## Lattice QCD input for nuclear structure

#### Achim Schwenk



#### **INT Workshop "Nuclear Reactions from Lattice QCD"** Seattle, March 12, 2013







ARCHES



Bundesministerium für Bildung und Forschung

Award for Research Cooperation and High Excellence in Science

## Outline

Chiral EFT and **c**<sub>i</sub> **uncertainties** 

T=3/2 components of 3N forces: 3n, 4n systems, neutron-rich nuclei

**Neutron matter** is easier to calculate than n,p matter, provides tight constraints for neutron-rich matter Is neutron matter easier in lattice QCD?

Lattice QCD for fundamental symmetries:

- neutrinoless double-beta decay, nn to pp matching problem?
- WIMP-nucleon couplings for dark matter response of nuclei



Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meissner,...



Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meissner,...

## Range of c<sub>i</sub> couplings

Uncertainty range

| y range                      | C1   | <b>C</b> 3 | C4  |         |
|------------------------------|------|------------|-----|---------|
| Fettes et al. (1998) (Fit 1) | -1.2 | -5.9       | 3.5 | $\pi N$ |
| Büttiker and Meißner (2000)  | -0.8 | -4.7       | 3.4 | $\pi N$ |
| Meißner (2007)               | -0.9 | -4.7       | 3.5 | $\pi N$ |
| Rentmeester $et al.$ (2003)  | -0.8 | -4.8       | 4.0 | NN      |
| Entem and Machleidt (2002)   | -0.8 | -3.4       | 3.4 | NN      |
| Entem and Machleidt (2003)   | -0.8 | -3.2       | 5.4 | NN      |
| Epelbaum et al. (2005)       | -0.8 | -3.4       | 3.4 | NN      |
| Bernard et al. (1997)        | -0.9 | -5.3       | 3.7 | res     |

## Subleading chiral 3N forces

parameter-free N<sup>3</sup>LO Bernard et al. (2007,2011), Ishikawa, Robilotta (2007)

one-loop contributions:

 $2\pi$ -exchange,  $2\pi$ - $1\pi$ -exchange, rings, contact- $1\pi$ -, contact- $2\pi$ -exchange



1/m corrections: spin-orbit parts, interesting for  $A_y$  puzzle

#### Range of c<sub>i</sub> couplings

Uncertainty range

|       |                                                                                                            |                                                                                                                                                                           | l                                                                                                                                                                                                                                  |
|-------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $c_1$ | $c_3$                                                                                                      | $c_4$                                                                                                                                                                     |                                                                                                                                                                                                                                    |
| -1.2  | -5.9                                                                                                       | 3.5                                                                                                                                                                       | $\pi \mathrm{N}$                                                                                                                                                                                                                   |
| -0.8  | -4.7                                                                                                       | 3.4                                                                                                                                                                       | $\pi \mathrm{N}$                                                                                                                                                                                                                   |
| -0.9  | -4.7                                                                                                       | 3.5                                                                                                                                                                       | $\pi \mathrm{N}$                                                                                                                                                                                                                   |
| -0.8  | -4.8                                                                                                       | 4.0                                                                                                                                                                       | NN                                                                                                                                                                                                                                 |
| -0.8  | -3.4                                                                                                       | 3.4                                                                                                                                                                       | NN                                                                                                                                                                                                                                 |
| -0.8  | -3.2                                                                                                       | 5.4                                                                                                                                                                       | NN                                                                                                                                                                                                                                 |
| -0.8  | -3.4                                                                                                       | 3.4                                                                                                                                                                       | NN                                                                                                                                                                                                                                 |
| -0.9  | -5.3                                                                                                       | 3.7                                                                                                                                                                       | res                                                                                                                                                                                                                                |
|       | $\begin{array}{c} c_1 \\ -1.2 \\ -0.8 \\ -0.9 \\ -0.8 \\ -0.8 \\ -0.8 \\ -0.8 \\ -0.8 \\ -0.9 \end{array}$ | $\begin{array}{c c} c_1 & c_3 \\ \hline -1.2 & -5.9 \\ -0.8 & -4.7 \\ -0.9 & -4.7 \\ -0.8 & -4.8 \\ -0.8 & -3.4 \\ -0.8 & -3.2 \\ -0.8 & -3.4 \\ -0.9 & -5.3 \end{array}$ | $\begin{array}{c cccc} c_1 & c_3 & c_4 \\ \hline -1.2 & -5.9 & 3.5 \\ -0.8 & -4.7 & 3.4 \\ -0.9 & -4.7 & 3.5 \\ -0.8 & -4.8 & 4.0 \\ -0.8 & -3.4 & 3.4 \\ -0.8 & -3.2 & 5.4 \\ -0.8 & -3.4 & 3.4 \\ -0.9 & -5.3 & 3.7 \end{array}$ |

High-order analysis Krebs et al. (KGE) (2012)

|                                                     | $c_1[{ m GeV}^{-1}]$ | $c_3[{ m GeV}^{-1}]$ |           |
|-----------------------------------------------------|----------------------|----------------------|-----------|
| N <sup>2</sup> LO/N <sup>3</sup> LO EGM NN [31, 32] | -0.81                | -3.40                |           |
| N <sup>3</sup> LO EM NN [33, 34]                    | -0.81                | -3.20                |           |
| N <sup>2</sup> LO KGE [39]                          | -(0.26-0.58)         | -(2.80-3.14)         |           |
| 'N <sup>2</sup> LO' KGE (recom.) [39]               | -(0.37 - 0.73)       | -(2.71 - 3.38)       | both ~10% |
| $N^{3}LO$ KGE [39]                                  | -(0.75 - 1.13)       | -(4.77-5.51)         |           |

#### **Can lattice QCD provide better constraints on c<sub>i</sub>?**

## Outline

Chiral EFT and **c**<sub>i</sub> **uncertainties** 

T=3/2 components of 3N forces: 3n, 4n systems, neutron-rich nuclei

**Neutron matter** is easier to calculate than n,p matter, provides tight constraints for neutron-rich matter Is neutron matter easier in lattice QCD?

Lattice QCD for fundamental symmetries:

- neutrinoless double-beta decay, nn to pp matching problem?
- WIMP-nucleon couplings for dark matter response of nuclei



Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meissner,...

## The oxygen anomaly



## The oxygen anomaly

impact of 3N forces confirmed in ab-initio calculations: CC with phenomenological forces Hagen et al. (2012) In-Medium SRG based on NN+3N Hergert et al. (2013)



new <sup>51,52</sup>Ca TITAN measurements

<sup>52</sup>Ca is 1.75 MeV more bound compared to atomic mass evaluation Gallant et al. (2012)

behavior of two-neutron separation energy  $S_{2n}$  and odd-even staggering  $\Delta_n$ agrees with NN+3N predictions

more neutron-rich isotopes at ISOLDE, RIKEN and NSCL



## Outline

Chiral EFT and **c**<sub>i</sub> **uncertainties** 

T=3/2 components of 3N forces: 3n, 4n systems, neutron-rich nuclei

**Neutron matter** is easier to calculate than n,p matter, provides tight constraints for neutron-rich matter Is neutron matter easier in lattice QCD?

Lattice QCD for fundamental symmetries:

- neutrinoless double-beta decay, nn to pp matching problem?
- WIMP-nucleon couplings for dark matter response of nuclei

#### Impact of 3N forces on neutron matter



## Neutron matter from chiral EFT interactions

direct calculations without RG/SRG evolution, 3N to N<sup>2</sup>LO only





Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meissner,...

#### Complete N<sup>3</sup>LO calculation of neutron matter

first complete N<sup>3</sup>LO result Tews, Krüger, Hebeler, AS (2013) includes uncertainties from bare NN, 3N, 4N



#### Comparisons to equations of state in astrophysics

many equations of state not consistent with neutron matter results



## Discovery of the heaviest neutron star

#### A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest<sup>1</sup>, T. Pennucci<sup>2</sup>, S. M. Ransom<sup>1</sup>, M. S. E. Roberts<sup>3</sup> & J. W. T. Hessels<sup>4,5</sup>

direct measurement of neutron star mass from increase in signal travel time near companion

J1614-2230 most edge-on binary pulsar known (89.17°) + massive white dwarf companion (0.5 M<sub>sun</sub>)

heaviest neutron star with 1.97 $\pm$ 0.04 M<sub>sun</sub>



#### Equation of state of neutron star matter

constrain polytropes by causality and require to support 1.97 M<sub>sun</sub> star



low-density pressure sets scale, chiral EFT interactions provide strong constraints, ruling out many model equations of state

predicts neutron star radius: 9.7-13.9 km for M=1.4 M<sub>sun</sub> (±15% !)

# Neutron-star mergers and gravitational waves

explore sensitivity to neutron-rich matter in neutron-star merger and gw signal Bauswein, Janka (2012), Bauswein, Janka, Hebeler, AS (2012).







**Fig. 1:** Various snapshots of the collision of two neutron stars initially revolving around each other. The sequence simulated by the computer covers only 0.03 seconds. The two stars orbit each other counterclockwise (top left) and quickly come closer (top right). Finally they collide (centre left), merge (centre right), and form a dense, superheavy neutron star (bottom). Strong vibrations of the collision remnant are noticeable as deformations in east-west direction and in north-south direction (bottom panels). (Simulation: Andreas Bauswein and H.-Thomas Janka/MPA)

## Outline

Chiral EFT and **c**<sub>i</sub> **uncertainties** 

T=3/2 components of 3N forces: 3n, 4n systems, neutron-rich nuclei

**Neutron matter** is easier to calculate than n,p matter, provides tight constraints for neutron-rich matter Is neutron matter easier in lattice QCD?

Lattice QCD for fundamental symmetries:

- neutrinoless double-beta decay, nn to pp matching problem?
- WIMP-nucleon couplings for dark matter response of nuclei

#### Electroweak interactions and 3N forces

weak axial currents couple to spin, similar to pions

two-body currents predicted by NN, 3N couplings to N<sup>3</sup>LO Park et al., Phillips,...



two-body analogue of Goldberger-Treiman relation

explored in light nuclei, but not for larger systems

dominant contribution to Gamow-Teller transitions, important in nuclei (Q~100 MeV)

3N couplings predict quenching of  $g_A$  (dominated by long-range part) and predict momentum dependence (weaker quenching for larger p) Menendez, Gazit, AS (2011)

## Chiral EFT and $0\nu\beta\beta$ decay

Nuclear matrix elements for  $0\nu\beta\beta$  decay based on chiral EFT operator Menendez, Gazit, AS (2011)

Modest quenching because  $0\nu\beta\beta$  decay probes higher momentum transfer



Is it possible to set up nn to pp matching problem with lattice QCD?

## Direct detection of dark matter WIMPs by scattering off nuclei

spin-dependent WIMP-nucleon interaction is particularly sensitive to nuclear structure: spin structure factors

SD WIMP-nucleon coupling is isospin rot. of weak axial current, include long-range 2-body currents Menendez, Gazit, AS (2012)

<sup>129</sup>Xe

(5/2)

(9/2

Exp

7/2

3/2

900

800

700

600

500

400

300

200

100

0

Theory

Excitation energy (keV)



#### Limits on SD WIMP-neutron interactions

best limits from XENON100 Aprile et al., 1301.6620 uses Javier Menendez' calculation



WIMP coupling to 1- and 2-nucleons from lattice QCD?

## Spin-dependent WIMP-nucleus response for <sup>19</sup>F, <sup>23</sup>Na, <sup>27</sup>Al, <sup>29</sup>Si, <sup>73</sup>Ge, <sup>127</sup>I

Klos, Menendez, Gazit, AS, in prep.





## Summary

Chiral EFT and **c**<sub>i</sub> **uncertainties** 

T=3/2 components of 3N forces: 3n, 4n systems, neutron-rich nuclei

**Neutron matter** is easier to calculate than n,p matter, provides tight constraints for neutron-rich matter Is neutron matter easier in lattice QCD?

Lattice QCD for fundamental symmetries:

- neutrinoless double-beta decay, nn to pp matching problem?
- WIMP-nucleon couplings for dark matter response of nuclei