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For each value of q and ω, evaluating the (e,e') cross section implies an integral over the  
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For each value of q and ω, evaluating the (e,e') cross section implies an integral over the  
kinematically allowed region for the semi-inclusive reaction (e,e'N):

below QEP
(y-scaling 
    region)

y scaling variable: -y(q,ω) is the lowest value of the missing momentum at the lowest 
missing energy kinematically allowed for semi-inclusive knockout of nucleons from the 
nucleus.

Quasielastic kinematics and y-scaling

missing energy – 
separation energy

missing momentum

at the QEP: y=0
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For each value of q and ω, evaluating the (e,e') cross section implies an integral over the  
kinematically allowed region for the semi-inclusive reaction (e,e'N):

below QEP
(y-scaling 
    region)

Quasielastic kinematics and y-scaling

The semi-inclusive cross section is 

typically largest at small p and ε
and very small at large p 

and small ε

for given y<0, the region

of low p and high ε
is unaccessible



  

 Instead of (q,ω) use the variables (q,y)

 Typical parametrizations for the off-shell single-nucleon cross sections 

                                                     σoff
eN(q, ω, p, ε, ΦN)

 

vary slowly as functions of (p, ε) for fixed (q, ω, ΦN). This suggests integrating over ΦN (leaving   

 only RL and RT) and then removing the result evaluated at an “optimal” choice of p and ε. 

 From the above analysis the “optimal” choice is p=|y| and  ε=0

 Scaling Function    

 

The y-scaling function

ΣeN
eff=

1
A
(Z σep

elastic+N σen
elastic )p=− y , ε=0

Effective single nucleon cross section

F (q , y)≡
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AΣeN
eff

d 2σ
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y-scaling of (e,e') data

Example: 4He SLAC data 

Inclusive cross section for various beam 
energies and scattering angles



  

y-scaling of (e,e') data

Example: 4He SLAC data 

Inclusive cross section for various beam 
energies and scattering angles

Scaling function plotted as a function of 
y for various values of q

[Day,McCarthy,Donnelly,Sick,Ann.Rev.Nucl.Part.Sci.40(1990); Donnelly & Sick, PRC60(1999),PRL82(1999)]



  

y-scaling of (e,e') data

Example: 4He SLAC data 

Inclusive cross section for various beam 
energies and scattering angles

Scaling function plotted as a function of 
y for various values of q

ω<ωQEP

(x>1, y<0)
ω>ωQEP

(x<1, y>0)

[Day,McCarthy,Donnelly,Sick,Ann.Rev.Nucl.Part.Sci.40(1990); Donnelly & Sick, PRC60(1999),PRL82(1999)]



  

y-scaling of (e,e') data

Example: 4He SLAC data 

Independence of q of the scaling function F(q,y):

F(y,q)                       F(y) ≡ F(y,∞)   for  q →∞ Scaling of the first kind
         (or y-scaling)

ω<ωQEP

(x>1, y<0)
ω>ωQEP

(x<1, y>0)

[Day,McCarthy,Donnelly,Sick,Ann.Rev.Nucl.Part.Sci.40(1990); Donnelly & Sick, PRC60(1999),PRL82(1999)]



  

y-scaling of (e,e') data

Another example: 57Fe data 

Scaling is violated at y>0 due to resonances, 
meson production, deep inelastic scattering.... 

Q2 (GeV/c)2

MeV/c

[Day,McCarthy,Donnelly,Sick,Ann.Rev.Nucl.Part.Sci.40(1990); Donnelly & Sick, PRC60(1999),PRL82(1999)]



  

y-scaling of (e,e') data

Another example: 57Fe data 

Scaling is violated at y>0 due to resonances, 
meson production, deep inelastic scattering.... 

Scaling function at fixed y plotted versus Q2 :
scaling is approached “from above”

Q2 (GeV/c)2

MeV/c

[Day,McCarthy,Donnelly,Sick,Ann.Rev.Nucl.Part.Sci.40(1990); Donnelly & Sick, PRC60(1999),PRL82(1999)]
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2nd kind scaling
 Let us now introduce a characteristic momentum kA for a given nucleus with mass number A
and define the dimensionless function

                                                       f(q,y) = kA*F(q,y)

 Correspondingly we introduce a dimensionless scaling variable ψ and plot f(q,ψ) vs ψ 
 for different values of q

 The Relativistic Fermi Gas model is used to motivate the choice of the scaling variable ψ:

 

ψ(λ , τ)= 1
√ξF

λ−τ

√τ (1+λ)+κ√ τ(1+τ)
λ= ω

2mN

, κ=
q

2mN

, τ=κ2−λ2

dimensionless variables

k A=kF Fermi momentum, ξF Fermi kinetic energy
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2nd kind scaling
 Let us now introduce a characteristic momentum kA for a given nucleus with mass number A
and define the dimensionless function

                                                       f(q,y) = kA*F(q,y)

 Correspondingly we introduce a dimensionless scaling variable ψ and plot f(q,ψ) vs ψ 
 for different values of q

 The Relativistic Fermi Gas model is used to motivate the choice of the scaling variable ψ:

 The relation between ψ and y is approximately   ψ ≈ y/kF

 The variable ψ yields exact 1st kind scaling in the RFG model. It represents the minimum     
 energy required to a nucleon inside the nucleus to participate to the QE reaction in the RFG.

 A phenomenological energy shift Eshift  (typically ~20 MeV)  is introduced in order to give the 

right position of the QEP:           ω →ω' = ω – Eshift                   which implies                ψ →ψ'  

λ= ω
2mN

, κ=
q

2mN

, τ=κ2−λ2

dimensionless variables

k A=kF Fermi momentum, ξF Fermi kinetic energy

ψ(λ , τ)= 1
√ξF

λ−τ

√τ (1+λ)+κ√ τ(1+τ)



2nd kind scaling

kA*F

~y/kF

Ee=3.6 GeV
θe=160

Plotting f(q,ψ') at fixed kinematics (q) for different nuclei (A) one gets

kA = characteristic 
momentum scale 
for each nucleus

Second kind scaling = A-independence for ψ' < 0



2nd kind scaling

Ee=3.6 GeV
θe=160

In semi-logarithmic scale:

Second kind scaling = A-independence for ψ' < 0



2nd kind scaling

Ee=3.6 GeV
θe=160

In semi-logarithmic scale:

Second kind scaling = A-independence for ψ' < 0

Violations for ψ' > 0 due to 
non QE contributions 



Super-Scaling

I kind 
scaling

II kind 
scaling

We define “Super-Scaling” the simultaneous occurrence of 

                                     I kind scaling (independence of q) 

                                                        and 

                                    II kind scaling (independence of A) 
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0th kind scaling and L/T separation
The scaling analysis can be performed il the longitudinal and transverse channels separately, 
using the (few) existing L/T separated (e,e') data 

d2σ

dΩdω
=σMott (vLRL+vT RT )

vL=∣Q
2/q2∣2

vT=
1
2
∣Q2
/q2
∣+ tan2θe

2

kinematical factors

R L , RT Response Functions

F L(q , y)≡
RL(q ,ω)

AΣeN , L
eff /σMott vL

≡ f L(q , y)/ k A

F T (q , y )≡
RT (q ,ω)

AΣeN ,T
eff /σMott vT

≡ f T (q , y )/ k A

Longitudinal and Transverse scaling functions:



0th kind scaling and L/T separation
The scaling analysis can be performed il the longitudinal and transverse channels separately, 
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d2σ
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2
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kinematical factors

R L , RT Response Functions

F L(q , y)≡
RL(q ,ω)

AΣeN , L
eff /σMott vL

≡ f L(q , y)/ k A

F T (q , y )≡
RT (q ,ω)

AΣeN ,T
eff /σMott vT

≡ f T (q , y )/ k A

Longitudinal and Transverse scaling functions:

How does it work versus data?



L and T scaling functions

 T

Inelastic contribution (mainly T)
+ MEC (dominantly T)

some violations even 
below the QEP 



 T  L

Inelastic contribution (mainly T)
+ MEC (dominantly T)

some violations even 
below the QEP 

in contrast, the L results show a 
universal behavior

L and T scaling functions



 Phenomenological super-scaling function

L

A phenomenological super-scaling function has been extracted from the longitudinal (e,e') 
word data [Jourdan,NPA603, 117 ('96)]

q-independent  
A-independent
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 Phenomenological super-scaling function

L

A phenomenological super-scaling function has been extracted from the longitudinal (e,e') 
word data [Jourdan,NPA603, 117 ('96)]

The RFG 
is very poor

Asymmetric 
shape with long 
high energy tail

q-independent  
A-independent

f RFG(ψ ')=
3
4
(1−ψ '2)θ(1−ψ '2)



 Phenomenological super-scaling function

L

A phenomenological super-scaling function has been extracted from the longitudinal (e,e') 
word data [Jourdan,NPA603, 117 ('96)]

The RFG 
is very poor

Asymmetric 
shape with long 
high energy tail

Strong constraint on nuclear models, which can be tested against this function (see Juan's talk)

q-independent  
A-independent

f RFG(ψ ')=
3
4
(1−ψ '2)θ(1−ψ '2)



0th kind scaling (L/T)

 In the RFG model 

                                           (fL)RFG = (fT)RFG = fRFG

also called “scaling of 0
th

 kind”.
 
 From the L/T separated data:

fT - fL Violations from:

- resonances

- meson production

- tail of DIS

- Meson Exchange Currents

Ignoring these processes one can 
assume 0th kind scaling: fL=fT  
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Non-QE scaling

 The same unified relativistic approach used in the QE region (elastic e-N scattering) can be
 generalized to include the complete inelastic spectrum (inelastic e-N scattering), both resonant 

   and non-resonant, up to deep inelastic scattering.

[MBB, J.A.Caballero, T.W.Donnelly, C.Maieron, Phys.Rev.C69, 035502 (2004);
C.Maieron, J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, C.W.Williamson, Phys.Rev.C80, 035504 (2009)]



Non-QE scaling

 The same unified relativistic approach used in the QE region (elastic e-N scattering) can be
 generalized to include the complete inelastic spectrum (inelastic e-N scattering), both resonant 

   and non-resonant, up to deep inelastic scattering.

 Introduce an inelasticity factor for each invariant mass WX of the final state X: 

    eN → e'X  

and define a new scaling variable to be used in the inelastic domain:

ρX=1+
μX

2
−4 τ

4 τ
, μX=

W X

mN

[MBB, J.A.Caballero, T.W.Donnelly, C.Maieron, Phys.Rev.C69, 035502 (2004);
C.Maieron, J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, C.W.Williamson, Phys.Rev.C80, 035504 (2009)]

Recall: λ=ω/2mN 

                 κ=q/2mN

                 τ=|Q2|/4mN
2

ψQE (λ , τ)=
1
√ξF

λ−τ

√ τ(1+λ)+κ √τ(1+τ)
ψX (λ , τ)=

1
√ξF

λ−τρX

√ τ(1+λρX )+κ√τ(1+τρX2 )
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κmN

ξF∫μthresh
1+2λ−ϵS

dμXμX f model(ψX)U
L ,T

from Bodek-Ritchie parametrization
[PRD23 (1981); PRD24 (1981)]

[MBB, J.A.Caballero, T.W.Donnelly, C.Maieron, Phys.Rev.C69, 035502 (2004);
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Non-QE scaling

 The same unified relativistic approach used in the QE region (elastic e-N scattering) can be
 generalized to include the complete inelastic spectrum (inelastic e-N scattering), both resonant 

   and non-resonant, up to deep inelastic scattering.

 Introduce an inelasticity factor for each invariant mass WX of the final state X: 

    eN → e'X  

and define a new scaling variable to be used in the inelastic domain:

 2p-2h meson-exchange current effects must be added to have a complete descritpion of the    
   (e,e') spectrum (Quique Amaro's talk)
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The SuSA approach to ν scattering

  The “Super-Scaling Approximation” approach to neutrino scattering: 

 

[J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, A.Molinari, I.Sick, PRC71 (2005)]
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  The “Super-Scaling Approximation” approach to neutrino scattering:

(1) Assume a universal scaling function, either phenomenological - from longitudinal (e,e') data - 
or from models

(2) Use this with elastic eN single nucleon cross sections to obtain the QE cross section

(3) Use the extension to non-QE scattering and the eN →e'X to obtain the inelastic cross section 

(4) Add 2p2h MEC contributions, not included in the scaling function

(5) Use this approach to compare with inclusive (e,e') data

(6) Replace the s.n. cross sections (2) with elementary CC neutrino-nucleon cross sections to 
obtain the SuSA predictions for ν-A.

Warning: if the test (5) fails, the predictions (6) are not expected to be reliable

CCν reactions are purely isovector, while (e,e') is both isoscalar and isovector 

                                                      fL ~ ½ fL
(T=0) + ½ fL

(T=1)

Thus in going from electron- to CCν-scattering we have to invoke a 3rd kind of scaling:

 

[J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, A.Molinari, I.Sick, PRC71 (2005)]

    fL
(T=0) = fL

(T=1) Isospin-independence

The SuSA approach to ν scattering
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Test of SuSA vs (e,e') data: intermediate energy

 Some strength is missing at the QEP 
 2p2h MEC are large in the “dip” region



Test of SuSA vs (e,e') data: higher energy



Test of SuSA vs (e,e') data: very high energy



Test of SuSA vs (e,e') data: low energy



Test of SuSA vs (e,e') data: low energy

For such low energies the SuSA 
approach is not expected to work



 
peak value ~ 0.55 

Test of SuSA vs (e,e') data: L/T separation

data (not visible)
data with inelastic “SuSA” subtracted



Test of SuSA vs (e,e') data: L/T separation



data 

inelastic
subtracted 

inelastic 
and MEC
subtracted 

Test of SuSA vs (e,e') data: L/T separation



peaks above 0.8, in contrast with 
the longitudinal case, where the 
peak value was 0.55 

first clear evidence of violation of scaling of 0th kind

Test of SuSA vs (e,e') data: L/T separation



peaks above 0.8, in contrast with 
the longitudinal case, where the 
peak value was 0.55 

The RMF model predicts violation of scaling of 0th kind and gives better agreement with 
data than any other model so far. Transverse enhancement due to relativistic effects 
absent in other models. 

Test of SuSA vs (e,e') data: L/T separation



Models vs the longitudinal scaling function

 The RMF model predicts violation of scaling of 0th kind.
   Transverse enhancement due to relativistic effects absent in other models
[Off-shell effects in the relativistic mean field model and their role in CC (anti)neutrino scattering at MiniBooNE kinematics

M.V. Ivanov et al., Phys.Lett. B727 (2013) 265-271]

 Work is in progress to implement this violation in the SuSA approach 
  (“SuSA version 2”)
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J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, C.F.Williamson, Physics Letters B 696 (2011) 151–155

         SuSA versus MiniBooNE ν data       

The SuSA model underestimates the data



J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, C.F.Williamson, Physics Letters B 696 (2011) 151–155

The SuSA model underestimates the data
except for the first angular bin:

         SuSA versus MiniBooNE ν data       



J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, C.F.Williamson, Physics Letters B 696 (2011) 151–155

The SuSA model underestimates the data
except for the first angular bin:

...which is however very sensitive to low
excitation energies (ω<50 MeV) and requires 
a totally different nuclear modeling (discrete 
sates, giant resonance, etc.)...  

         SuSA versus MiniBooNE ν data       



         SuSA versus MiniBooNE ν data       

J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, Physical Review Letters 108, 152501 (2012) 



                         From low to high neutrino energies

The SuSA model can be applied to high energy (NOMAD kinematics) for CCQEν: 

G.D.Megias, J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, Phys.Lett. B725 (2013) 170-174



                         From low to high neutrino energies

G.D.Megias, J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, Phys.Lett. B725 (2013) 170-174

Results are compatible 
with NOMAD data



                         From low to high neutrino energies

G.D.Megias, J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, Phys.Lett. B725 (2013) 170-174

...but not with 
MiniBooNE



                         From low to high neutrino energies

G.D.Megias, J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, Phys.Lett. B725 (2013) 170-174

Low excitation energies give a sizeable 
contribution even at 100 GeV neutrino energy!



                         From low to high neutrino energies

Similarly for CCQE antineutrino:

G.D.Megias, J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, Phys.Lett. B725 (2013) 170-174





 l

−

l−  

W  −

e , e ' 

e

e '

 , l 

d2σ

dωdΩ '
=σMott (vLRL+vT RT )

d2σ

dωdΩ '
=σ0(V CC RCC+2V CLRCL+V L LRL L+V T RT±2V T ' RT ')

2 electromagnetic response functions

5 (3) weak response functions

l= , e ,

WμνL
μν

Hadronic tensorLeptonic tensor

Purely isovector
Typically transverse  (CC,CL,LL small)
Have VV, AA and VA components generated by J

μ
=J

μ

V+J
μ

A

                                           
                                  

+ ν
– νV LR L

CC

                         L, T and T' separate contributions



                         L, T and T' separate contributions

G.D.Megias, J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, Phys.Lett. B725 (2013) 170-174

L

T

T'

constructive for neutrinos,
distructive for antineutrinos
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Relativistic effects

ω=
Q2

2m
=

q 2

2m

 Kinematics modifies the response region

 Boost factors modify the height of the QEP (with opposite sign in the L and T channels) 

 



 VV-AA-VA separation MiniBooNE
 kinematics

 ,
− 



L-T-T' separation MiniBooNE
 kinematics

 ,
− 



Kinematics



Total CCQE cross sections in RIA

 [Amaro et al., PRL 98, 242501 (2007)]

RMF~SuSA

RFG~RPWIA~SRWS



Meson Exchange Currents

MEC are two-body currents involving 2 nucleons exchanging a meson.
Currents induced by the pion mainly (up to higher order relativistic corrections) 
occur in transverse channel and violate superscaling. 

“contact”
     or
“seagull” “pion-in-flight”

“Δ-MEC”

Δ

π



Meson Exchange Currents: 1p1h and 2p2h many-body diagrams

1p-1h sector: 



2p-2h sector
(just a subset of all possible many-body 

 diagrams involving two pionic lines)         ⇒ 

Only contribute inside the RFG 
response region -1<ψ<1.
The net contribution to (e,e') QEP is small due to
cancellations between MEC and correlations
[Amaro et al., Phys.Rept.368(2002),NPA723 (2003)]

Contribute also outside the RFG 
response region: ψ<-1 and ψ>1



2p-2h MEC in electron scattering

 '0

 '0

RFG

RFG

 De Pace et al., NPA741, 249 (2004), RFG-based calculation 

Scaling is broken both
above and  below the QEP

2p-2h MEC give a positive contribution 
of ~10-20% outside the QEP, filling the
“dip” between the QE and ∆ peak.



Why can MEC be relevant in quasielastic neutrino scattering?
In (e,e') experiments Ee is well-known and “QE” means that the electron is scattered by an 
individual nucleon moving inside the nucleus

In (νμ,μ) the neutrino beam is not monochromatic, but it spans a wide range of energies
     “Flux-averaged” cross section:

                                                             
                                                            Different regions in the (q,ω) plane, 
                                                            corresponding to different reaction mechanisms,
                                                            contribute to each experimental point (θ,T

μ
).

                                                            “QE”=no pions in the final state 
                                                             Processes involving scattering off two or more nucleons
                                                             must also be considered [Martini et al, Nieves et al]
                                                             


d2

dcosdT 
=

1
tot
∫

d2 E 

dcosdT 
EdE

γ
e' N'

e N

ω=Q2/2m
N

〈E 〉=0.788 GeV

MiniBooNE ν
μ 
flux

W +

ν

μ N

A

μ

ν

W + ...

QEP

A-2 N
1 N

2

A

A-1



2p-2h MEC in CCQE neutrino scattering
 We apply the calculation of NPA741, 249 (2004), which is fully relativistic and RFG-based, to  
modify the polar-vector transverse response function using CVC

within the SuSA approach.

We neglect the MEC contribution to the axial response because the  2p2h sector is not 
directly reachable in lowest order for the axial-vector matrix elements:

          

N.B. A fully consistent gauge invariant calculation would require also the inclusion of the 
associated correlation diagrams, not explicitly included in present calculation.
However these are 
1) hard to compute because in RFG because of divergences that need to be renormalized 
[Amaro et al., Phys.Rev.C82:044601 (2010)]

2) possibly already included in the phenomenological susperscaling function, since they 
also contribute to longitudinal channel

RT=RT
VVRT

AA

J 0
V MEC ~O 2

JV MEC ~O 

J 0
A MEC ~O  
J A MEC ~O 2


=q /2mN



                                      MiniBooNE data

J.E.Amaro, MBB, J.A.Caballero, T.W.Donnelly, C.F.Williamson, Physics Letters B 696 (2011) 151–155



Comparison with MiniBooNE single differential CC cross sections

Strength is missing at 
larger scattering angles
(θ>500)

and lower muon energies
(T

μ
<0.4 GeV)



Total CC cross section 



FSFSII

Total CC cross section 



Correlation Currents

In order to preserve gauge invariance correlation diagrams, where the virtual boson 
attaches to one of two interacting nucleons, must be also considered:

N

The total two-body current is conserved:

                ∂ μ J(2)
μ
 = 0 

Correlation currents contribute to both longitudinal and transverse channels.



1p-1h MEC in electron scattering
   Amaro et al., NPA723, 181 (2003)

I kind scaling

II kind scaling

RFG

including Δ-MEC
at various q

including Δ-MEC
at various kF

The Δ-MEC give the 
dominant contribution

The response is calculated 
on the RFG basis and is
mainly transverse (although
relativistically there is a small
L contribution)

Both kinds of scaling 
are violated

The net contribution to the cross
section is negative

However correlation diagrams
needed to preserve gauge 
invariance give a positive 
contribution which roughly
compensate MEC

The total contribution of MEC+correlations in the 1p-1h sector is small



Expressions for the π-exchange currents

J 2
 =J s

 J 
 J  



“Seagull”:

J s 
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 Formalism: (l,l') inclusive scattering



νl
(−)

W  −

e , e ' 

e

e '

(ν ,ν ')

d2

d  ' d '
=Mott v LRLvT RT 

2 electromagnetic response functions

6 weak response functions

l= , e ,

WμνL
μν

Hadronic tensorLeptonic tensor

NC

d2σ

d T N dΩN

=σ0 [V LR L+V T RT+V TT RTT+V TLRTL±(2V T ' RT '+2V TL 'RTL')]

N
ν ' l
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NC neutrino cross section 

Best fit of axial mass at g
A 

(s)=0

in SuSA and RMF



NC p/N ratio: axial strangeness
RMFSuSA

Best fits of g
A

(s) at fixed M
A  

The dependence upon the nuclear model is essentially canceled in the ratio

 g
A

(s) = -0.06±0.31    SuSA       (χ2/DOF=31.3/29)

 g
A

(s) = +0.04±0.28    RMF        (χ2/DOF=33.6/29)



  

For each value of q and ω, evaluating the (e,e') cross section implies an integral over the  
kinematically allowed region for the semi-inclusive reaction (e,e'N):

Quasielastic kinematics and y-scaling

missing energy – 
separation energy

missing momentum

above QEP
(resonances 
 and beyond)



Formalism: Quasi-elastic peak

Single nucleon current:

jV
=u P ' F1


i

2mN

F2
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2 , RT

VV
=2[ GM

1
]
2

R LL
AA
=
2


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2

RT
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1]2 , RT '
VA=2 1 GM

1 GA
1

The nuclear weak responses Ri are 

- purely isovector

- typically transverse and 

- have vector-vector (VV), axial-axial (AA) and vector-axial (VA) contributions

n
−p

=q /2mN  , =/2mN , =
2−2 dimensionless variables

Dominant reaction mechanism is CCQE



Scaling in the Delta region

[ d2


dd ]
' '

=[ d2


dd ]
exp

−[ d2


dd ]
QE

1) subtract the QE contribution obtained from
    Superscaling hypothesis 

2) divide by the elementary N →∆ 
    cross section

F '  '=
[ d2


dd ]

'  '

M vLGL
vTGT

 

3) multiply by the Fermi momentum

f ' '=kF F ' '

4) plot versus the appropriate scaling variable

= q  ,

=1
1

4
m

2 /mN
2−1 inelasticity

E e=0.3−4GeV

=12−1450

12C , 16O

This approach can work only at Ψ∆<0,
since at  ΨΔ>0 other resonances and 
the tail of DIS contribute

Amaro, Barbaro, Caballero, Donnelly, Molinari, Sick, PRC71 (2005)



 Test of the super-scaling function

R Lq ,=GL q , f QE  GL
 q , f   

RT q ,=GT q , f QE  GT

q , f   

d2

dd
=Mott v LRLvT RT 

12C E e=0.961GeV ,=37.50
16O

Amaro et al., PRC71, 015501 (2005)



Integrated cross sections
 [Amaro et al., Phys. Rev. Lett. 98, 242501 (2007)]

Relativistic Mean Field ≈ SuperScaling Approach

Relativistic Fermi Gas ≈ Semi-relativistic Shell Model



 CC neutrino cross section in SuSA model

RFG

SuSA

Δ
QEP

Amaro et al., PRC71, 015501 (2005)



Transverse enhancement in the RMF model

J.A.Caballero, J.E.Amaro, MBB, T.W.Donnelly, J.M.Udias, Phys.Lett.B653:366-372,2007

Fully Relativistic Mean Field (RMF) 
calculation: the L/T difference originates 
from the dynamical enhancement of the 
lower components due to the presence 
of strong potentials.

“Effective Momentum Approach” (EMA): 
the relationship between upper and 
lower components is forced to be the 
same as for free spinors: the L/T 
difference disappears.

12C
q=1 GeV/c
E

e
=1 GeV



Transverse enhancement in the RMF model

Fully Relativistic Mean Field (RMF) 
calculation: the L/T difference originates 
from the dynamical enhancement of the 
lower components due to the presence 
of strong potentials.

“Effective Momentum Approach” (EMA): 
the relationship between upper and 
lower components is forced to be the 
same as for free spinors: the L/T 
difference disappears.

12C
q=1 GeV/c
E

e
=1 GeV

J.A.Caballero, J.E.Amaro, MBB, T.W.Donnelly, J.M.Udias, Phys.Lett.B653:366-372,2007
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