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Introduction

Maiani Testa no-go theorem says that one cannot get S-matrix elements
(away from threshold) from infinite-volume Euclidean-time correlators.1

In finite volume the no-go theorem does not apply.

Indeed, Lüscher derived a relation between

finite-volume spectrum of QCD Hamiltonian (below four pion masses)
and

phase shift for elastic two-pion scattering.234

1Maiani, L. & Testa, M. Phys.Lett. B245, 585–590 (1990).
2Luescher, M. Commun. Math. Phys. 104, 177 (1986).
3Luescher, M. Commun. Math. Phys. 105, 153–188 (1986).
4Luescher, M. Nucl. Phys. B354, 531–578 (1991).
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Introduction

As is emphasized on the workshop webpage, there has so far been no
lattice calculation of S-matrix elements above inelastic threshold.

Here one should distinguish between
a) systems with multiple, strongly-coupled, two-particle channels
b) systems with one or more, strongly-coupled, (N > 2)-particle channels

In the first case, the formalism for determining the S-matrix from the
finite-volume spectrum is well understood.567

5Bernard, V. et al. JHEP 1101, 019 (2011).
6Briceno, R. A. & Davoudi, Z. arXiv:1204.1110 [hep-lat] (2012).
7Hansen, M. T. & Sharpe, S. R. Phys.Rev. D86, 016007 (2012).
M. T. Hansen (FNAL/UW) Three relativistic bosons in a box 4 / 46

http://arxiv.org/abs/1204.1110


Introduction

Important progress has also been made for the simplest (N > 2)-particle
cases:

two-to-three and three-to-three scattering.89

However, a relativistic, model-independent relation between the
finite-volume spectrum and S-matrix elements for three-particle states is
still unavailable.

This is the subject of this talk.

8Polejaeva, K. & Rusetsky, A. Eur.Phys.J. A48, 67 (2012).
9Briceno, R. A. & Davoudi, Z. arXiv:1212.3398 [hep-lat] (2012).
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Finite-volume set-up
Here finite volume means...

finite, cubic spatial volume (extent L)
periodic boundary conditions
time direction infinite.

Assume L large enough to ignore exponentially suppressed (e−mL)
corrections.

Assume continuum field theory throughout.

Allow non-zero total momentum in finite-volume frame...

total energy E

total momentum ~P

(
~P =

2π~nP
L

~nP ∈ Z3

)

CM frame energy E ∗

(
E ∗ =

√
E 2 − ~P2

)
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Finite-volume set-up

For this talk, the spectrum is the relevant observable of the finite-volume
theory.

Thinking of {L,~nP} as fixed, we denote the CM frame spectrum by

E ∗k with k = 1, 2, 3, · · · .
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Particle content set-up

Restrict particle content to a single scalar with mass m. So we work
throughout with identical particles.

Assume...

G -parity like symmetry, prevents even/odd coupling

physics captured by summing, to all orders, a perturbative expansion
of some local relativistic field theory

Require E ∗ < 4m.
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Particle content set-up

For E ∗ < 4m the only on-shell, G -parity-even states are two-particle
states. So determining the S-matrix means determining the two-to-two
scattering amplitude

iM(k̂∗
′
, k̂∗) ≡ 4πY ∗`′,m′(k̂∗

′
)iM`′,m′;`,mY`,m(k̂∗) .

Note
iM`′,m′;`,m = iM`,mδ`′,`δm′,m ,

(no sum).
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Statement of the problem

Want to relate M`′,m′;`,m to the discrete spectrum of the finite-volume
theory

E ∗k for k = 1, 2, 3, · · ·

at a given {L,~nP}.

Method given here is due to Kim, Sachrajda and Sharpe.10

10Kim, C. et al. Nucl.Phys. B727, 218–243 (2005).
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Derivation

For a given {L,~nP}, the two-particle energies of the finite-volume theory
are the values of E which are poles in

CL(E , ~P) ≡
∫
L
d4x e−i

~P·~x+iEt〈Ω|Tσ(x)σ†(0)|Ω〉 .

Here σ(x) is an operator which couples to two particle states.

We now calculate the finite-volume corrections to CL, to all orders in
perturbation theory.
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Derivation

CL(E , ~P) is equal to a sum of all Feynman diagrams built from...

endcaps σ(q) and σ†(q′). These are regular functions of momentum,
determined by the specific form of the operators.

σσ†

arbitrary even vertices

fully dressed propagators

= i
z(q)

(q0)2 − ~q 2 −m2 + iε
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Derivation

Schematically

+ · · ·

σσ†CL(E , ~P) = + σ† σ

+ σσ†

+ σ† σ
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Finite volume in loops

Finite volume is incorporated by summing (instead of integrating) over
spatial components of loop momenta

1

L3

∑
~k

∫
dk0

2π
where ~k =

2π~n

L
, ~n ∈ Z3 .

It turns out that, unless propagators go on-shell, one can replace

1

L3

∑
~k

∫
dk0

2π
−→

∫
d4k

(2π)4

and only incur exponentially suppressed error (take this to be negligible).11

11Luescher, M. Commun. Math. Phys. 104, 177 (1986).
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Derivation

For the values of E ∗ being considered, only two propagators can go on
shell.

+ · · ·

σσ†CL(E , ~P) =

σ

}
+ σ†

{
+ + · · ·+
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Derivation

σσ†CL(E , ~P) =

+

+ σ + · · ·

σ

iK

iK

iK

σ†

σ†

Let’s focus on the first term.
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Finite-volume effects in first term
Defining ωq ≡

√
~q2 + m2, the first term is

XL ≡
1

2

1

L3

∑
~q

∫
dq0

2π

iz(q)iz(P − q)σ(q)σ†(q)

[(q0)2 − (ωq − iε)2][(E − q0)2 − (ωP−q − iε)2]

=
1

2

1

L3

∑
~q

σ∗(q̂∗)
i

2ωq2ωP−q(E − ωq − ωP−q)
σ†∗(q̂∗)

+
1

L3

∑
~q

finite function of ~q ,

where in the second line we have evaluated the q0 integral.
This can be done via contour integration or alternatively via time-ordered
perturbation theory.

We have also introduced σ†∗(q̂∗), which is just σ†(q) restricted to
on-shell momenta.
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Finite-volume effects in first term
Next we subtract the infinite-volume version of the same diagram from
both sides to get

XL −X∞ = σ`′,m′ [−F`′,m′;`,m]σ†`,m .

Here we have defined

σ†∗(q̂∗) ≡ σ†`,m
√

4πY ∗`,m(q̂∗)

−F`′,m′;`,m ≡
1

2

 1

L3

∑
~q

−
∫

d3q

(2π)3

 i4πY`′,m′(q̂∗)Y ∗`,m(q̂∗)

2ωq2ωP−q(E − ωq − ωP−q + iε)
.

Diagrammatic representation

XL = X∞ + σ`′,m′ [−F`′,m′;`,m]σ†`,m ,

+

F

σ† σσσ† = σσ†

In the term with F only the on-shell values of the σs are needed.
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Derivation
Substitute

+

F

σ† σσσ† = σσ†

into

σσ†CL(E , ~P) =

+

+ σ + · · ·

σ

iK

iK

iK

σ†

σ†

M. T. Hansen (FNAL/UW) Three relativistic bosons in a box 20 / 46



Derivation

F

+

{
CL(E , ~P) = C∞(E , ~P)

+ · · ·

+ · · ·
}

+×
{

σ σ

+ iKσ†σ†

iKA + · · ·

A′

}

M. T. Hansen (FNAL/UW) Three relativistic bosons in a box 21 / 46



Derivation

A′
}

A A′CL(E , ~P) = C∞(E , ~P) +

FF

F

A+ iK iKiK+ + · · ·

+ · · ·

{

iM
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Derivation

CL(E , ~P) = C∞(E , ~P) +

A A′

F F

A A′

F

F F

F

A A′

+

+ + · · ·

iM

iM iM
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Result

We conclude

CL(E , ~P)− C∞(E , ~P) = −
∞∑
n=0

A′F [−iMF ]nA = −A′ 1

F−1 + iM
A

So at given values of {L,~nP}, the spectrum is just the set

E ∗k with k = 1, 2, 3, · · ·

for which

det(F−1 + iM) = 0 .
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Comments on result

det(F−1 + iM) = 0 .

iM`′,m′;`,m is diagonal (rotational invariance of infinite-volume).

F`′,m′;`,m is not diagonal (rotational invariance broken by finite-volume).

Despite F`′,m′;`,m not being diagonal, if iM`′,m′;`,m is negligible above
some `max, then F can also be truncated.

In particular, if the s-wave dominates we get

F−1
00;00 + iM00;00 = 0 .
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New set-up

Only two changes to the set-up:
1. Consider new energy range 3m < E ∗ < 5m.
2. Choose σ operators in correlator CL(E , ~P) to now couple to
odd-particle-number states.

Now the important finite-volume corrections to CL(E , ~P) are from
diagrams with three on-shell particles.
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New skeleton expansion
We jump straight to the new skeleton expansion, which displays all of the
important finite-volume corrections to CL(E , ~P).

+ · · ·

+ +

+

CL(E , ~P) = ++

+ +

+

+ +

+ · · ·

+ +
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No two-to-two insertions
As a warm-up, consider the subset of diagrams with no two-to-two
insertions. The simplest of these is the free particle diagram.

VL ≡

We find
VL = V∞ + σn′ [−Un′;n]σ†n ,

where we have defined

− Un′;n ≡
1

6

 1

L6

∑
~q

∑
~k

−
∫

d3q

(2π)3

∫
d3k

(2π)3


× iBn′(Ω)B∗n(Ω)

2ωq2ωk2ωP−q−k(E − ωq − ωk − ωP−q−k)
.

Bn spans the momentum space of three particles with total
energy-momentum E , ~P.
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No two-to-two insertions

We can use the same identity everywhere in the set with no two-to-two
insertions. We find

C
[No 2→2]
L (E , ~P)− C [No 2→2]

∞ (E , ~P) =

− A
′[No 2→2] 1

U−1 + iM[No 2→2]
3→3

A[No 2→2] ,

where
[
iM[No 2→2]

3→3

]
n′;n

is defined via

iM[No 2→2]
3→3 (Ω′,Ω) ≡ B∗n′(Ω′)

[
iM[No 2→2]

3→3

]
n′;n

Bn(Ω) .

This is just the sum of all amputated, on-shell six-point diagrams with no
two-to-two insertions.
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One two-to-two insertion

This is the simplest diagram with one two-to-two insertion.

~P−~k−~a
~a ~a′

~k

~P−~k−~a′

Here we have a propagator that appears in two different sets. This means
that the identity from the free diagram cannot be used.

We can however separately work out the singularity structure of this
diagram after time-component integration.

Time ordered perturbation theory is a perfect tool for this task.
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One two-to-two insertion
Schematically, the answer turns out to be

1

L9

∑
~k,~a′,~a

{
σ

i

E − 3ω′
iK

i

E − 3ω
σ† + σ

i

E − 3ω′
iK [reg]σ†

+ σ[reg]iK
i

E − 3ω
σ† + σ[reg]iK [reg]σ†

}
,

where [reg] stands for known regular functions. Also we have introduced
the shorthand

3ω ≡ ωa + ωP−k−a + ωk

3ω′ ≡ ωa′ + ωP−k−a′ + ωk .

Not shown here:
a) Factors of 1/(2ω)
b) Momentum dependence of σ and iK

(coordinates shared with singularity are on-shell)
b) Functional forms of various [reg]s
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One two-to-two insertion
Schematically, the answer turns out to be

1

L9

∑
~k,~a′,~a

{
σ

i

E − 3ω′
iK

i

E − 3ω
σ† + σ

i

E − 3ω′
iK [reg]σ†

+ σ[reg]iK
i

E − 3ω
σ† + σ[reg]iK [reg]σ†

}
.

How can we generalize our summation of three-to-three insertions

−A′[No 2] 1

U−1 + iM[No 2]
3→3

A[No 2] ,

to include diagrams with two-to-two insertions?

Consider just the second term

1

L6

∑
~k,~a′

σ
i

E − 3ω′

[∫
~a
iK [reg]σ†

]
.
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One two-to-two insertion
Subtracting out the infinite-volume (integrated) version of the terms leaves[

1

L6

∑
~k,~a′

−
∫
~k,~a′

]
σ

i

E − 3ω′

[∫
~a
iK [reg]σ†

]
.

This term has exactly the right form to be summed into

CL(E , ~P)− C∞(E , ~P) = −A′UA + · · · .
(Note that we have dropped the “[No 2]” on A.)

But to go from A[No 2] to A we also need terms like[
1

L6

∑
~k,~a′

−
∫
~k,~a′

]
σ

i

E − 3ω′

[∫
~a
iK

i

E − 3ω
σ†
]
.

Subtracting out this desired term from what we have gives a remainder[
1

L6

∑
~k,~a′

−
∫
~k,~a′

]
σ

i

E − 3ω′

[[
1

L3

∑
~a

−
∫
~a

]
iK

i

E − 3ω
σ†

]
.
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One two-to-two insertion
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A big mess
These remainders cannot be summed via natural extensions of the
two-particle case.[

1

L6

∑
~k,~a′

−
∫
~k,~a′

]
σ

i

E − 3ω′

[[
1

L3

∑
~a

−
∫
~a

]
iK

i

E − 3ω
σ†

]
+ · · ·

The fundamental issue is that we are dealing, for the first time, with a
product of poles that have common coordinates (in this case ~k).

As a result, we have terms that cannot be factored. Factoring was key to
producing a geometric series that could be summed into a useful result.

This will persist at all orders. In general we have chains of N poles
multiplied together, with sums and integrals over common coordinates.

Note that this particular diagram should be easy to understand. After all,
it is just the two-to-two case in disguise.
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This will persist at all orders. In general we have chains of N poles
multiplied together, with sums and integrals over common coordinates.

Note that this particular diagram should be easy to understand. After all,
it is just the two-to-two case in disguise.
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New strategy
Do not try to fit into the three-to-three summation. Instead only worry
about two-to-two diagrams. Begin by reanalyzing the two particle case,
but now with a spectator.

No problem. We find

C 2+spec
L (E , ~P)− C 2+spec

∞ (E , ~P) =

− 1

L3

∑
~k

1

2ωk
A′(~k)

1

[F (~k)]−1 + iM(~k)
A(~k) ,

where

−F (~k) =
1

2

[
1

L3

∑
~a

−
∫
~a

]
i4πY (â∗)Y ∗(â∗)

2ωa2ωP−k−a(E − ωk − ωa − ωP−k−a)
,

and iM(~k) is the two-to-two amplitude with total energy E − ωk and
total momentum ~P − ~k. This manifestly predicts the right spectrum.
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Scatter two different pairs
We now consider diagrams with exactly two scattered pairs.

~k

~p

Again we use time-ordered perturbation theory to identify singularities
after time component integration.

It turns out that all singularities to the left and right of the switch can be
summed just as in the two-particle case. We find

1

L6

∑
~k,~p

1

2ωp2ωk

{
A′[−F (~k)]

1

1 + iM(~k)F (~k)

×
[
iM(~k)

i

2ω(E − 3ω)
iM(~p) + [reg]

]
1

1 + F (~p)iM(~p)
[−F (~p)]A

}
.
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Scatter two different pairs

1

L6

∑
~k,~p

1

2ωp2ωk

{
A′[−F (~k)]

1

1 + iM(~k)F (~k)

×
[
iM(~k)

i

2ω(E − 3ω)
iM(~p) + [reg]

]
1

1 + F (~p)iM(~p)
[−F (~p)]A

}
.

To reach the final expression for these diagrams we substitute

[reg] = iMoff
iz(P − k − p)

(P − k − p)2 −m2
iMoff − iMon

i

2ω(E − 3ω)
iMon ,

−

S
where we have indicated whether the two-to-two amplitudes are on-shell.
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Divergence free three-to-three amplitude
It turns out that these regular pieces, which appear for any number of
switches, may all be grouped into what we call the divergence free
three-to-three amplitude

iMdf ,3→3 ≡ iM3→3

−
[
iM i

2ω(E − 3ω)
iM+

∫
iM i

2ω(E − 3ω)

1

2ω
iM i

2ω(E − 3ω)
iM+ · · ·

]
.

S

+ · · ·+

S S

Here iM3→3 is short for iM3→3,`′,m′;`,m(~k , ~p).

So, the in- and the out-states are each parametrized by
one momentum coordinate ~k and
one set of angular-momentum indices `,m.
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iMdf ,3→3 ≡ iM3→3

−
[
iM i

2ω(E − 3ω)
iM+

∫
iM i

2ω(E − 3ω)

1

2ω
iM i

2ω(E − 3ω)
iM+ · · ·

]
.

We emphasize that the original amplitude, M3→3(~k, ~p), is divergent at
E = ωk + ωp + ωP−k−p.

The physical interpretation of the divergence is that two particles can
rescatter and travel arbitrarily far before another two rescatter.

As a result iMdf ,3→3 really is a more natural observable to get from
lattice simulation.
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Setting up final result
Having indicated some of the key complications and a hint of the
resolution, we now jump to stating the final answer.

We find

CL(E , ~P)− C∞(E , ~P) = −A 1

F−1
three + iMdf ,3→3

A ,

where the right-hand-side is a (row) times (matrix) times (column) in the
space

(momentum ~p = 2π~np/L of one of the particles)×
(angular momentum of other two) .

Note that there are a finite number of discrete momenta for which the
other two particles are above threshold. As a result truncating the ~p space
only incurs exponentially suppressed errors.

It only remains to define Fthree.
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The relativistic, model-independent relation between finite-volume
spectrum and scattering amplitudes is

det[F−1
three + iMdf ,3→3] = 0 ,

where

Fthree ≡
1

2ωL3

[
(2/3)iF − 1

[iF ]−1 − [1− iMiG ]−1 iM

]

iGk,p =
1

2ωpL3

i
√

4πY (p̂∗)Y ∗(k̂∗)

2ωP−p−k(E − ωp − ωk − ωP−p−k)
,

iFk,k ′ = δk,k ′
1

2

[
1

L3

∑
~a

−
∫
~a

]
i
√

4πY (â∗)Y ∗(â∗)

2ωa2ωP−k−a(E − ωk − ωa − ωP−k−a + iε)
,

iMk,k ′ = δk,k ′ iM(~k) .

Here harmonic indices have been left implicit.

This is the main result of the talk.
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Threshold expansion
Expanding our result in 1/L about the three particle threshold

(E = 3m + ∆E , ~P = 0) ,

reproduces the result of Beane, Detmold and Savage12,13

∆E =
12πa

mL3

[
1− a

πL
I +

a2

π2L2

[
I2 + J

]
+

a2

π3L3

[
−I3 + IJ + 15K

] ]
+

24π2a3r

mL6
+
ηL
L6

+O(L−7) ,

which they found using non-relativistic quantum mechanics. Here
a is the scattering length
r is the effective range
ηL is an L-dependent three-body interaction coefficient

I =
Λ∑

~n 6=0

1

~n2
− 4πΛ , J =

∑
~n 6=0

1

~n4
, K =

∑
~n 6=0

1

~n6
.

12Beane, S. R. et al. Phys.Rev. D76, 074507 (2007).
13Detmold, W. & Savage, M. J. Phys.Rev. D77, 057502 (2008).
M. T. Hansen (FNAL/UW) Three relativistic bosons in a box 44 / 46



Threshold expansion
The expansion is performed by substituting

∆E = λ∆E1 + λ2∆E2 + · · ·

M =
16πE ∗

[tan δ/p∗]−1 − ip∗
=

16πE ∗

[−a− a2rp∗2/2 + · · · ]−1 − ip∗

Mdf ,3→3 = −48m3η3 + · · · .
and then solving order by order, taking O(λ) = O(a) = O(η3).

Three comments:
1. In this limit only Y00 entries survive in iG and iF . (The limit gives

no reduction in ~k space.)
2. η3 was originally defined as the coefficient of a three-body

delta-function potential. The relation to Mdf ,3→3 is from the Born
approximation.

3. There are two additional sums (appearing in both the quantum
formalism and ours) that are combined with η3 to give ηL.

c) To get
The trickiest part of the expansion

det[F−1
three + iMdf ,3→3] = 0 ,

where

Fthree ≡
1

2ωL3

[
(2/3)iF − 1

[iF ]−1 − [1− iMiG ]−1 iM

]

iGk,p =
1

2ωpL3

i

2ωP−p−k(E − ωp − ωk − ωP−p−k)
,

iFk,k ′ = δk,k ′
1

2

[
1

L3

∑
~a

−
∫
~a

]
i

2ωa2ωP−k−a(E − ωk − ωa − ωP−k−a + iε)
,

iMk,k ′ = δk,k ′ iM(~k) .

This is the main result of the talk.
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Conclusion

We have given a relativistic, model-independent relation between
three-particle S-matrix elements and the finite-volume spectrum.

We have shown that this relation reproduces the three-particle threshold
expansion, which has been determined elsewhere using non-relativistic
quantum mechanics.

The next step is to map out the spectrum in the full range 3m < E ∗ < 5m
for realistic scattering amplitude inputs.

Also interesting would be an attempt to weakly perturb our relation, in
order to get a generalization of the Lellouch-Lüscher relation between
finite- and infinite-volume weak decay matrix elements.
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