Neutrino-Nucleus Interactions for Current and Next Generation Neutrino Oscillation Experiments

Theory of resonance production and decay

Luis Alvarez-Ruso

IFIC, Valencia

Resonance properties

- Originally from $\pi \mathbb{N} \to \pi \mathbb{N}$
 - Quantum numbers

Breit-Wigner mass, width, branching ratios

Cleaner: pole position and residues

Electromagnetic properties: helicity amplitudes

Resonance properties

- Originally from $\pi \mathbb{N} \to \pi \mathbb{N}$
 - Quantum numbers

Breit-Wigner mass, width, branching ratios

Cleaner: pole position and residues

$$\blacksquare \ \gamma \ \mathsf{N} \to \pi \ \mathsf{N}, \ \gamma^* \ \mathsf{N} \to \pi \ \mathsf{N}$$

Electromagnetic properties: helicity amplitudes

$$\begin{split} A_{1/2} &= \sqrt{\frac{2\pi\alpha}{k_R}} \left\langle R, J_z = 1/2 \left| \epsilon_{\mu}^{+} J_{\rm EM}^{\mu} \right| N, J_z = -1/2 \right\rangle \zeta \\ A_{3/2} &= \sqrt{\frac{2\pi\alpha}{k_R}} \left\langle R, J_z = 3/2 \left| \epsilon_{\mu}^{+} J_{\rm EM}^{\mu} \right| N, J_z = 1/2 \right\rangle \zeta \\ S_{1/2} &= -\sqrt{\frac{2\pi\alpha}{k_R}} \frac{|\mathbf{q}|}{\sqrt{Q^2}} \left\langle R, J_z = 1/2 \left| \epsilon_{\mu}^{0} J_{\rm EM}^{\mu} \right| N, J_z = 1/2 \right\rangle \zeta \end{split}$$

Resonance properties

- Originally from $\pi \mathbb{N} \to \pi \mathbb{N}$
 - Quantum numbers
 - Breit-Wigner mass, width, branching ratios
 - Cleaner: pole position and residues
- - Electromagnetic properties: helicity amplitudes

Goals:

- Obtain a precise knowledge of the nucleon excitation spectrum
- Compare to quark models
- Missing resonances; decoupled from πN ?
- Compare to lattice QCD

- Partial Wave Analyses (in a nutshell):
 - Key to resonance properties
 - Require high-quality data sets
 - Theoretical models:
 - Relativistic (many of them)
 - Cross-symmetric (few of them)
 - Gauge invariant ($\gamma \ N \rightarrow N' \ X$)
 - Non resonant part
 - Fulfilling chiral symmetry constrains (close to threshold)
 - Phenomenological
 - Resonant part: Breit-Wigner parametrizations (mostly)
 - (Approximately) unitary
 - Bethe-Salpeter equation in coupled channels solved (ideally)
 - Background and resonances independently unitarized
 - K-matrix
 - Dynamical models

Partial Wave Analyses (in a nutshell):

- Partial Wave Analyses (in a nutshell):
 - Key to resonance properties
 - Require high-quality data sets
 - Theoretical models:
 - Relativistic (many of them)
 - Cross-symmetric (few of them)
 - Gauge invariant ($\gamma \ N \rightarrow N' \ X$)
 - Non resonant part
 - Fulfilling chiral symmetry constrains (close to threshold)
 - Phenomenological
 - Resonant part: Breit-Wigner parametrizations (mostly)
 - (Approximately) unitary
 - Bethe-Salpeter equation in coupled channels solved (ideally)
 - Background and resonances independently unitarized
 - K-matrix
 - Dynamical models

- Partial Wave Analyses (PWA):
 - Key to resonance properties
 - Karlsruhe-Helsinki (KH80)
 - Carnegie Mellon-Berkeley (CMB80)
 - George Washington University (GWU/SAID)
 - Mainz (MAID)
 - Giessen
 - JLab, Excited Baryon Analysis Center (EBAC)
 - Bonn-Gatchina

Unitary isobar model for $\gamma^* \, N o N \, \pi$ Tiator et al., EPJ Special Topics 198 (2011)

$$T_{\gamma\pi}(W,Q^2) = T^B_{\gamma\pi}(W,Q^2) + T^R_{\gamma\pi}(W,Q^2)$$

For each partial wave α :

$$T^{B,\alpha}_{\gamma\pi}(W,Q^2) = V^{B,\alpha}_{\gamma\pi}(W,Q^2) \left[1 + iT^{\alpha}_{\pi N}(W)\right]$$

 $V^{B,\alpha}_{\gamma\pi}(W,Q^2) \leftarrow \text{Born terms}$, phenomenological model

 $T^{\alpha}_{\pi N}(W) \leftarrow \pi N$ elastic amplitude, from SAID

$$T_{\gamma\pi}^{R,\alpha} = -\bar{\mathcal{A}}_{\alpha}^{R}(W,Q^{2}) \frac{f_{\gamma N}(W)\Gamma_{\rm tot}(W)f_{\pi N}(W)}{W^{2} - M_{R}^{2} + iM_{R}\Gamma_{\rm tot}(W)} e^{i\phi_{R}(W,Q^{2})}$$

- $f_{\pi N}(W) \leftarrow$ Breit-Wigner factor for resonance decay $f_{\gamma N}(W) \leftarrow \gamma NR$ vertex
- $\phi_R(W,Q^2) \leftarrow$ adjusted to fulfill Watson theorem

 $\bar{\mathcal{A}}^R_{lpha}(W,Q^2) \leftarrow$ Multipole amplitudes

Unitary isobar model for $\gamma^* N \to N \pi$ Tiator et al., EPJ Special Topics 198 (2011) $T_{\gamma\pi}(W,Q^2) = T^B_{\gamma\pi}(W,Q^2) + T^R_{\gamma\pi}(W,Q^2)$

For each partial wave α :

$$T_{\gamma\pi}^{R,\alpha} = -\bar{\mathcal{A}}_{\alpha}^{R}(W,Q^{2}) \frac{f_{\gamma N}(W)\Gamma_{\rm tot}(W)f_{\pi N}(W)}{W^{2} - M_{R}^{2} + iM_{R}\Gamma_{\rm tot}(W)} e^{i\phi_{R}(W,Q^{2})}$$

 $\bar{\mathcal{A}}^R_{lpha}(W,Q^2) \leftarrow$ Multipole amplitudes

 $j=1 + \frac{1}{2}$:

$$A_{1/2} = -\frac{1}{2} \left[(l+2)\bar{E}_{l+} + l\bar{M}_{l+} \right]$$

$$A_{3/2} = \frac{1}{2}\sqrt{l(l+2)}(\bar{E}_{l+} - \bar{M}_{l+})$$

$$S_{1/2} = -\frac{l+1}{\sqrt{2}}\bar{S}_{l+}$$

Initary isobar model for $\gamma^* N \to N \pi$ Tiator et al., EPJ Special Topics 198 (2011) $T_{\gamma\pi}(W,Q^2) = T^B_{\gamma\pi}(W,Q^2) + T^R_{\gamma\pi}(W,Q^2)$

For each partial wave α :

$$T_{\gamma\pi}^{R,\alpha} = -\bar{\mathcal{A}}_{\alpha}^{R}(W,Q^{2}) \frac{f_{\gamma N}(W)\Gamma_{\rm tot}(W)f_{\pi N}(W)}{W^{2} - M_{R}^{2} + iM_{R}\Gamma_{\rm tot}(W)} e^{i\phi_{R}(W,Q^{2})}$$

 $\bar{\mathcal{A}}^R_{\alpha}(W,Q^2) \leftarrow$ Multipole amplitudes

 $\begin{array}{rcl} & \mathbf{j} = \mathbf{l} - \frac{\gamma_{2}}{2}: \\ & A_{1/2} & = & \frac{1}{2} \left[(l+1) \bar{M}_{l-} - (l-1) \bar{E}_{l-} \right] \\ & A_{3/2} & = & -\frac{1}{2} \sqrt{(l-1)(l+1)} (\bar{E}_{l-} + \bar{M}_{l-}) \\ & S_{1/2} & = & -\frac{l}{\sqrt{2}} \bar{S}_{l-} \end{array}$

Transition N-R e.m. helicity amplitudes extracted for all 4-star resonaces with W < 1.8 GeV</p>

For example:

Tiator et al., EPJ Special Topics 198 (2011)

L. Alvarez-Ruso, IFIC, Valencia

Transition N-R e.m. helicity amplitudes extracted for all 4-star resonaces with W < 1.8 GeV</p>

For example:

Tiator et al., EPJ Special Topics 198 (2011)

L. Alvarez-Ruso, IFIC, Valencia

Weak Resonance excitation

Resonances contribute to:

- the inclusive $\nu_l N \rightarrow l X$ cross section
- several exclusive channels: $\nu_l N \rightarrow l N' \pi$

 $\nu_{l} N \to l N' \gamma$ $\nu_{l} N \to l N' \eta$ $\nu_{l} N \to l \Lambda(\Sigma) \overline{K}$

At $E_{\nu} \sim 1$ GeV (MiniBooNE, SciBooNE, T2K,...) Δ (1232) is dominant But

• At $E_{\nu} > 1$ GeV (MINER ν A) N* become important

π production in nuclei

Possible problems in:

- **\pi** production model on the nucleon
- medium modifications of amplitudes
- FSI

π production in nuclei

Rodrigues@NuInt12 (backup)

ANL/BNL data not particularly helpful...

Weak resonance excitation

- Is a PWA-like model needed for (anti)neutrino reactions in the resonance region?
 - There is a already one: Sato-Lee/EBAC
- Most models (GiBUU, GENIE, ...)
 - Single resonance excitation
 - Phenomenological/empirical backgrounds
 - (+) simple, easy to apply to nuclear targets
 - (-) wrong interferences / angular distributions (on nucleons)
 - Is this good enough?

Weak resonance excitation

- Is a PWA-like model needed for (anti)neutrino reactions in the resonance region?
 - There is a already one: Sato-Lee/EBAC
- Most models (GiBUU, Rein-Sehgal, ...)
 - Single resonance excitation
 - Phenomenological/empirical backgrounds
 - (+) simple, easy to apply to nuclear targets
 - (-) wrong interferences / angular distributions (on nucleons)
 - Is this good enough?
 - Yes... but available experimental information from πN , γN , γ^*N should be taken into account

LAR, Singh, Vicente-Vacas, PRC 57 (1998) Lalakulich, Paschos, Piranishvili, PRD 74 (2006) Leitner, Buss, LAR, Mosel, PRC 79 (2009)

CC N* excitation: $\nu_l(k) N(p) \rightarrow l^-(k') N^*(p')$

 $\frac{d\sigma}{dk'_0 d\Omega'} = \frac{1}{32\pi^2} \frac{|\vec{k'}|}{k_0 M_N} \mathcal{A}(p') |\bar{\mathcal{M}}|^2 \quad \leftarrow \text{Inclusive cross section}$

$$\mathcal{A}(p') = \frac{M^*}{\pi} \frac{\Gamma(p')}{(p'^2 - M^{*2})^2 + M^{*2}\Gamma^2(p')}$$

 $\Gamma(p') \leftarrow \text{total momentum dependent width}$

$$\mathcal{M} = \frac{G_F \cos \theta_C}{\sqrt{2}} l^{\alpha} J_{\alpha}$$
$$l^{\alpha} = \bar{u}(k') \gamma^{\alpha} (1 - \gamma_5) u(k) \quad \leftarrow \text{leptonic current}$$

 $J_{\alpha} = V_{\alpha} - A_{\alpha} \leftarrow \text{hadronic current}$ can be parametrized in terms of N-N* transition form factors

CC N* excitation: $\nu_l(k) N(p) \rightarrow l^-(k') N^*(p')$

 $\frac{d\sigma}{dk'_0 d\Omega'} = \frac{1}{32\pi^2} \frac{|\vec{k'}|}{k_0 M_N} \mathcal{A}(p') |\bar{\mathcal{M}}|^2 \quad \leftarrow \text{Inclusive cross section}$

$$\mathcal{A}(p') = \frac{M^*}{\pi} \frac{\Gamma(p')}{(p'^2 - M^{*2})^2 + M^{*2}\Gamma^2(p')}$$

 $\Gamma(p') \leftarrow \text{total momentum dependent width}$

$$\mathcal{M} = \frac{G_F \cos \theta_C}{\sqrt{2}} l^{\alpha} J_{\alpha}$$
$$l^{\alpha} = \bar{u}(k') \gamma^{\alpha} (1 - \gamma_5) u(k) \quad \leftarrow \text{leptonic current}$$
$$J_{\alpha} = V_{\alpha} - A_{\alpha} \quad q^{\alpha} V_{\alpha} = 0 \quad \leftarrow \text{CVC}$$

Second resonance peak: N*(1440), N*(1520), N*(1535)
 N*(1440) J^P=1/2⁺

$$J_{\alpha} = \bar{u}(p') \left[\frac{F_1^V}{(2M_N)^2} (\not q_{\alpha} - q^2 \gamma_{\alpha}) + i \frac{F_2^V}{2M_N} \sigma_{\alpha\beta} q^{\beta} - F_A \gamma_{\alpha} \gamma_5 - \frac{F_P}{M_N} \gamma_5 q_{\alpha} \right] u(p)$$

■ N*(1535) J^P=1/2⁻

$$J_{\alpha} = \bar{u}(p') \left[\frac{F_1^V}{(2M_N)^2} (\not q_{\alpha} - q^2 \gamma_{\alpha}) \gamma_5 + i \frac{F_2^V}{2M_N} \sigma_{\alpha\beta} q^{\beta} \gamma_5 - F_A \gamma_{\alpha} - \frac{F_P}{M_N} q_{\alpha} \right] u(p)$$

$$J_{\alpha} = \bar{u}^{\mu}(p') \left[\frac{C_{3}^{V}}{M_{N}} (g_{\alpha\mu} \not{\!\!\!}_{\mu} - q_{\alpha} \gamma_{\mu}) + \frac{C_{4}^{V}}{M_{N}^{2}} (g_{\alpha\mu} q \cdot p' - q_{\alpha} p'_{\mu}) + \frac{C_{5}^{V}}{M_{N}^{2}} (g_{\alpha\mu} q \cdot p - q_{\alpha} p_{\mu}) \right. \\ \left. + \left(\frac{C_{3}^{A}}{M_{N}} (g_{\alpha\mu} \not{\!\!}_{\mu} - q_{\alpha} \gamma_{\mu}) + \frac{C_{4}^{A}}{M_{N}^{2}} (g_{\alpha\mu} q \cdot p' - q_{\beta} p'_{\mu}) + C_{5}^{A} g_{\alpha\mu} + \frac{C_{6}^{A}}{M_{N}^{2}} q_{\alpha} q_{\mu} \right) \gamma_{5} \right] u(p)$$

Vector and EM transition form factors

 $\vec{V}^{\alpha} = \mathcal{V}^{\alpha} \frac{\vec{\tau}}{2} \leftarrow \text{isovector current} \quad V_{Y}^{\alpha} = \mathcal{V}_{Y}^{\alpha} \frac{I}{2} \leftarrow \text{hypercharge (isoscalar) current}$ $\langle p^{*} | V_{\text{EM}}^{\alpha} | p \rangle = \langle p^{*} | V_{3}^{\alpha} + \frac{1}{2} V_{Y}^{\alpha} | p \rangle = \frac{\mathcal{V}^{\alpha} + \mathcal{V}_{Y}^{\alpha}}{2} \equiv \mathcal{V}_{p}^{\alpha}$ $\langle n^{*} | V_{\text{EM}}^{\alpha} | n \rangle = \langle n^{*} | V_{3}^{\alpha} + \frac{1}{2} V_{Y}^{\alpha} | n \rangle = \frac{-\mathcal{V}^{\alpha} + \mathcal{V}_{Y}^{\alpha}}{2} \equiv \mathcal{V}_{n}^{\alpha}$

Then: $\langle p^* | V_{CC}^{\alpha} | n \rangle = \langle p^* | V_1^{\alpha} + i V_2^{\alpha} | n \rangle = \mathcal{V}_p^{\alpha} = \mathcal{V}_p^{\alpha} - \mathcal{V}_n^{\alpha}$

$$\langle p^* | V_{\text{NC}}^{\alpha} | p \rangle = \langle p^* | (1 - 2\sin^2 \theta_W) V_3^{\alpha} - \sin^2 \theta_W V_Y^{\alpha} | p \rangle$$

$$= \left(\frac{1}{2} - \sin^2 \theta_W \right) \mathcal{V}^{\alpha} + \sin^2 \theta_W \mathcal{V}^{\alpha}_Y$$

$$= \left(\frac{1}{2} - 2\sin^2 \theta_W \right) \mathcal{V}^{\alpha}_p - \mathcal{V}^{\alpha}_n$$

$$(1)$$

Vector CC and NC form factors can be expressed in terms of EM ones

Vector CC and NC form factors can be expressed in terms of EM ones

• CC:
$$F_{1,2}^V = F_{1,2}^p - F_{1,2}^n$$

• NC: $\tilde{F}_{1,2}^{p(n)} = \left(\frac{1}{2} - 2\sin^2\theta_W\right) F_{1,2}^{p(n)} - F_{1,2}^{n(p)}$

• The same applies for $C_{1,2,3}^V$

Helicity amplitudes from π photo- and electro-production data

$$\begin{split} A_{1/2} &= \sqrt{\frac{2\pi\alpha}{k_R}} \left\langle R, J_z = 1/2 \left| \epsilon_{\mu}^{+} J_{\rm EM}^{\mu} \right| N, J_z = -1/2 \right\rangle \zeta \\ A_{3/2} &= \sqrt{\frac{2\pi\alpha}{k_R}} \left\langle R, J_z = 3/2 \left| \epsilon_{\mu}^{+} J_{\rm EM}^{\mu} \right| N, J_z = 1/2 \right\rangle \zeta \\ S_{1/2} &= -\sqrt{\frac{2\pi\alpha}{k_R}} \frac{|\mathbf{q}|}{\sqrt{Q^2}} \left\langle R, J_z = 1/2 \left| \epsilon_{\mu}^{0} J_{\rm EM}^{\mu} \right| N, J_z = 1/2 \right\rangle \zeta \end{split}$$

■ Helicity amplitudes ⇒ EM form factors

- Rein-Sehgal model: Rein, Sehgal, Ann. Phys. 133 (1981) 79.
 - Used by almost all MC generators
 - Relativistic quark model of Feynman-Kislinger-Ravndal with SU(6) spin-flavor symmetry
 - Helicity amplitudes for 18 baryon resonances
 - Lepton mass = 0
 - Kuzmin et al., Mod. Phys. Lett. A19 (2004)
 Corrections: Berger, Sehgal, PRD 76 (2007) Graczyk, Sobczyk, PRD 77 (2008)
 - **Poor description** of π electroproduction data on p

Rein-Sehgal model: Rein, Sehgal, Ann. Phys. 133 (1981) 79.

Rein-Sehgal model: Rein, Sehgal, Ann. Phys. 133 (1981) 79.

$$\frac{d\sigma}{dq^2d\omega} \sim u^2 \left(|f_{-3}|^2 + |f_{-1}|^2 \right) + v^2 \left(|f_{+3}|^2 + |f_{+1}|^2 \right) + 2uv \frac{M_N^2}{M_R^2} \frac{\mathbf{q}^2}{(-q^2)} \left(|f_{0+}|^2 + |f_{0-}|^2 \right)$$

$$f_{\pm 3} = \left\langle N, J_z = \mp 1/2 \left| \frac{1}{2M_R} \epsilon_{\mu}^{\pm} J_{\text{EM}}^{\mu} \right| R, J_z = \mp 3/2 \right\rangle$$

$$f_{\pm 1} = \left\langle N, J_z = \pm 1/2 \left| \frac{1}{2M_R} \epsilon_{\mu}^{\pm} J_{\text{EM}}^{\mu} \right| R, J_z = \mp 1/2 \right\rangle$$

$$f_{0\pm} = \left\langle N, J_z = \pm 1/2 \left| \frac{\sqrt{-q^2}}{|\mathbf{q}|} \frac{1}{2M_R} \epsilon_{\mu}^0 J_{\text{EM}}^{\mu} \right| R, J_z = \pm 3/2 \right\rangle$$
Helicity amplitudes

Rein-Sehgal model: Rein, Sehgal, Ann. Phys. 133 (1981) 79.

$$\frac{d\sigma}{dq^2 d\omega} \sim u^2 \left(|f_{-3}|^2 + |f_{-1}|^2 \right) + v^2 \left(|f_{+3}|^2 + |f_{+1}|^2 \right) + 2uv \frac{M_N^2}{M_R^2} \frac{\mathbf{q}^2}{(-q^2)} \left(|f_{0+}|^2 + |f_{0-}|^2 \right)$$

Rein-Sehgal model: Rein, Sehgal, Ann. Phys. 133 (1981) 79.

$$\frac{d\sigma}{dq^2 d\omega} \sim u^2 \left(|f_{-3}|^2 + |f_{-1}|^2 \right) + v^2 \left(|f_{+3}|^2 + |f_{+1}|^2 \right) + 2uv \frac{M_N^2}{M_R^2} \frac{\mathbf{q}^2}{(-q^2)} \left(|f_{0+}|^2 + |f_{0-}|^2 \right)$$

$$f_{\pm 3} = \left\langle N, J_z = \mp 1/2 \left| \frac{1}{2M_R} \epsilon_{\mu}^{\pm} J_{\text{EM}}^{\mu} \right| R, J_z = \mp 3/2 \right\rangle$$

$$f_{\pm 1} = \left\langle N, J_z = \pm 1/2 \left| \frac{1}{2M_R} \epsilon_{\mu}^{\pm} J_{\text{EM}}^{\mu} \right| R, J_z = \mp 1/2 \right\rangle$$

$$f_{0\pm} = \left\langle N, J_z = \pm 1/2 \left| \frac{\sqrt{-q^2}}{|\mathbf{q}|} \frac{1}{2M_R} \epsilon_{\mu}^0 J_{\text{EM}}^{\mu} \right| R, J_z = \pm 3/2 \right\rangle$$
Helicity amplitudes

$$f_{\pm 1(\pm 3)} = -s \sqrt{\frac{M_N}{M_R}} \sqrt{\frac{k_R}{2\pi\alpha}} A_{1/2(3/2)}$$
$$f_{0\pm} = -s \frac{(-q^2)}{q^2} \sqrt{\frac{M_N}{M_R}} \sqrt{\frac{k_R}{2\pi\alpha}} S_{1/2}$$

 $s \leftarrow sign$, depends on the resonance

- Rein-Sehgal model: Rein, Sehgal, Ann. Phys. 133 (1981) 79.
- It is possible to use helicity amplitudes from PWA without altering the structure of Rein-Sehgal model
- MAID helicity amplitudes ⇒ GENIE: LAR, S. Dytman
- First results: Steve's talk on Sunday
 - Agreement to (e,e') data improved
 - Discrepancies remain:
 - Mistakes
 - Ambiguity in the off-shell (W \neq M_R) dependence
 - Non-resonant background and interferences

Non-resonant background

- Specific for each excusive process
- Background terms interfere with the resonant contributions
 $\nu_l N \rightarrow l N' \pi$
- In Rein-Sehgal model: Rein, Sehgal, Ann. Phys. 133 (1981) 79.

"we have represented the background by a resonance amplitude of P11 character (like the nucleon), with the Breit-Wigner factor replaced by an adjustable constant. The corresponding cross section is added incoherently to the resonant cross section."

- General principles:
 - CVC, PCAC
 - Threshold behavior dictated by chiral symmetry of QCD

Non-resonant background

- for MC generators
- Vector part: T. Leitner, O. Buss, LAR, U. Mosel, PRC 79 (2009) Empirical $\gamma^* N \to N' \pi$ amplitudes:

$$\mathcal{V}^{\mu}_{\pi N} = \sum_{i=1}^{6} A^{EM}_{i} M^{\mu}_{i}$$

 $A_i^{EM} \leftarrow$ Parametrized by MAID using (e,e') data

Weak amplitudes obtained by isospin rotations

$$A_{i}^{p\pi^{+},\text{CC}} = \sqrt{2}A_{i}^{n\pi^{0},\text{EM}} + A_{i}^{p\pi^{-},\text{EM}},$$

$$A_{i}^{n\pi^{+},\text{CC}} = \sqrt{2}A_{i}^{p\pi^{0},\text{EM}} - A_{i}^{p\pi^{-},\text{EM}},$$

$$A_{i}^{p\pi^{0},\text{CC}} = A_{i}^{p\pi^{0},\text{EM}} - A_{i}^{n\pi^{0},\text{EM}} - \sqrt{2}A_{i}^{p\pi^{-},\text{EM}}$$

■ After subtracting resonances ⇒ background (+interference)

• CC N* excitation: $\nu_l(k) N(p) \rightarrow l^-(k') N^*(p')$

 $\frac{d\sigma}{dk'_0 d\Omega'} = \frac{1}{32\pi^2} \frac{|\vec{k'}|}{k_0 M_N} \mathcal{A}(p') |\bar{\mathcal{M}}|^2 \quad \leftarrow \text{Inclusive cross section}$

$$\mathcal{A}(p') = \frac{M^*}{\pi} \frac{\Gamma(p')}{(p'^2 - M^{*2})^2 + M^{*2}\Gamma^2(p')}$$

 $\Gamma(p') \leftarrow \text{total momentum dependent width}$

$$\begin{split} \mathcal{M} &= \frac{G_F \cos \theta_C}{\sqrt{2}} l^{\alpha} J_{\alpha} \\ l^{\alpha} &= \bar{u}(k') \gamma^{\alpha} (1 - \gamma_5) u(k) \quad \leftarrow \text{leptonic current} \\ J_{\alpha} &= V_{\alpha} - A_{\alpha} \quad q^{\alpha} V_{\alpha} = 0 \quad \leftarrow \text{CVC} \\ q^{\alpha} A_{\alpha} &= i(m_u + m_d) \bar{q}_u \gamma_5 q_d \quad \leftarrow \text{PCAC} \end{split}$$

Axial transition form factors

- Poorly known (if at all...)
- **PCAC**: $q^{\alpha}A_{\alpha} \approx 0$

• π -pole dominance of the pseudoscalar form factor: F_P , C_6^A

N*(1440)
$$J^{P}=1/2^{+}$$

PCAC $\Rightarrow F_{P} = -\frac{(M^{*} + M_{N})M_{N}}{q^{2} - m_{\pi}^{2}}F_{A}$
Using $\mathcal{L}_{N^{*}N\pi} = -\frac{g_{N^{*}N\pi}}{f_{\pi}}\bar{N}^{*}\gamma_{\mu}\gamma_{5}(\partial^{\mu}\vec{\pi})\vec{\tau}N$
 $g_{N^{*}N\pi} \Leftrightarrow \Gamma(N^{*} \to N\pi)$
 $f_{\pi} \leftarrow \pi$ decay constant
 π -pole dominance $\Rightarrow F_{P} = -2g_{N^{*}N\pi}F(q^{2})\frac{(M^{*} + M_{N})M_{N}}{q^{2} - m_{\pi}^{2}}$ $F(0) = 1$
Therefore $F_{A}(0) = 2g_{N^{*}N\pi} \leftarrow$ Goldberger-Treiman relation

Educated guess:
$$F_A(q^2) = F_A(0) \left(1 - \frac{q^2}{M_A^2}\right)^{-2} M_A = 1 \text{ GeV}$$

L. Alvarez-Ruso, IFIC, Valencia

Axial transition form factors

- Poorly known (if at all...)
- **PCAC**: $q^{\alpha}A_{\alpha} \approx 0$
- π -pole dominance of the pseudoscalar form factor: F_P , C_6^A

$$N^{*}(1535) J^{P}=1/2^{-}$$

$$PCAC \Rightarrow F_{P} = -\frac{(M^{*} - M_{N})M_{N}}{q^{2} - m_{\pi}^{2}}F_{A}$$

$$Using \quad \mathcal{L}_{N^{*}N\pi} = -\frac{g_{N^{*}N\pi}}{f_{\pi}}\bar{N}^{*}\gamma_{\mu}(\partial^{\mu}\vec{\pi})\vec{\tau}N \qquad \begin{array}{l} g_{N^{*}N\pi} \Leftrightarrow \Gamma(N^{*} \to N\pi) \\ f_{\pi} \leftarrow \pi \text{ decay constant} \end{array}$$

$$\pi\text{-pole dominance} \Rightarrow F_{P} = -2g_{N^{*}N\pi}F(q^{2})\frac{(M^{*} - M_{N})M_{N}}{q^{2} - m_{\pi}^{2}} \quad F(0) = 1$$

Therefore $F_A(0) = 2g_{N^*N\pi} \leftarrow \text{Goldberger-Treiman relation}$

Educated guess:
$$F_A(q^2) = F_A(0) \left(1 - \frac{q^2}{M_A^2}\right)^{-2} M_A = 1 \text{ GeV}$$

L. Alvarez-Ruso, IFIC, Valencia

Axial transition form factors

- Poorly known (if at all...)
- **PCAC**: $q^{\alpha}A_{\alpha} \approx 0$
- π -pole dominance of the pseudoscalar form factor: F_P , C_6^A

$$\begin{array}{l} \mathbf{N}^{*}(1520) \ \mathsf{J}^{\mathsf{P}}=3/2^{*} \\ \mathsf{PCAC} \Rightarrow \ C_{6}^{A} = -\frac{M_{N}^{2}}{q^{2}-m_{\pi}^{2}}C_{5}^{A} \\ \mathsf{Using} \ \ \mathcal{L}_{N^{*}N\pi} = -\frac{g_{N^{*}N\pi}}{f_{\pi}}\bar{N}_{\mu}^{*}\gamma_{5}(\partial^{\mu}\vec{\pi})\vec{\tau}N \\ \pi \leftarrow \pi \ \mathrm{decay\ constant} \\ \pi \text{-pole\ dominance} \Rightarrow \ C_{6}^{A} = 2g_{N^{*}N\pi}F(q^{2})\frac{(M^{*}-M_{N})M_{N}}{q^{2}-m_{\pi}^{2}} \\ \mathsf{F}(0) = 1 \\ \mathsf{Therefore\ } C_{5}^{A}(0) = -2g_{N^{*}N\pi}\leftarrow \mathsf{Goldberger-Treiman\ relation} \\ \mathsf{Educated\ guess:\ } C_{5}^{A}(q^{2}) = C_{5}^{A}(0)\left(1-\frac{q^{2}}{M_{A}^{2}}\right)^{-2}M_{A} = 1 \ \mathrm{GeV} \ \ C_{3}^{4} = C_{4}^{A} = 0 \end{array}$$

Non-resonant background

- for MC generators
- Axial part:
 - **PCAC** + π -pole dominance of the pseudoscalar current
 - Axial current at Q²=0 can be obtained from $\pi N \rightarrow \pi N$ Kamano et al, PRD 86, but also Rein, Sehgal, PCAC Coh π
 - There are several partial wave analyses of $\pi N \rightarrow \pi N$
 - After subtracting resonances \Rightarrow background (+interference) at Q²=0
 - At $Q^2 > 0$ there is no experimental information except ANL and BNL

Weak η production

- LAR, M. Sajjad Athar, M. Rafi Alam, M. J. Vicente Vacas
- $\square \quad \nu_l \, N \to l \, N' \, \eta$
- Background (from atmosferic ν) for proton decay searches: $p \rightarrow l^+ \eta$ D. Wall et al. PRD 62 (2000)
- A second class π-pole mechanism could be observed (forward)
 N. Dombey, PR 174 (1968)
- Sensitive to the N*(1535) (axial) properties
- Contributes to improvement of MC simulations in ν experiments

Weak η production

- LAR, M. Sajjad Athar, M. Rafi Alam, M. J. Vicente Vacas
- $\square \quad \nu_l \, N \to l \, N' \, \eta$
- Ingredients: s,u-channel nucleon pole, N*(1535), N*(1650)
 Results:

The N*(1535) excitation is dominant
 Small cross section but large enought to be measured at MINERvA

Questions

- Do we need a (drastically) better weak resonance production model?
- Which is the (best) way to take state-of-the-art pheno into account?
- How to deal with the non-resonant background (+interference)?
- How to deal with the RES -> DIS transition?
- Are there going to be new ν -nucleon measurements in the (near) future?
- Will Miner ν a help (at the nucleon level)?
- Can we get useful info from PV (e,e') experiments?
- How to avoid the donkey effect?

The donkey effect

INT 2013