Consistent treatment of one- and two-nucleon currents within the spectral function formalism

Omar Benhar

Center for Neutrino Physics, Virginia Tech. Blacksburg, VA 24061 INFN and Department of Physics, "Sapienza" Universita di Roma. I-00185 Roma, Italy `

> INT Workshop on Neutrino-Nucleus Interactions December 11, 2013

> > K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

 \star Double differential cross section

$$
\frac{d\sigma_A}{d\Omega_{k'}dk_0'}\propto L_{\mu\nu}W_A^{\mu\nu}
$$

- \triangleright *L_{uv}* is fully specified by the lepton kinematical variables (warning: not all of them are known in the case of ν scattering)
- \triangleright The determination of the target response tensor

$$
W^{\mu\nu}_A = \sum_N \langle 0|J^{\mu\dagger}_A|N\rangle \langle N|J^\nu_A|0\rangle \delta^{(4)}(P_0+k-P_N-k')
$$

requires a *consistent* description of both the target initial and final states and the nuclear current. Approximations are needed in the kinematical regime in which reletivistic effects are important.

Why worry about relativity

(Figure courtesy of A. Ankowsky)

- \star Unlike the initial state, the nuclear current and the final hadronic state *can not* be described using non relativistic many-body theory
- \star In neutrino experiments low- and large-|q| contributions to the observables are inextricably tangled

Relativistic vs non relativistic kinematics

- \star Response of uniform isospin symmetric nuclear matter to a scalar probe delivering momentum $|q| = 800$ MeV.
- \star Calculation carried out using a realistic spectral function. Solid line: relativistic kinematics. Dashed line: non relativistic kinematics

Enter the factorization *ansatz*

 \star At |q|⁻¹ ≪ *d* ~ 1.2 fm use the impulse approximation (IA)

 \triangleright neglect the contribution of the two-nuleon current

$$
J_A^{\mu}(q) \approx \sum_{i=1}^{A} j_i^{\mu}(q)
$$

 \triangleright write the final state in the factorized form

 $|N\rangle \rightarrow |{\bf p}\rangle \otimes |n_{(A-1)}, {\bf p_n}\rangle$.

 \triangleright at zero-th order, neglect final state interactions (FSI) between the outgoing nucleon and the spectator particles

 \star within the IA scheme the nuclear matrix element of the one-nucleon current reduces to

$$
\langle N|j_i^{\mu}|0\rangle = \int d^3k M_m(\mathbf{k}) \langle \mathbf{p}|j_i^{\mu}|\mathbf{k}\rangle ,
$$

with

$$
M_n(\mathbf{k}) = \{ \langle n_{(A-1)}, \mathbf{p}_n | \otimes \langle \mathbf{k} | \} | 0 \rangle \ .
$$

 \star The nuclear spectral function, yielding the probability of removing a nucleon of momentum kleaving the residual system with excitation energy *E*, is defined as

$$
P(\mathbf{k}, E) \sum_{n} |M_n(\mathbf{k})|^2 \delta(E_0 + E - E_n)
$$

IA results compared to electron scattering data

- \star Nuclear x-section $\int d^3k dE d\sigma_N P(\mathbf{k}, E)$
- \star QE (nucleon-only final states) only

 \star Correlation tail, arising from 2p2h final states, cleary visible

 \star Position and width of the peak are reproduced

Enter the two-nucleon current

- \star Two-nucleon current contributions can be accurately computed within the non relativistic approximation, using the GFMC approach
- \star Energy loss integral of the transvers electromagnetic response of carbon (arXiv:1312.1210)

Interference between one- and two-nucleon c[urr](#page-6-0)e[nt](#page-0-0)[s](#page-6-0) [im](#page-7-0)[po](#page-0-0)[rta](#page-10-0)nt

- \star Highly accurate and consistent calculations can only be carried out in the non relativistic regime
- \star Using fully relativistic MEC and a realistic description of the nuclear ground state, including correlations, requires the factorization *ansatz* underlying the IA
	- Exercite the final state $|N\rangle$ in the factorized form

$$
|N\rangle \rightarrow |\mathbf{p}, \mathbf{p}'\rangle \otimes |n_{(A-2)}, \mathbf{p}_n\rangle
$$

$$
\langle N|j_{ij}^{\mu}|0\rangle \rightarrow \int d^3k d^3k' M_n(\mathbf{k}, \mathbf{k}') \langle \mathbf{pp}'|j_{ij}^{\mu}|\mathbf{k}\mathbf{k}'\rangle
$$

The amplitude

$$
M_n(\mathbf{k}, \mathbf{k}') = \{ \langle n_{(A-2)} | \langle \mathbf{k}, \mathbf{k}' | \} \otimes | 0 \rangle
$$

is independent of *q* and can be obtained from non relativistic many-body theory

Two-nucleon spectral function

 \star Calculations have been carried out for uniform isospin-symmetric nuclear matter using CBF perturbation theory [PRC 62, 034304 (2000)]

$$
P(\mathbf{k}, \mathbf{k}', E) = \sum_{n} |M_n(k, k')|^2 \delta(E + E_0 - E_n)
$$

$$
n(\mathbf{k}, \mathbf{k}') = \int dE P(\mathbf{k}, \mathbf{k}', E)
$$

- \star Results of exact non relativistic calculations suggest that interference between one and two-nucleon current contributions to the excitation of 2p2h final states is important
- \star The spectral function formalism can be generalized to allow for a consistent treatment of processes involving one- and two- nucleon currents
- \star The implementation of this scheme in Monte Carlo generators does not involve conceptual difficulties

 209