchange plus three-pion-exchange plus phenomenological short-range repulsion

Chiral Interactions: LO, NLO, N2LO, N3LO increasing order results in better fits to data uncertainty estimates

Consistency of two plus three nucleon interactions New local interactions at LO..N2LO

Gezerlis, et al., PRL 2013

QMC methods

Basic Idea: project specific low-lying states from initial guess (or source)

$$\Psi_0 = \exp\left[-H\tau\right] \Psi_T$$

Use Feynman path integrals to compute propagator $exp [-H\tau] = \prod exp[-H\delta\tau]$ $exp[-H\delta\tau] \approx exp[-T\delta\tau] exp[-V\delta\tau]$ diffusion branching Applications: condensed matter (Helium, electronic systems, ... nuclear physics (light nuclei, neutron matter, SMMC...) atomic physics (cold atoms,...) Various formulations: DMC/GFMC, AFMC, AFDMC, Lattice

GFMC Algorithm:

Branching random walk in 3A (36 for 12) dimensions Asynchronous Dynamic Load Balancing (ADLB) Library - ADLB under UNEDF resulted in code working well on BG/P: Each one thread) per hole and updates

- ${}^{12}C(0^+)$ needs 2 Gbytes so OpenMP used for the 4 cores (threads) ADLB gives excellent scaling to 32,768 nodes Plitudes (2 GB for ${}^{12}C$ gs)
- BG/Q offers new possignifies and chineses algebra for each step
 - 16 Gbytes, 16 cores (each fibresde) Bersneded math/CS staff at ANL
 - -48×1024 nodes

Similarobrandsingerandamachialas 2/vithdinaansalgebra use Other 12 Contracted much more memory sink (Talttice east ulations)

- Early Science grant gave access to machine as it was still being installed - One must be patient!
- Conver -AD

up to ~2M threads

- OpenMP scales well to more threads

Other methods: NCSM, Coupled Cluster, ...

Spectra of Light Nuclei

Spectra must be correct to describe low-energy transitions, reactions, etc.

¹²C Electromagnetic Charge Form Factor

Excellent agreement with data

Ground State - Hoyle State Transition form factor

Pastore S, Schiavilla R, Goity J L. Phys. Rev. C, 2008, 78: 064002

Pastore S, Girlanda L, Schiavilla R, Viviani M, Wiringa R B. Phys. Rev. C, 2009, **80**: 034004 Coupling constants adjusted to $\mu(D)$, $\mu_s(A=3)$: isoscalar np capture, $\mu_v(A=3)$: isovector

M. Piarulli, L. Girlanda, L. E. Marcucci, S. Pastore, R. Schiavilla, and M. Viviani, Phys. Rev. C 87, 014006 (2013).

A ≤ 10 Magnetic Moments with Chiral EFT currents

Pastore, et al, Phys. Rev. C 87, 035503 (2013); arXiv:1302.5091

$A \leq 9 \; M1$ transitions W/ $\chi {\rm EFT}$ exchange currents

- dominant contribution is from OPE
- five LECs at N3LO
- d^V₂ and d^V₁ are fixed assuming Δ resonance saturation
- d^S and c^S are fit to experimental μ_c and $\mu_S({}^{3}\text{H}/{}^{3}\text{He})$
- c^V is fit to experimental $\mu_V({}^{3}\text{H}/{}^{3}\text{He})$
- $\Lambda = 600 \text{ MeV}$

Pastore, Pieper, Schiavilla & Wiringa

PRC 87, 035503 (2013)

Two-nucleon currents critical to understand low-energy transitions

Higher resolution: Momentum Distributions

High momentum components dominated by two-nucleon physics strength at ~ 2 fm⁻¹ due to tensor correlations

Back-to-back pairs: pn vs pp,nn in ¹²C

JLAB, BNL back-to-back pairs in ¹²C

np pairs dominate over nn and pp

E Piasetzky et al. 2006 Phys. Rev. Lett. 97 162504. M Sargsian et al. 2005 Phys. Rev. C 71 044615. R Schiavilla et al. 2007 Phys. Rev. Lett. 98 132501. R Subedi et al. 2008 Science 320 1475.

http://www.phy.anl.gov/theory/research/momenta2/

Neutron-Proton pairs

pair momenta vs Q: pn vs pp,nn in ⁴He

Inclusive Scattering and Response Functions

$$R_{L,T} (q, \omega) = \sum_{f} \delta(\omega + E_0 + E_f) | \langle f | \mathcal{O}_{\mathcal{L},\mathcal{T}} | 0 \rangle |^2$$
knowledge of response \mathfrak{O} inclusive cross-sections
requires knowledge of all final states

Start with the deuteron, can enumerate all final states. Use for test of Monte Carlo codes Accurate predictions: could use to make absolute flux measurements

Electron Scattering on Deuterium

ν -Deuteron Scattering up to GeV Energy

Shen et al. (2012)

 μ -capture rates in d and ³He [Schiavilla and Wiringa (2002); Marcucci *et al.* (2012)]

Deuterons: Neutral Current Comparison of I-body PW to isolated p + n and ratio

FIG. 16: (color online) The "model" (P+N) NC cross sections for neutrino and antineutrino are compared with plane-wave one-body (PW 1-body) results, see text for explanation. Inset: ratio of neutrino NC versus antineutrino NC cross section.

29

Charged Current on Deuteron

Heavier Nuclei (A>2)

Easy to calculate Sum Rules: ground-state observable

$$S(q) = \int d\omega \ R(q,\omega) = \langle 0|O^{\dagger}(q) \ O(q)|0\rangle$$

Sum Rules are independent of final states (and FSI)

$$E(q) = \int d\omega \ \omega \ R(q,\omega) = \langle 0|O^{\dagger}(q)HO(q)|0\rangle$$

For spin-isospin independent interactions $E(q) = q^2/2m$

For nuclear physics $E(q) > q^2/2m$, not reproduced by spectral function alone

Longitudinal and Transverse Electromagnetic Response in A=3,4, 12

(e, e') Inclusive Response: Scaling Analysis

-0.2

0.0

0.2

y/m

0.4

0.8

0.6

Carbon-12 : Electron Scattering Longitudinal Sum Rule $S_L(q) = \langle 0 | \ \rho^{\dagger}(q) \ \rho(q) | 0 \rangle$

again small role for two-nucleon currents

Transverse Sum Rule

Lovato, Gandolfi, Butler, Carlson, Lusk, Pieper, Schiavilla PRL 2013

Two-nucleon currents contribute ~ 50% enhancement Jlab experiments, neutrino experiments

Sum Rules and Euclidean Response Real-time response

$$R(q,\omega) = \langle 0 | \mathbf{j}^{\dagger}(q) | f \rangle \langle f | \mathbf{j}(q) | 0 \rangle \, \delta(w - (E_f - E_0))$$
$$R(q,\omega) = \int dt \, \langle 0 | \mathbf{j}^{\dagger}(q) \, \exp[iHt] \, \mathbf{j}(q) | 0 \rangle \, \exp[i\omega t]$$

Short time 't' : sum rules Long time: higher energy resolution No general method for strongly-correlated quantum systems, typically use model final states

Short-time theories well known operator product expansion, Fermi Gas Cold Atoms zero-range interaction infinite scattering length

Example: Unitary

peaks at q² / 2m; q² / 4m latter not reproducible with PWIA or spectral fn Imaginary-time correlator (Euclidean Response) $R(q,\tau) = \langle 0 | \mathbf{j}^{\dagger}(q) \exp[-H\tau] \mathbf{j}(q) | 0 \rangle$ Converts quantum dynamics to statistical mechanics short time : sum rules (high energy) long 'time' : low energy response (collective modes,...)

τ = inverse T Why do FSI add to high-energy response? Longitudinal electron scattering

PWIA (or spectral function): response tied to charge propagation charge propagation charged to nucleon propagation (momentum distribution)

Full Interacting system: charge can propagate through pion exchange: faster response (low 'mass') adds to high-energy tail

Towards (short-time) Dynamics: Euclidean Response

³He and ⁴He Transverse Euclidean Response Functions

- Excess strength in quasielastic region ($\tau > 0.01 \text{ MeV}^{-1}$)
- Larger in A = 4 than in A = 3, as already inferred from S_T

Neutrino Scattering:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\epsilon'\mathrm{d}\Omega}\right)_{\nu/\overline{\nu}} = \frac{G_F^2}{2\pi^2} \, k'\epsilon' \cos^2\frac{\theta}{2} \left[R_{00} + \frac{\omega^2}{q^2} \, R_{zz} - \frac{\omega}{q} R_{0z} + \left(\tan^2\frac{\theta}{2} + \frac{Q^2}{2\,q^2}\right) R_{xx} \mp \tan\frac{\theta}{2} \, \sqrt{\tan^2\frac{\theta}{2} + \frac{Q^2}{q^2}} \, R_{xy} \right]$$

Neutrino/Anti-neutrino Scattering 5 response functions Neutral current sum rules for 12C

Present and Near Future

Calculations of neutral and charged current scattering on the deuteron (neutrinos and anti-neutrinos) completed

Codes for neutral current and nearly charged current completed for use in Quantum Monte Carlo calculations

Studying quasi-analytic approaches to dynamic response in high q, omega region

Thanks to:

ANL devoting ~50-100M core-hours to this project plus staff/postdoc time INCITE award to NUCLEI project amount largest in country - neutrino scattering is an important goal LANL support through LDRD-DR project (PI: Mauger)