TRIUMF

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Ab initio many-body calculations of nuclear scattering and reactions

INT Workshop INT-13-53W Nuclear Reactions from Lattice QCD 11th March 2013, Institute for Nuclear Theory

Petr Navratil | TRIUMF

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Outline

- Chiral forces
- No-core shell model
- Including the continuum with the resonating group method
 - NCSM/RGM
 - NCSMC
- ⁷He resonances
- ⁷Be(ρ,γ)⁸B capture
- ${}^{3}H(d,n){}^{4}He$ fusion
- Outlook

Chiral Effective Field Theory

- First principles for Nuclear Physics: QCD
 - Non-perturbative at low energies
 - Lattice QCD in the future
- For now a good place to start:
- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD $(m_u \approx m_d \approx 0)$, spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_x)
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

The ab initio no-core shell model (NCSM)

- The NCSM is a technique for the solution of the A-nucleon bound-state problem
- Realistic nuclear Hamiltonian
 - High-precision nucleon-nucleon potentials
 - Three-nucleon interactions
- Finite harmonic oscillator (HO) basis
 - A-nucleon HO basis states
 - complete $N_{max} \hbar \Omega$ model space

• Effective interaction tailored to model-space truncation for NN(+NNN) potentials

- Okubo-Lee-Suzuki unitary transformation

• Or a sequence of unitary transformations in momentum space:

- Similarity-Renormalization-Group (SRG) evolved NN(+NNN) potential

Convergence to exact solution with increasing N_{max} for bound states. No coupling to continuum.

⁴He from chiral EFT interactions: g.s. energy convergence

NCSM calculations of ⁶He and ⁷He g.s. energies

$E_{\rm g.s.}$ [MeV]	⁴ He	⁶ He	⁷ He
NCSM $N_{\rm max}=12$	-28.05	-28.63	-27.33
NCSM extrap.	-28.22(1)	-29.25(15)	-28.27(25)
Expt.	-28.30	-29.27	-28.84

- N_{max} convergence OK
 Extrapolation feasible
 - ⁶He: E_{gs}=-29.25(15) MeV (Expt. -29.269 MeV)
 - ⁷He: E_{gs}=-28.27(25) MeV (Expt. -28.84(30) MeV)
- ⁷He unbound (+0.430(3) MeV), width 0.182(5) MeV
 - NCSM: no information about the width

unbound

Extending no-core shell model beyond bound states

Include more many nucleon correlations...

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

$$\psi^{(A)} = \sum_{\kappa} c_{\kappa} \phi_{1\kappa} (\{\vec{\xi}_{1\kappa}\}) \qquad (a_{1\kappa} = A)$$

$$(a_{1\kappa} = A)$$

$$\phi_{1\kappa}$$

$$+ \sum_{\nu} \hat{A}_{\nu} \phi_{1\nu} (\{\vec{\xi}_{1\nu}\}) \phi_{2\nu} (\{\vec{\xi}_{2\nu}\}) g_{\nu}(\vec{r}_{\nu}) \qquad \phi_{1\nu} \phi_{2\nu} (a_{2\nu})$$

$$(a_{1\nu}) (a_{2\nu}) a_{1\nu} + a_{2\nu} = A$$

$$+ \sum_{\mu} \hat{A}_{\mu} \phi_{1\mu} (\{\vec{\xi}_{1\mu}\}) \phi_{2\mu} (\{\vec{\xi}_{2\mu}\}) \phi_{3\mu} (\{\vec{\xi}_{3\mu}\}) G_{\mu}(\vec{r}_{\mu 1}, \vec{r}_{\mu 2}) \qquad (a_{2\mu}) \phi_{1\mu} \phi_{2\mu} (a_{2\mu}) \phi_{1\mu} (a_{2\mu}) \phi_{3\mu} (a_{2\mu}) \phi_{3\mu}$$

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

• ϕ : antisymmetric cluster wave functions

- {ξ}: Translationally invariant internal coordinates

(Jacobi relative coordinates)

- These are known, they are an input

$$\begin{split} \psi^{(A)} &= \sum_{\kappa} c_{\kappa} \phi_{1\kappa} \left(\left\{ \vec{\xi}_{1\kappa} \right\} \right) & (a_{1\kappa} = A) \\ & \phi_{1\kappa} \\ &+ \sum_{\nu} \widehat{A}_{\nu} \phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) g_{\nu}(\vec{r}_{\nu}) & \phi_{1\nu} (a_{2\nu}) \\ & a_{1\nu} + a_{2\nu} = A \\ &+ \sum_{\mu} \widehat{A}_{\mu} \phi_{1\mu} \left(\left\{ \vec{\xi}_{1\mu} \right\} \right) \phi_{2\mu} \left(\left\{ \vec{\xi}_{2\mu} \right\} \right) \phi_{3\mu} \left(\left\{ \vec{\xi}_{3\mu} \right\} \right) G_{\mu}(\vec{R}_{\mu 1}, \vec{R}_{\mu 2}) & (a_{2\mu}) (a_{2\mu$$

• A_{ν}, A_{μ} : intercluster antisymmetrizers

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

Antisymmetrize the wave function for exchanges of nucleons between clusters

Example:

$$a_{1\nu} = A - 1, \ a_{2\nu} = 1 \implies \hat{A}_{\nu} = \frac{1}{\sqrt{A}} \left[1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \right]$$

• >

- *c*, *g* and *G*: discrete and continuous linear variational amplitudes
 - Unknowns to be determined

- Discrete and continuous set of basis functions
 - Non-orthogonal
 - Over-complete

Binary cluster wave function

$$\begin{split} \psi^{(A)} &= \sum_{\kappa} c_{\kappa} \phi_{1\kappa} \left(\left\{ \vec{\xi}_{1\kappa} \right\} \right) \\ &+ \sum_{\nu} \int g_{\nu}(\vec{r}) \ \hat{A}_{\nu} \left[\phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) \delta(\vec{r} - \vec{r}_{\nu}) \right] d\vec{r} \\ &+ \sum_{\mu} \iint G_{\mu}(\vec{R}_{1}, \vec{R}_{2}) \ \hat{A}_{\mu} \left[\phi_{1\mu} \left(\left\{ \vec{\xi}_{1\mu} \right\} \right) \phi_{2\mu} \left(\left\{ \vec{\xi}_{2\mu} \right\} \right) \phi_{3\mu} \left(\left\{ \vec{\xi}_{2\mu} \right\} \right) \delta(\vec{R}_{1} - \vec{R}_{\mu 1}) \delta(\vec{R}_{2} - \vec{R}_{\mu 2}) \right] d\vec{R}_{1} d\vec{R}_{2} \\ &+ \cdots \end{split}$$

- In practice: function space limited by using relatively simple forms of Ψ chosen according to physical intuition and energetical arguments
 - Most common: expansion over binary-cluster basis

The ab initio NCSM/RGM in a snapshot

• Ansatz: $\Psi^{(A)} = \sum_{i} \int d\vec{r} \phi_{\mathbf{v}}(\vec{r}) \hat{\mathcal{A}} \Phi_{\mathbf{v}\vec{r}}^{(A-a,a)}$

Many-body Schrödinger equation:

Example: the five-nucleon system

- Consider the T = $\frac{1}{2}$ case: ⁵He (⁵Li)
 - Five-nucleon cluster unbound; ⁴He tightly bound, not easy to deform

- Satisfactory description of n-4He (p-4He) scattering at low excitation energies within single-channel approximation
- However, both n(p) + ⁴He and d + ³H(³He) channels needed to describe ³H(d,n)⁴He [³He(d,p)⁴He] fusion!

Unbound *A*=5 nuclei: ⁵He→*n*+⁴He, ⁵Li→*p*+⁴He

NNN and ⁴He polarization missing: Good agreement only for energies beyond low-lying 3/2⁻ resonance

How about ⁷He as *n*+⁶He?

- All ⁶He excited states above 2⁺₁ broad resonances or states in continuum
- Convergence of the NCSM/RGM n+⁶He calculation slow with number of ⁶He states
 - Negative parity states also relevant
 - Technically not feasible to include more than ~ 5 states

New developments: NCSM with continuum

NCSM.

 $\left|\Psi_{A}^{J^{\pi}T}\right\rangle = \sum_{Ni} c_{Ni} \left|ANiJ^{\pi}T\right\rangle$

New developments: NCSM with continuum

New developments: NCSM with continuum

NCSMC formalism

Start from

$$\begin{pmatrix} H_{NCSM} & \bar{h} \\ \bar{h} & \overline{\mathcal{H}} \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix} = E \begin{pmatrix} 1 & \bar{g} \\ \bar{g} & 1 \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

NCSM sector:

$$(H_{NCSM})_{\lambda\lambda'} = \langle A\lambda J^{\pi}T | \hat{H} | A\lambda' J^{\pi}T \rangle = \varepsilon_{\lambda}^{J^{\pi}T} \delta_{\lambda\lambda'}$$

NCSM/RGM sector:

$$\overline{\mathcal{H}}_{\nu\nu'}(r,r') = \sum_{\mu\mu'} \int \int dy dy' y^2 {y'}^2 \mathcal{N}_{\nu\mu}^{-\frac{1}{2}}(r,y) \mathcal{H}_{\mu\mu'}(y,y') \mathcal{N}_{\mu'\nu'}^{-\frac{1}{2}}(y',r')$$

How to calculate the NCSM/RGM kernels?

$$\left|\psi^{J^{\pi}T}\right\rangle = \sum_{\nu} \int \frac{g_{\nu}^{J^{\pi}T}(r)}{r} \hat{A}_{\nu} \left[\left(\left| A - a \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \left| a \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right\rangle \right)^{(sT)} Y_{\ell}(\hat{r}_{A-a,a}) \right]^{(J^{\pi}T)} \frac{\delta(r - r_{A-a,a})}{rr_{A-a,a}} r^{2} dr$$

$$\left| \Phi_{\nu r}^{J^{\pi}T} \right\rangle \quad \text{(Jacobi) channel basis}$$

 Since we are using NCSM wave functions, it is convenient to introduce Jacobi channel states in the HO space

$$\left| \Phi_{vn}^{J^{\pi}T} \right\rangle = \left[\left(\left| A - a \; \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \right| a \; \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right) \right)^{(sT)} Y_{\ell}(\hat{r}_{A-a,a}) \right]^{(J^{\pi}T)} R_{n\ell}(r_{A-a,a})$$

- The coordinate space channel states are given by

$$\left|\Phi_{vr}^{J^{\pi}T}\right\rangle = \sum_{n} R_{n\ell}(r) \left|\Phi_{vn}^{J^{\pi}T}\right\rangle$$

• We used the closure properties of HO radial wave functions

$$\frac{\delta(r - r_{A-a,a})}{r r_{A-a,a}} = \sum_{n} R_{n\ell}(r) R_{n\ell}(r_{A-a,a})$$

- Target and projectile wave functions are both translational invariant NCSM eigenstates calculated in the Jacobi coordinate basis

Norm kernel (Pauli principle) Single-nucleon projectile

$$N_{v'v}^{J^{\pi}T}(r',r) = \delta_{v'v} \frac{\delta(r'-r)}{r'r} - (A-1)\sum_{n'n} R_{n'\ell'}(r')R_{n\ell}(r) \left\langle \Phi_{v'n'}^{J^{\pi}T} \middle| \hat{P}_{A-1,A} \middle| \Phi_{vn}^{J^{\pi}T} \right\rangle$$
Direct term:
Treated exactly!
(in the full space)
$$V'$$

$$-(A-1) \times \left(a=1\right)$$

$$\frac{\delta(r-r_{A-a,a})}{rr_{A-a,a}} = \sum_{n} R_{n\ell}(r)R_{n\ell}(r_{A-a,a})$$

RIVMF Introduce SD channel states in the HO space

 Define SD channel states in which the eigenstates of the heaviest of the two clusters (target) are described by a SD wave function:

$$\left| \Phi_{vn}^{J^{\pi}T} \right\rangle_{SD} = \left[\left(\left| A - a \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle_{SD} \left| a \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right\rangle \right)^{(sT)} Y_{\ell} \left(\hat{R}_{c.m.}^{(a)} \right) \right]^{(J^{\pi}T)} R_{n\ell} \left(R_{c.m.}^{(a)} \right) \\ \left| A - a \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \varphi_{00} \left(\vec{R}_{c.m.}^{(A-a)} \right) \\ \text{Vector proportional to the c.m. coordinate of the A-a nucleons} \right) \\ \text{Vector proportional to the c.m. coordinate of the A-a nucleons} \\ \left(A - a \right) \left(A - a \right) \left(\vec{R}_{c.m.}^{(A-a)} \right) \left(\vec{R}_{c.m.}^{(A)} \right) \right) \\ \vec{R}_{c.m.}^{(A-a)} \left(\vec{R}_{c.m.}^{(A)} \right) \\ \vec{R}_{c.m.}^{(A)} \left(\vec{R}_{c.m.}^{(A)} \right) \left(\vec{R}_{c.m.}^{(A)} \right) \right)^{\ell} = \sum_{n,\ell_{r},NL} \left\langle 00, n\ell, \ell \right| n_{r}\ell_{r}, NL, \ell \right\rangle_{d=\frac{a}{A-a}} \left(\varphi_{n_{r}\ell_{r}} \left(\vec{\eta}_{A-a} \right) \varphi_{NL} \left(\vec{\xi}_{0} \right) \right)^{\ell}$$

ETRIUMF

Translational invariant matrix elements from SD ones

• More in detail:

$$\Phi_{vn}^{J^{\pi}T} \rangle_{SD} = \sum_{n_r \ell_r, NL, J_r} \hat{\ell} \hat{J}_r (-1)^{s+\ell_r+L+J} \left\{ \begin{array}{cc} s & \ell_r & J_r \\ L & J & \ell \end{array} \right\} \langle 00, n\ell, \ell | n_r \ell_r, NL, \ell \rangle_{d=\frac{a}{A-a}} \left[\left| \Phi_{v_r n_r}^{J^{\pi}rT} \right\rangle \varphi_{NL}(\vec{\xi}_0) \right]^{(J^{\pi}T)} \langle D_{v_r n_r}^{J^{\pi}rT} \rangle \langle D_$$

• The spurious motion of the c.m. is mixed with the intrinsic motion

- Translational invariance preserved (exactly!) also with SD channels
- Transformation is general: same for different *A*'s or different *a*'s

Ο

Is the SD channel basis advantageous?

- SD to Jacobi transformation is general and exact
- Can use powerful second quantization representation
 - Matrix elements of translational invariant operators can be expressed in terms of matrix elements of density operators on the target eigenstates
 - For example, for a = a' = 1

$$\sum_{SD} \left\langle \Phi_{v'n'}^{J^{\pi}T} \left| P_{A-1,A} \right| \Phi_{vn}^{J^{\pi}T} \right\rangle_{SD} = \frac{1}{A-1} \sum_{jj'K\tau} \hat{s} \hat{s}' \hat{j} \hat{j}' \hat{K} \hat{\tau} (-1)^{I'_{1}+j'+J} (-1)^{T_{1}+\frac{1}{2}+T} \\ \times \left\{ \begin{array}{cc} I_{1} & \frac{1}{2} & s \\ \ell & J & j \end{array} \right\} \left\{ \begin{array}{cc} I'_{1} & \frac{1}{2} & s' \\ \ell' & J & j' \end{array} \right\} \left\{ \begin{array}{cc} I_{1} & K & I'_{1} \\ j' & J & j \end{array} \right\} \left\{ \begin{array}{cc} T_{1} & \tau & T_{1}' \\ \frac{1}{2} & T & \frac{1}{2} \end{array} \right\} \\ \xrightarrow{} \\ \times \\ \sum_{SD} \left\langle A-1 & \alpha_{1}' I'_{1}''T_{1}' \right\| \left(a_{n\ell j \frac{1}{2}}^{+} \tilde{a}_{n'\ell j' \frac{1}{2}}^{-} \right)^{(K\tau)} \left\| A-1 & \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle_{SD} \right\}$$

NCSMC formalism

Start from

$$\begin{bmatrix} H_{NCSM} & \bar{h} \\ \bar{h} & \overline{\mathcal{H}} \end{bmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix} = E \begin{pmatrix} 1 & \bar{g} \\ \bar{g} & 1 \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

Coupling:
$$\bar{g}_{\lambda\nu}(r) = \sum_{\nu'} \int dr' r'^2 \langle A\lambda J^{\pi}T | \hat{\mathcal{A}}_{\nu'} \Phi_{\nu'r'}^{J^{\pi}T} \rangle \, \mathcal{N}_{\nu'\nu}^{-\frac{1}{2}}(r',r)$$
$$\bar{h}_{\lambda\nu}(r) = \sum_{\nu'} \int dr' r'^2 \langle A\lambda J^{\pi}T | \hat{H} \hat{\mathcal{A}}_{\nu'} | \Phi_{\nu'r'}^{J^{\pi}T} \rangle \, \mathcal{N}_{\nu'\nu}^{-\frac{1}{2}}(r',r)$$

Calculation of *g* from SD wave functions:

$$g_{\lambda\nu n} = \langle A\lambda J^{\pi}T | \hat{\mathcal{A}}_{\nu} \Phi_{\nu n}^{J^{\pi}T} \rangle = \frac{1}{\langle n\ell 00, \ell | 00n\ell, \ell \rangle_{\frac{1}{(A-1)}}} S_{D} \langle A\lambda J^{\pi}T | \hat{\mathcal{A}}_{\nu} \Phi_{\nu n}^{J^{\pi}T} \rangle_{SD} = \frac{1}{\langle n\ell 00, \ell | 00n\ell, \ell \rangle_{\frac{1}{(A-1)}}} \frac{1}{\hat{J}\hat{T}} \sum_{j} (-1)^{I_{1}+J+j} \hat{s}\hat{j} \left\{ \begin{array}{c} I_{1} & \frac{1}{2} & s \\ \ell & J & j \end{array} \right\} S_{D} \langle A\lambda J^{\pi}T | | | a_{n\ell j\frac{1}{2}}^{\dagger} | | | A - 1\alpha_{1} I_{1}^{\pi_{1}}T_{1} \rangle_{SD}$$
27

NCSMC formalism

Start from

$$\begin{pmatrix} H_{NCSM} & \bar{h} \\ \bar{h} & \frac{\mathcal{H}}{\mathcal{H}} \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix} = E \begin{pmatrix} 1 & \bar{g} \\ \bar{g} & 1 \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

$$N_{\nu r \nu' r'}^{\lambda \lambda'} = \begin{pmatrix} \delta_{\lambda \lambda'} & \bar{g}_{\lambda \nu'}(r') \\ \bar{g}_{\lambda' \nu}(r) & \delta_{\nu \nu'} \frac{\delta(r-r')}{rr'} \end{pmatrix}$$

Orthogonalization:

$$\overline{H} = N^{-\frac{1}{2}} \begin{pmatrix} H_{NCSM} & \overline{h} \\ \overline{h} & \overline{\mathcal{H}} \end{pmatrix} N^{-\frac{1}{2}} \qquad \begin{pmatrix} \overline{c} \\ \overline{\chi} \end{pmatrix} = N^{+\frac{1}{2}} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

Solve with generalized microscopic R-matrix

Bloch operator

$$(\hat{\overline{H}} + \hat{L} - E) \begin{pmatrix} \bar{c} \\ \bar{\chi} \end{pmatrix} = \hat{L} \begin{pmatrix} \bar{c} \\ \bar{\chi} \end{pmatrix}$$
$$\Rightarrow \hat{L}_{\nu} = \begin{pmatrix} 0 & 0 \\ 0 & \frac{1}{2}\delta(r-a)(\frac{d}{dr} - \frac{B_{\nu}}{r}) \end{pmatrix}$$

Microscopic *R*-matrix theory

• Separation into "internal" and "external" regions at the channel radius *a*

$$\begin{array}{c|c}
 Internal region \\
 u_c(r) = \sum_n A_{cn} f_n(r) \\
 0 \\
 a \\
 \end{array}$$

$$\begin{array}{c}
 External region \\
 u_c(r) \sim v_c^{-\frac{1}{2}} \left[\delta_{ci} I_c(k_c r) - U_{ci} O_c(k_c r) \right] \\
 u_c(r) \sim v_c^{-\frac{1}{2}} \left[\delta_{ci} I_c(k_c r) - U_{ci} O_c(k_c r) \right] \\
 \hline
 \end{array}$$

– This is achieved through the Bloch operator:

$$L_c = \frac{\hbar^2}{2\mu_c} \delta(r-a) \left(\frac{d}{dr} - \frac{B_c}{r}\right)$$

System of Bloch-Schrödinger equations:

$$\left[\hat{T}_{rel}(r) + L_c + \overline{V}_{Coul}(r) - (E - E_c)\right] u_c(r) + \sum_{c'} \int dr' r' W_{cc'}(r,r') u_{c'}(r') = L_c u_c(r)$$

- Internal region: expansion on square-integrable basis
- External region: asymptotic form for large r

$$u_c(r) \sim C_c W(k_c r)$$
 or $u_c(r) \sim v_c^{-\frac{1}{2}} \left[\delta_{ci} I_c(k_c r) - U_{ci} \Theta_c(k_c r) \right]$

Scattering matrix

 $u_c(r) = \sum A_{cn} f_n(r)$

Bound state

Scattering state

To find the Scattering matrix

Lagrange basis associated with Lagrange mesh:

 $\{ax_n \in [0,a]\}$

 $\int_0^1 g(x) dx \approx \sum_{n=1}^N \lambda_n g(x_n)$ $\int_0^a f_n(r) f_{n'}(r) dr \approx \delta_{nn'}$

• After projection on the basis $f_n(r)$:

$$\sum_{c'n'} \left[C_{cn,c'n'} - (E - E_c) \delta_{cn,c'n'} \right] A_{c'n'} = \frac{\hbar^2 k_c}{2\mu_c v_c^{1/2}} \left\langle f_n | L_c | I_c \delta_{ci} - U_{ci} O_c \right\rangle$$

$$\left\langle f_n | \hat{T}_{rel}(r) + L_c + \overline{V}_{Coul}(r) | f_{n'} \right\rangle \delta_{cc'} + \left\langle f_n | W_{cc'}(r,r') | f_{n'} \right\rangle$$
1 Solve for A

- 1. Solve for A_{cn}
- 2. Match internal and external solutions at channel radius, a

$$\sum_{c'} R_{cc'} \frac{k_{c'}a}{\sqrt{\mu_{c'}v_{c'}}} \Big[I'_{c'}(k_{c'}a)\delta_{ci} - U_{c'i}O'_{c'}(k_{c'}a) \Big] = \frac{1}{\sqrt{\mu_c v_c}} \Big[I_c(k_ca)\delta_{ci} - U_{ci}O_c(k_ca) \Big]$$

• In the process introduce *R*-matrix, projection of the Green's function operator on the channel-surface functions

$$R_{cc'} = \sum_{nn'} \frac{\hbar}{\sqrt{2\mu_c a}} f_n(a) \left[C - EI \right]_{cn,c'n'}^{-1} \frac{\hbar}{\sqrt{2\mu_c a}} f_{n'}(a)$$

To find the Scattering matrix

3. Solve equation with respect to the scattering matrix U

$$\sum_{c'} R_{cc'} \frac{k_{c'}a}{\sqrt{\mu_{c'}v_{c'}}} \Big[I'_{c'}(k_{c'}a)\delta_{ci} - U_{c'i}O'_{c'}(k_{c'}a) \Big] = \frac{1}{\sqrt{\mu_{c}v_{c}}} \Big[I_{c}(k_{c}a)\delta_{ci} - U_{ci}O_{c}(k_{c}a) \Big]$$

4. You can demonstrate that the solution is given by:

$$U = Z^{-1}Z^*, \qquad Z_{cc'} = (k_{c'}a)^{-1} \Big[O_c(k_ca)\delta_{cc'} - k_{c'}a R_{cc'} O_{c'}'(k_{c'}a) \Big]$$

Scattering phase shifts are extracted from the scattering matrix elements

$$U = \exp(2i\delta)$$

NCSM with continuum: ⁷He \leftrightarrow ⁶He+*n*

NCSM with continuum: ⁷He \leftrightarrow ⁶He+*n*

⁷He: NCSMC vs. NCSM/RGM vs. NCSM

J^{π}	experiment			NCSMC		NCSM/RGM		NCSM
	E_R	Γ	Ref.	E_R	Γ	E_R	Г	E_R
$3/2^{-}$	0.430(3)	0.182(5)	[2]	0.71	0.30	1.39	0.46	1.30
$5/2^{-}$	3.35(10)	1.99(17)	[40]	3.13	1.07	4.00	1.75	4.56
$1/2^{-}$	3.03(10)	2	[11]	2.39	2.89	2.66	3.02	3.26
	3.53	10	[15]					
	1.0(1)	0.75(8)	[5]					

[11] A. H. Wuosmaa *et al.*, Phys. Rev. C **72**, 061301 (2005).

- NCSMC and NSCM/RGM energies where phase shift derivative maximal
- NCSMC and NSCM/RGM widths from the derivatives of phase shifts

$$\Gamma = \left. \frac{2}{\partial \delta(E_{kin}) / \partial E_{kin}} \right|_{E_{kin} = E_R}$$

Experimental controversy: Existence of low-lying 1/2⁻ state ... not seen in these calculations

TRIUMF

Best agreement with the neutron pick-up and proton-removal reactions experiments [11]

Solar *p-p* chain

Structure of the ⁸B ground state

- NCSM/RGM p-⁷Be calculation
 - five lowest ⁷Be states: 3/2⁻, 1/2⁻, 7/2⁻, 5/2⁻, 5/2⁻, 5/2⁻
 - Soft NN SRG-N³LO with Λ = 1.86 fm⁻¹
- ⁸B 2⁺ g.s. bound by 136 keV (Expt 137 keV)
 - Large P-wave 5/2⁻² component

calculations

⁷Be

p-⁷Be scattering

⁷Be(*p*,γ)⁸B radiative capture

P.N., R. Roth, S. Quaglioni, Physics Letters B 704 (2011) 379

Ab initio calculation of the ${}^{3}H(d,n){}^{4}He$ fusion

$$\int dr r^{2} \left\{ \begin{pmatrix} r & r & | \hat{A}_{1}(H-E)\hat{A}_{1} | \hat{a} & r \\ n & a \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{1}(H-E)\hat{A}_{1} | \hat{a} & r \\ n & a \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{1}(H-E)\hat{A}_{1} | \hat{a} & r \\ n & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1} & r \\ n & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{a} & r \\ n & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1} & r \\ n & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1} & r \\ n & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1} & r \\ n & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1} & r \\ n & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1} & r \\ n & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1} & r \\ n & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1} & r \\ n & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1} & r \\ n & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{1}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1} & r \\ n & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{1}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1} & r \\ n & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{1}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1} & r \\ n & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{1}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1} & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{1}(H-E)\hat{A}_{1}| \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1}(H-E)\hat{A}_{2} | \hat{A}_{1} & n \end{pmatrix} \\ \begin{pmatrix} r & | \hat{A}_{1}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{2} | \hat{A}_{1}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}_{1} | \hat{A}_{2}(H-E)\hat{A}$$

RIUMF

d+³H and n+⁴He elastic scattering: phase shifts

- d+³H elastic phase shifts:
 - Resonance in the ⁴S_{3/2} channel
 - Repulsive behavior in the ²S_{1/2}
 channel → Pauli principle

 d^* deuteron pseudo state in ${}^3S_1 - {}^3D_1$ channel: deuteron polarization, virtual breakup

- *n*+⁴He elastic phase shifts:
 - d+³H channels produces slight increase of the *P* phase shifts
 - Appearance of resonance in the 3/2⁺ *D*-wave, just above *d*-³H threshold

The d^{-3} H fusion takes place through a transition of d^{+3} H is *S*-wave to n^{+4} He in *D*-wave: Importance of the **tensor force**

${}^{3}H(d,n){}^{4}He \& {}^{3}He(d,p){}^{4}He$ fusion

NCSM/RGM with SRG-N³LO NN potentials

Potential to address unresolved fusion research related questions:

 ${}^{3}\text{H}(d,n){}^{4}\text{He}$ fusion with polarized deuterium and/or tritium, ${}^{3}\text{H}(d,n \gamma){}^{4}\text{He}$ bremsstrahlung,

Electron screening at very low energies ...

P.N., S. Quaglioni, PRL **108**, 042503 (2012)

Conclusions and Outlook

- We developed a new unified approach to nuclear bound and unbound states
 - Merging of the NCSM and the NCSM/RGM

PRL 110, 022505 (2013)

• We demonstrated its capabilities in calculations of ⁷He resonances

- Successful NCSM/RGM applications to
 - ⁷Be(p, γ)⁸B radiative capture
 - ³H(*d*,*n*)⁴He and fusion

- Outlook:
 - Inclusion of 3N interactions first results available for n-4He, p-4He
 - Extension of the NCSMC formalism to composite projectiles (deuteron, ³H, ³He, ⁴He)
 - Extension of the formalism to coupling of three-body clusters (6 He ~ 4 He+*n*+*n*)

NCSMC and NCSM/RGM collaborators

- Sofia Quaglioni (LLNL)
- Joachim Langhammer, Robert Roth (TU Darmstadt)
- C. Romero-Redondo, F. Raimondi (TRIUMF)
- G. Hupin, M. Kruse (LLNL)
- S. Baroni (ULB)
- W. Horiuchi (Hokkaido)

RIUMF

Possible future benchmark: *d*-³H fusion

- Calculation of the ³H(d,n)⁴He and ³He(d,p)⁴He using the NCSMC formalism and chiral NN+3N forces is within the reach
 - sensitive test of the chiral nuclear Hamiltonian
 - complex reaction mechanism
 - sensitive to the treatment of virtual excitations of the involved nuclei
 - many-nucleon dynamics in the continuum
- Benchmark with lattice QCD ab initio calculations beneficial for both the standard nuclear calculations and the lattice QCD many-nucleon calculations

• Physics issue:

- Behavior of the d^{-3} H and n^{-4} He phase shifts at the resonance