

INT-13-53W March 2013

Three-particle scattering amplitudes from a finite volume formalism*

Zohreh Davoudi University of Washington

*Raul Briceno, ZD, arXiv: 1212.3398

Why a finite volume formalism?

Lattice QCD: From spectrum to physical observables?

Beane, et. al. (2012).

Resonance spectroscopycoupled multi-particle channels

Monday, March 11, 2013

11, 2013

Three-body correlation functions with the dimer field

$$(E, \mathbf{P})$$

$$K_3 = \begin{array}{c} g_3 \\ g_2 \\ g_2 \end{array}$$

Kinematic region below fourparticle threshold

Expand the correlation function in powers of kernel

$$C_3^V = \overbrace{A_3^{\prime}}_{V} \overbrace{A_3}_{V} + \overbrace{A_3^{\prime}}_{V} \overbrace{K_3}_{V} \overbrace{A_3}_{V} + \overbrace{A_3^{\prime}}_{V} \overbrace{K_3}_{V} \overbrace{K_3}_{V} \overbrace{K_3}_{V} \overbrace{K_3}_{V} \overbrace{A_3}_{V} + \cdots$$

$$\frac{1}{L^6} \sum_{\mathbf{q}_1, \mathbf{q}_2} A_3(\mathbf{q}_1) i \mathcal{D}^V(E - \frac{q_1^2}{2m}, |\mathbf{P} - \mathbf{q}_1|) i K_3(\mathbf{q}_1, \mathbf{q}_2; \mathbf{P}, E) i \mathcal{D}^V(E - \frac{q_2^2}{2m}, |\mathbf{P} - \mathbf{q}_2|) A_3'(\mathbf{q}_2)$$

$$-\int \frac{d^3\mathbf{q}_1}{(2\pi)^3} \frac{d^3\mathbf{q}_2}{(2\pi)^3}$$
 ?

$$iK_3(\mathbf{q}_1, \mathbf{q}_2; \mathbf{P}, E) \equiv -ig_3 - \frac{ig_2^2}{E - \frac{\mathbf{q}_1^2}{2m} - \frac{\mathbf{q}_2^2}{2m} - \frac{(\mathbf{P} - \mathbf{q}_1 - \mathbf{q}_2)^2}{2m} + i\epsilon$$

The poles of three-body kernel cancel with zero's of full FV dimer propagator!

Identifying the on-shell states

$$\{\overline{q}_{\kappa}^{*}, q_{\kappa}^{*}\} = \{\left(\overline{q}_{0}^{*}, \sqrt{\frac{4}{3}}(mE^{*} - \overline{q}_{0}^{*2})\right), \left(\overline{q}_{1}^{*2}, \sqrt{\frac{4}{3}}(mE^{*} - \overline{q}_{1}^{*})\right), \dots, \left(\overline{q}_{N_{E^{*}}}^{*}, \sqrt{\frac{4}{3}}(mE^{*} - \overline{q}_{N_{E^{*}}}^{*2})\right)$$

Off-shell states

$$mE^* < \frac{3}{4}q_{\kappa}^{*2}$$

Exponential corrections

Three-particle quantization conditions

Bound-state particle scattering-S-wave boson-diboson elastic scattering amplitude recovering Luscher

$$\mathcal{M}_{Bd} = \frac{3\pi}{m} \frac{1}{q_0^* \cot \delta_{Bd} - iq_0^*}$$
$$\tilde{\mathcal{M}}_V^\infty \text{ VS. } \tilde{\mathcal{M}}_\infty^\infty \equiv \mathcal{M}_{Bd} \text{ ?}$$
Key: Diboson is a compact object

in sufficiently large volumes

$$\underline{\mathbf{q}}_0^* = i\gamma_d + \mathcal{O}(e^{-\gamma_d L}/L)$$

$$q_{0}^{*} \cot \delta_{Bd} = 4\pi \ c_{00}^{P}(q_{0}^{*}) + \eta \frac{e^{-\gamma_{d}L}}{L}$$
A coefficient that needs to be fit to data
$$q_{0}^{*} = \sqrt{\frac{4}{3}} (mE^{*} - \bar{q}_{0}^{*2})$$

$$q_{0}^{*} = \sqrt{\frac{4}{3}} (mE^{*} - \bar{q}_{0}^{*2})$$
Diboson infinite volume binding momentum

Bound-state particle scatteringrecovering Luscher

Other sources of systematics to the Luscher approximation

How big must the volumes be?

A few percent determination of phase-shifts for dN scatting?

Do the calculation with different boosts

Form suitable linear combinations

Three-body problem?

Requires more extensive numerical work!

Recombination and breakup processes?

Just above the threshold

$$\{\left(\overline{q}_{0}^{*},\sqrt{\frac{4}{3}}(mE^{*}-\overline{q}_{0}^{*2})\right),\left(\overline{q}_{1}^{*2},\sqrt{\frac{4}{3}}(mE^{*}-\overline{q}_{1}^{*})\right)\}$$

A coupled-channels problem

$$(1 + \tilde{\mathcal{M}}^{\infty}_{V,Bd-Bd}) \delta \tilde{\mathcal{G}}^{V}_{Bd})(1 + \tilde{\mathcal{M}}^{\infty}_{V,BBB-BBB}) \delta \tilde{\mathcal{G}}^{V}_{BBB}) = |\tilde{\mathcal{M}}^{\infty}_{V,Bd-BBB}|^2 \delta \tilde{\mathcal{G}}^{V}_{Bd} \delta \tilde{\mathcal{G}}^{V}_{BBB}$$

Relate to physical scattering amplitudes through an integral equation

NO ALGEBRAIC APPROXIMATION ABOVE BREAKUP

Hansen, Sharpe (2012); Briceno, ZD (2012).

Implementation

(I) Determine two-body scattering parameters well

Obtain the Luscher poles as a function of two-particle boost momentum and energy $~~\overline{q}^*_\kappa$

(II) Calculate three-body spectrum well

$$E^*, \overline{q}^*_\kappa \to q^*_\kappa$$

(III) Numerically solve the quantization condition for three-body kernel.

Summary and conclusion

The spectrum of three bosons in FV is related to three-particle scattering amplitudes through an integral equation.

In theories with two-body bound states a simple Luscher formula exists. The phase shifts should be extrapolated to infinite volume limit. The problem is in general a coupled-channel problem - more than one kinematic channels contributiong

Sources of systematics include the presence of nearby off-shell states + FV partial-wave mixing

Implementation is an extensive numerical effort.

Future work and open questions

Nuclear sector? Generalized dimer formalism? See Raul's Talk.

Study volume dependence of Triton and dN scattering numerically

Three-body problem without dimer? See Max's talk.

To determine scattering amplitudes without any reference to the EFT?

Breakup recombination processes? Coupled-channel analysis

THANKS!