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1. Introduction

HAL QCD approach to Nuclear Force 



Potentials in QCD ?

What are “potentials” (quantum mechanical objects) in quantum field theories such as QCD ? 

“Potentials” themselves can NOT be directly measured. cf. running coupling in QCD

scheme dependent, ambiguities in inelastic region

“Potentials” are still useful tools to extract observables such 
as scattering phase shift. 

experimental data of scattering phase shifts potentials, but not unique 

One may adopt a convenient definition of potentials as long 
as they reproduce correct physics of QCD.  



 HAL QCD strategy

define (Equal-time) Nambu-Bethe-Salpeter (NBS) Wave function
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Wk = 2
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k2 + m2
N�k(r) = �0|N(x + r, 0)N(x, 0)|NN, Wk�

Step 1

Full details: Aoki, Hatsuda & Ishii, PTP123(2010)89.

Spin model: Balog et al., 1999/2001 



r = |r|!1

�l(k) scattering phase shift  (phase of the S-matrix by unitarity) in QCD !

How can we extract it ?

 Key Property 1

cf. Luescher’s finite volume method

Lin et al., 2001; CP-PACS, 2004/2005
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Step 2

εk =
k2

2µ
H0 =

−∇2

2µ
non-local potential

[�k �H0] �k(x) =
�

d3y U(x,y)�k(y)
µ = mN/2
reduced mass

define non-local but energy-independent “potential” as 

 A non-local but energy-independent potential can be constructed as

U(x,y) =
Wk,Wk��Wth�

k,k�

[�k �H0] �k(x)��1
k,k��

†
k�(y)

��1
k,k� : inverse of �k,k� = (�k, �k�)

inner product

�k is linearly independent.

For �Wp < Wth = 2mN + m� (threshold energy)
�

d3y U(x,y)�p(y) =
�

k,k�

[�k �H0] �k(x)��1
k,k��k�,p = [�p �H0] �p(x)

Note 1: Potential satisfying this is not unique. 

Note2: Non-relativistic approximation is NOT used. We just take the equal-time frame.

 Key Property 2



Step 3

expand the non-local potential in terms of derivative as U(x,y) = V (x,r)�3(x� y)

V (x,∇) = V0(r) + Vσ(r)(σ1 · σ2) + VT (r)S12 + VLS(r)L · S + O(∇2)
LO LO LO NLO NNLO

tensor operator S12 =
3
r2

(σ1 · x)(σ2 · x) − (σ1 · σ2)

spins

VA(x)
local and energy independent coefficient function 
(cf. Low Energy Constants(LOC) in Chiral Perturbation Theory)



expansion parameter

Step 4 extract the local potential. At LO, for example, we simply have

VLO(x) =
[�k �H0]�k(x)

�k(x)

Step 5 solve the Schroedinger Eq. in the infinite volume with this potential.

phase shifts and binding energy below inelastic threshold

exact by construction 

approximated one by the derivative expansion

We can check a size of errors at LO of the expansion. 
We can improve results by extracting higher order terms in the expansion.  

�L(p �= k)

�L(k)

(We can calculate the phase shift at all angular momentum.)

Wp �Wk

Wth � 2mN
� �Ep

m�



2. Results from lattice QCD

Ishii et al. (HALQCD), PLB712(2012) 437.



Extraction of NBS wave function

NBS wave function Potential

4-pt Correlation function

It is now clear that there is no unique definition for the NN potential. Ref. [18, 24, 25], however,
criticized that the NBS wave function is not ”the correct wave function for two nucleons” and that its
relation to the correct wave function is given by

ϕW (r) = ZNN(|r|)〈0|T{N0(x + r, 0)N0(x, 0)}|2N, W, s1, s2〉 + · · · (23)

where N0(x, t) is ”a free-field nucleon operator” and the ellipses denotes ”additional contributions from
the tower of states of the same global quantum numbers”. Thus 〈0|T{N0(x+r, 0)N0(x, 0)}|2N,W, s1, s2〉
is considered to be ”the correct wave function”. In this claim it is not clear what is ”a free-field nucleon
operator” in the interacting quantum field theory such as QCD. An asymptotic in or out field operator
may be a candidate. If the asymptotic field is used for N0, however, the potential defined from the
wave function identically vanishes for all r by construction. To be more fundamental, a concept of
”the correct wave function” is doubtful. If some wave function were ”correct”, the potential would be
uniquely defined from it. This clearly contradicts the fact discussed above that the potential is not an
observable and therefore is not unique. This argument shows that the criticism of Ref. [18, 24, 25] is
flawed.

3 Lattice formulation

In this section, we discuss the extraction of the NBS wave function from lattice QCD simulations. For
this purpose, we consider the correlation function on the lattice defined by

F (r, t − t0) = 〈0|T{N(x + r, t)N(x, t)}J (t0)|0〉 (24)

where J (t0) is the source operator which creates two nucleon state and its explicit form will be considered
later. By inserting the complete set and considering the baryon number conservation, we have

F (r, t − t0) = 〈0|T{N(x + r, t)N(x, t)}
∑

n,s1,s2

|2N, Wn, s1, s2〉〈2N, Wn, s1, s2|J (t0)|0〉

=
∑

n,s1,s2

An,s1,s2ϕ
Wn(r)e−Wn(t−t0), An,s1,s2 = 〈2N,Wn, s1, s2|J (0)|0〉. (25)

For a large time separation that (t − t0) → ∞, we have

lim
(t−t0)→∞

F (r, t − t0) = A0ϕ
W0(r)e−W0(t−t0) + O(e−Wn!=0(t−t0)) (26)

where W0 is assumed to be the lowest energy of NN states. Since the source dependent term A0 is just
a multiplicative constant to the NBS wave function ϕW0(r), the potential defined from ϕW0(r) in our
procedure is manifestly source-independent. Therefore the statement that the potential in this scheme
is ”source-dependent” in Ref. [26] is clearly wrong.

In this extraction of the wave function, the ground state saturation for the correlation function F in
eq. (26) is important. In principle, one can achieve this by taking a large t − t0. In practice, however,
F becomes very noisy at large t − t0, so that the extraction of ϕW0 becomes difficult at large t − t0.
Therefore it is crucial to find the region of t where the ground state saturation is approximately satisfied
while the signal is still reasonably good. The choice of the source operator becomes important to have
such a good t-region.

before using the potential in nuclear physics.
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NBS wave function

This is a standard method in lattice QCD and was employed for our first calculation.

ground state saturation at large t

�k(r) = �0|N(x + r, 0)N(x, 0)|NN, Wk� [�k �H0]�k(x) =
�

d3y U(x,y)�k(y)

+ · · ·



Improved method

normalized 4-pt Correlation function R(r, t) ≡ F (r, t)/(e−mN t)2 =
∑

n

Anϕ
Wn(r)e−∆Wnt

∆Wn = Wn − 2mN =
k2

n

mN
− (∆Wn)2

4mN

− ∂

∂t
R(r, t) =

{
H0 + U − 1

4mN

∂2

∂t2

}
R(r, t)

potential
Leading Order
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Ground state saturation is no more required.  (advantage over finite volume method.)

Ishii et al. (HALQCD), PLB712(2012) 437

energy-independent



NN potential
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In order to extend the HAL QCD method to inelastic and/or multi-particle scatterings,
we have to show

 Key Property 1

 Key Property 2

Asymptotic behaviors of NBS wave functions for more than 2 particles

Existence of energy independent potentials above inelastic thresholds



3. NBS wave functions 
for multi-particles

 Key Property 1

Sinya Aoki, et al., arXiv.1303.2210 [hep-lat].

For simplicity, 
(1) we consider scalar particles with “flavors”
(2) we assume no bound state exists.



Unitarity constraint

Using the above, for the n particle system in the center of mass frame, we have

0〈0|ϕn([x], 0)|[k]n〉0 =



 1
√

(2π)3




n

n∏

i=1

1
√

2Eki

eikixi

=



 1
√

(2π)3




n


n∏

i=1

1
√

2Eki



 exp



i
n−1∑

j=1

qj · rj



 , (21)

where rj and qj are modified Jacobi coordinates and momenta, respectively.

III. UNITARITY OF S-MATRIX AND PARAMETRIZATION OF T -MATRIX

The unitarity of S-matrix implies

T † − T = iT †T. (22)

Defining

0〈[pA]n|T |[pB]n〉0 ≡ δ(EA − EB)δ(3)(P A − P B)T ([qA]n, [q
B]n) (23)

where [pX ]n = pX
1 , pX

2 , · · · ,pX
n , [qX ]n = qX

1 , qX
2 , · · · , qX

n−1 with X = A,B, and

EA ≡
n∑

i=1

EpA
i
, EB ≡

n∑

i=1

EpB
i
, P A ≡

n∑

i=1

pA
i, P B ≡

n∑

i=1

pB
i. (24)

Here we parametrize the T -matrix element in terms of modified Jacobi momenta [qA] and

[qB]. Note that Tβα, appeared in Lippmann-Schwinger equation, is expressed as

Tβα =
1

2π
δ(3)(P A − P B)T ([qA]n, [qB]n). (25)

Using the above expression, the unitarity constraint to T -matrix can be written as

T †([qA]n, [qB]n) − T ([qA]n, [q
B]n) =

i

n3/2

∫ n−1∏

i=1

d3qC
i δ(E

A − EC)

× T †([qA]n, [qC ]n)T ([qC ]n, [q
B]n). (26)

Our task is to solve this constraint.

A. n = 2

Let me consider the simplest case, n = 2. In this case, we can parametrize T -matrix, in

terms of the spherical harmonic functions Ylm as follows.

T (qA, qB) =
∑

l,m

Tl(q
A, qB)Ylm(ΩqA)Ylm(ΩqB) (27)
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(modified) Jacobi coordinates and momenta

The HAL QCD method has also been applied to investigate three nucleon forces(3NF)[23,

24], even though asymptotic behaviors of NBS wave function for three nucleons have not

been derived yet. The 3NF is necessary to explain the experimental binding energies of light

nuclei [25, 26] and high precision deuteron-proton elastic scattering data at intermediate

energies [27]. It may also play an important role for various phenomena in nuclear physics

and astrophysics [28–31].

The purpose of this paper is to derive asymptotic behaviors of NBS wave functions for

n particles with n ≥ 3 at large distances where separations among n operators become all

large. To avoid complications due to non-zero spins of particles, we consider scalar fields in

this paper. The results of this paper, together with an extension to spin 1/2 particles, fills

the logical gap in the derivation of 3NF by the HAL QCD method[23, 24].

In Sec. II, we explain our notations and definitions such as the modfied Jacobi coordinate,

the Lippmann-Schwinger equation, and the NBS wave function for n scalar particles. In

Sec. III we parametrize one-shell T -matrix for n particles, by solving the unitarity constraint

of S-matrix. For explicit calculations for n-particle systems, we introduce the spherical

coordinates in D = 3(n − 1) dimensions, which is equal to a number of degrees of freedom

for n particle in 3-dimensions in the center of mass flame, together with non-relativistic

approximations. In Sec. IV, using these techniques and results obtained in Sec. III, we

derive asymptotic behaviors of NBS wave functions for n-particles, in terms of phase shifts

and mixing angles of the n-particle scattering. Conclusions and discussions are given in

Sec. V. Some technical details are collected in three appendices.

II. SOME DEFINITIONS AND NOTATIONS

In this paper, to avoid complications arising from nucleon spins, we consider an n-scalar

particle system which have the same mass m in the center of mass frame, whose coordinates

and momenta are denoted by xi, pi (k = 1, 2, · · · , n ) with
n∑

i=1

pi = 0. We introduce modified

Jacobi coordinates and corresponding momenta as

rk =

√
k

k + 1
× rJ

k , qk =

√
k + 1

k
× qJ

k (4)

where the standard Jacobi coordinates and momenta are given by

rJ
k =

1

k

k∑

i=1

xi − xk+1, qJ
k =

k

k + 1

(
1

k

k∑

i=1

pi − pk+1

)

, (5)
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where QX = (qX
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X
2, · · · , qX

n−1) for X = A,B is a momentum vector in D = 3(n − 1)

dimensions. With the non-relativistic approximation and orthogonal property, the unitarity

relation eq. (26) after ΩQC integration leads to

T †
[L][K](QA, QA) − T[L][K](QA, QA) =
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where QA = QB is used. By diagonalizing T with an unitary matrix U as
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U[L][N ](Q)T[N ](Q)U †
[N ][K](Q), (39)

the above constraint can be solved as

T[L](Q) = − 2n3/2

mQ3n−5
eiδ[L](Q) sin δ[L](Q), (40)

where δ[L](Q) is a real phase, which depends on Q and [L] in D = 3(n − 1) dimensions.

This is a main result of this section. Unfortunately, a relation of the phase shifts in the

hyper-spherical coordinates with physical observables for n-particles in the standard Jacobi
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momentum in D=3(n-1) dim.

hyper-spherical harmonic function

where qA,B = |qA,B| and Ωq is the solid angle of the vector q. Using orthogonal property of

Ylm, the constraint becomes

Tl(q, q) − Tl(q, q) =
i

23/2

∫
(qC)2dqC δ(E − EC)Tl(q, q

C)Tl(q
C , q) (28)

where q = qA = qB, E = EA = EB = 2
√

m2 + q2/2 and EC = 2
√

m2 + (qC)2/2. After qC

integral, the constraint is now becomes

Tl(q, q) − Tl(q, q) = i
qE

2 × 23/2
Tl(q, q)Tl(q, q), (29)

which can be solved as

Tl(q) ≡ Tl(q, q) = −4 × 23/2

qE
eiδl(E) sin δl(E), (30)

where δl(q) is the phase shift for the partial wave with the angular momentum l at energy

E = 2
√

m2 + q2/2.

B. General n

For general n case, we introduce the non-relativistic approximation for the energy in the

delta-function as

EA − EC $ (pA)2 − (pC)2

2m
=

(qA)2 − (qC)2

2m
(31)

where (qA,C)2 =
∑n

i=1(q
A,C
i )2 for modified Jacobi momenta [qA,C ]n. To perform 3 dimensional

momentum integral (n − 1) times, we consider D = 3(n − 1) dimensional space. Denoting

s = |s| is a D-dimensional hyper-radius and Ωs are angular variables for the vector s in D

dimensions, the Laplacian operator is decomposed as

∇2 =
∂2

∂s2
+

D − 1

s

∂

∂s
− L̂2

s2
(32)

where L̂2 is angular-momentum in D-dimensions. The hyper-spherical harmonic

function[33], an extension of spherical harmonic function in 3-dimension to general D-

dimensions satisfies

L̂2Y[L](Ωs) = L(L + D − 2)Y[L](Ωs) (33)
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Lippmann-Schwinger equation in QFT

for k = 1, 2, · · · , n − 1. It is easy to see

n∑

i=1

pi · xi =
n−1∑

i=1

qi · ri, E =
1

2m

n∑

i=1

p2
i =

1

2m

n−1∑

i=1

q2
i , (6)

where m is the mass of the scalar particle. The integration measure for modified Jacobi

momenta is given by

n∏

i=1

d3pi δ
(3)

(
n∑

i=1

pi

)

=
1

n3/2

n−1∏

i=1

d3qi. (7)

A. Lippmann-Schwinger equation

As mentioned in the introduction, the asymptotic behavior of the NBS wave functions

for a two-particle system has already been derived in Refs. [8, 20–22]. It is not straightfor-

ward, however, to extend their derivations to multi-particle systems. Instead, we utilize the

Lippmann-Schwinger equation[32],

|α〉in = |α〉0 +
∫

dβ
|β〉0Tβα

Eα − Eβ + iε
, Tβα = 0〈β|V |α〉in, (8)

which is found to be a powerful tool to study multi-particle systems. We assume in this

paper that no bound state appears in two or more particle systems. Here the asymptotic

in-state |α〉in satisfies

(H0 + V )|α〉in = Eα|α〉in, (9)

whereas the non-interacting state |α〉0 satisfies

H0|α〉0 = Eα|α〉0. (10)

The off-shell T -matrix element or the ”potential” Tβα = 0〈β|V |α〉in is related to the on-shell

S-matrix element as

Sβα ≡ out〈β|α〉in ≡ 0〈β|S|α〉0 = δ(β − α) − 2πiδ(Eα − Eβ)Tβα. (11)

If we define S = 1 − iT , we obtain

0〈β|T |α〉0 = 2πδ(Eα − Eβ)Tαβ. (12)

5

for k = 1, 2, · · · , n − 1. It is easy to see

n∑

i=1

pi · xi =
n−1∑

i=1

qi · ri, E =
1

2m

n∑

i=1

p2
i =

1

2m

n−1∑

i=1

q2
i , (6)

where m is the mass of the scalar particle. The integration measure for modified Jacobi

momenta is given by

n∏

i=1

d3pi δ
(3)

(
n∑

i=1

pi

)

=
1

n3/2

n−1∏

i=1

d3qi. (7)

A. Lippmann-Schwinger equation

As mentioned in the introduction, the asymptotic behavior of the NBS wave functions

for a two-particle system has already been derived in Refs. [8, 20–22]. It is not straightfor-

ward, however, to extend their derivations to multi-particle systems. Instead, we utilize the

Lippmann-Schwinger equation[32],

|α〉in = |α〉0 +
∫

dβ
|β〉0Tβα

Eα − Eβ + iε
, Tβα = 0〈β|V |α〉in, (8)

which is found to be a powerful tool to study multi-particle systems. We assume in this

paper that no bound state appears in two or more particle systems. Here the asymptotic

in-state |α〉in satisfies

(H0 + V )|α〉in = Eα|α〉in, (9)

whereas the non-interacting state |α〉0 satisfies

H0|α〉0 = Eα|α〉0. (10)

The off-shell T -matrix element or the ”potential” Tβα = 0〈β|V |α〉in is related to the on-shell

S-matrix element as

Sβα ≡ out〈β|α〉in ≡ 0〈β|S|α〉0 = δ(β − α) − 2πiδ(Eα − Eβ)Tβα. (11)

If we define S = 1 − iT , we obtain

0〈β|T |α〉0 = 2πδ(Eα − Eβ)Tαβ. (12)

5

off-shell on-shell

for k = 1, 2, · · · , n − 1. It is easy to see

n∑

i=1

pi · xi =
n−1∑

i=1

qi · ri, E =
1

2m

n∑

i=1

p2
i =

1

2m

n−1∑

i=1

q2
i , (6)

where m is the mass of the scalar particle. The integration measure for modified Jacobi

momenta is given by

n∏

i=1

d3pi δ
(3)

(
n∑

i=1

pi

)

=
1

n3/2

n−1∏

i=1

d3qi. (7)

A. Lippmann-Schwinger equation

As mentioned in the introduction, the asymptotic behavior of the NBS wave functions

for a two-particle system has already been derived in Refs. [8, 20–22]. It is not straightfor-

ward, however, to extend their derivations to multi-particle systems. Instead, we utilize the

Lippmann-Schwinger equation[32],

|α〉in = |α〉0 +
∫

dβ
|β〉0Tβα

Eα − Eβ + iε
, Tβα = 0〈β|V |α〉in, (8)

which is found to be a powerful tool to study multi-particle systems. We assume in this

paper that no bound state appears in two or more particle systems. Here the asymptotic

in-state |α〉in satisfies

(H0 + V )|α〉in = Eα|α〉in, (9)

whereas the non-interacting state |α〉0 satisfies

H0|α〉0 = Eα|α〉0. (10)

The off-shell T -matrix element or the ”potential” Tβα = 0〈β|V |α〉in is related to the on-shell

S-matrix element as

Sβα ≡ out〈β|α〉in ≡ 0〈β|S|α〉0 = δ(β − α) − 2πiδ(Eα − Eβ)Tβα. (11)

If we define S = 1 − iT , we obtain

0〈β|T |α〉0 = 2πδ(Eα − Eβ)Tαβ. (12)

5

for k = 1, 2, · · · , n − 1. It is easy to see

n∑

i=1

pi · xi =
n−1∑

i=1

qi · ri, E =
1

2m

n∑

i=1

p2
i =

1

2m

n−1∑

i=1

q2
i , (6)

where m is the mass of the scalar particle. The integration measure for modified Jacobi

momenta is given by

n∏

i=1

d3pi δ
(3)

(
n∑

i=1

pi

)

=
1

n3/2

n−1∏

i=1

d3qi. (7)

A. Lippmann-Schwinger equation

As mentioned in the introduction, the asymptotic behavior of the NBS wave functions

for a two-particle system has already been derived in Refs. [8, 20–22]. It is not straightfor-

ward, however, to extend their derivations to multi-particle systems. Instead, we utilize the

Lippmann-Schwinger equation[32],

|α〉in = |α〉0 +
∫

dβ
|β〉0Tβα

Eα − Eβ + iε
, Tβα = 0〈β|V |α〉in, (8)

which is found to be a powerful tool to study multi-particle systems. We assume in this

paper that no bound state appears in two or more particle systems. Here the asymptotic

in-state |α〉in satisfies

(H0 + V )|α〉in = Eα|α〉in, (9)

whereas the non-interacting state |α〉0 satisfies

H0|α〉0 = Eα|α〉0. (10)

The off-shell T -matrix element or the ”potential” Tβα = 0〈β|V |α〉in is related to the on-shell

S-matrix element as

Sβα ≡ out〈β|α〉in ≡ 0〈β|S|α〉0 = δ(β − α) − 2πiδ(Eα − Eβ)Tβα. (11)

If we define S = 1 − iT , we obtain

0〈β|T |α〉0 = 2πδ(Eα − Eβ)Tαβ. (12)

5

full

free

NBS wave functions

B. NBS wave functions

The equal-time Nambu-Bethe-Salpeter(NBS) wave function for n scalar particles is de-

fined by

Ψn
α([x]) = in〈0|ϕn([x], 0)|α〉in, (13)

where

ϕn([x], t) = T{
n∏

i=1

ϕi(xi, t)}, (14)

with the time-ordered product T , [x] = x1, x2, · · · , xn, and i represents a ”flavor” of scalar

field. For simplicity, we regard all n scalar particles are different but have the same mass m.

From the Lippmann-Schwinger equation (8), the vacuum instate is given by

|0〉in = |0〉0 +
∫

dγ
|γ〉0Tγ0

E0 − Eγ + iε
. (15)

As shown in Appemdix A, however, the contribution from the second term to the NBS wave

function at large distances amounts to

in〈0|ϕn([x], 0)|α〉0 $
1

Zα
0〈0|ϕn([x], 0)|α〉0, (16)

where Zα is the normalization factor whose deviation from the unity comes from the off-shell

T -matrix Tγ0. Using this and the Lippmann-Schwinger equation (8), the NBS wave function

can be written as

Ψn
α([x]) =

1

Zα
0〈0|ϕn([x], 0)|α〉0 +

∫
dβ

1

Zβ

0〈0|ϕn([x], 0)|β〉0Tβα

Eα − Eβ + iε
. (17)

To evaluate the above expression explicitly, we quantize all complex scalar fields in the

Heisenberg representation at t = 0 as

ϕi(x, 0) =
∫ d3k
√

(2π)32Eki

{
ai(k)eikx + b†i (k)e−ikx

}
(18)

|α〉0 ≡ |[k]n〉0 =
n∏

i=1

a†
i (ki)|0〉0, Eki =

√
k2

i + m2, (19)

where [k]n = k1,k2, · · · , kn with
∑n

i=1 ki = 0, and the full time evolution is given by

ϕn([x], t) = eiHtϕn([x], 0)e−iHt while H → H0 for the free field. Our state normalization is

given by

0〈βm|αn〉0 = δ(βm − αn). (20)
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∫ d3k
√

(2π)32Eki

{
ai(k)eikx + b†i (k)e−ikx

}
(18)

|α〉0 ≡ |[k]n〉0 =
n∏

i=1

a†
i (ki)|0〉0, Eki =

√
k2

i + m2, (19)

where [k]n = k1,k2, · · · , kn with
∑n

i=1 ki = 0, and the full time evolution is given by

ϕn([x], t) = eiHtϕn([x], 0)e−iHt while H → H0 for the free field. Our state normalization is

given by

0〈βm|αn〉0 = δ(βm − αn). (20)
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Using the above, for the n particle system in the center of mass frame, we have

0〈0|ϕn([x], 0)|[k]n〉0 =



 1
√

(2π)3




n

n∏

i=1

1
√

2Eki

eikixi

=



 1
√

(2π)3




n


n∏

i=1

1
√

2Eki



 exp



i
n−1∑

j=1

qj · rj



 , (21)

where rj and qj are modified Jacobi coordinates and momenta, respectively.

III. UNITARITY OF S-MATRIX AND PARAMETRIZATION OF T -MATRIX

The unitarity of S-matrix implies

T † − T = iT †T. (22)

Defining

0〈[pA]n|T |[pB]n〉0 ≡ δ(EA − EB)δ(3)(P A − P B)T ([qA]n, [q
B]n) (23)

where [pX ]n = pX
1 , pX

2 , · · · ,pX
n , [qX ]n = qX

1 , qX
2 , · · · , qX

n−1 with X = A,B, and

EA ≡
n∑

i=1

EpA
i
, EB ≡

n∑

i=1

EpB
i
, P A ≡

n∑

i=1

pA
i, P B ≡

n∑

i=1

pB
i. (24)

Here we parametrize the T -matrix element in terms of modified Jacobi momenta [qA] and

[qB]. Note that Tβα, appeared in Lippmann-Schwinger equation, is expressed as

Tβα =
1

2π
δ(3)(P A − P B)T ([qA]n, [qB]n). (25)

Using the above expression, the unitarity constraint to T -matrix can be written as

T †([qA]n, [qB]n) − T ([qA]n, [q
B]n) =

i

n3/2

∫ n−1∏

i=1

d3qC
i δ(E

A − EC)

× T †([qA]n, [qC ]n)T ([qC ]n, [q
B]n). (26)

Our task is to solve this constraint.

A. n = 2

Let me consider the simplest case, n = 2. In this case, we can parametrize T -matrix, in

terms of the spherical harmonic functions Ylm as follows.

T (qA, qB) =
∑

l,m

Tl(q
A, qB)Ylm(ΩqA)Ylm(ΩqB) (27)

7

off-shell



D-dimensional hyper-coordinates
we have

Ψn(R,QA) = C

[

eiQA·R +
2m

2πn3/2

∫
dDQ

eiQ·R

Q2
A − Q2 + iε

T (Q,QA)

]

. (55)

In D-dimensions, we have[33]

eiQ·R = (D − 2)!!
2πD/2

Γ(D/2)

∑

[L]

iL jD
L (QR) Y[L](ΩR) Y[L](ΩQ), (56)

which is the generalization of the D = 3 formula in eq. (45), where jD
L is the hyperspherical

Bessel function of the first kind defined by

jD
L (x) =

Γ(D−2
2 ) 2

D−4
2

(D − 4)!! x
D−2

2

JLD(x), (57)

with LD = L + D−2
2 and the Bessel function of the first kind, JLD(x).

Using an expansion that

Ψn(R,QA) =
∑

[L],[K]

Ψn
[L],[K](R, QA)Y[L](ΩR)Y[K](ΩQA

), (58)

with eqs. (37) and (56), and performing d ΩQ integral, we obtain

Ψn
[L],[K](R, QA) = CiL

(2π)D/2

(QAR)
D−2

2

[

JLD(QAR)δLK +
∫

dQ
JLD(QR)

Q2
A − Q2 + iε

H[L],[K](Q, QA)

]

(59)

where

H[L],[K](Q, QA) =
m

πn3/2
QD/2QD/2−1

A T[L],[K](Q,QA). (60)

We now perform the Q integral, assuming that T[L],[K](Q, QA) does not have any poles on

the positive real axis at QA below inelastic thresholds. We consider n = 2k and n = 2k + 1

cases separately.

1. n = 2k case

In this case,

JLD(x) = jLk
(x)

√
2

π
x1/2 (61)
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hyper-spherical Bessel function

Asymptotic behavior of NBS wave functions

where Lk = L + 3(k − 1) and jLk
is the spherical Bessel function of the first kind. Using

eq. (48), the second term in eq. (59) can be evaluated as[34]

∫
dQ

jLk
(QR)

Q2
A − Q2 + iε

√
2

π
(QR)1/2H[L],[K](Q, QA)

" − [nLk
(QAR) + ijLk

(QAR)]
π

2QA

√
2

π
(QAR)1/2H[L],[K](QA, QA)

= [HLD(QAR) + iJLD(QAR)]
∑

[N ]

U[L][N ](QA)eiδ[N ](QA) sin δ[N ](QA)U †
[N ][K](QA) (62)

for R # 1, where the unitarity constraint to T in eq. (40) is used to obtain the last line,

and JLD and HLD are Bessel functions of the first and second kinds, respectively.

2. n = 2k + 1 case

In this case, LD = L + 3k − 1 is an integer, and for large R, JLD(x) becomes

JLD(x) "
√

2

πx
sin (x − ∆L) , HLD(x) "

√
2

πx
cos (x − ∆L) , ∆L =

2LD − 1

4
π. (63)

Using this asymptotic behavior, the Q integral in eq. (59) can be performed, and we obtain

for R # 1

I ≡
∫

dQ
JLD(QR)

Q2
A − Q2 + iε

H[L],[K](Q, QA)

" −
√

2

πQAR

[
πei(QAR−∆L)

2QA
H[L],[K](QA, QA) + O

(
R(3−D)/2

)]

(64)

" [HLD(QAR) + iJLD(QAR)]
∑

[N ]

U[L][N ](QA)eiδ[N ](QA) sin δ[N ](QA)U †
[N ][K](QA), (65)

where, in the last line, the O(1/R) contribution is neglected for large R and the unitarity

condition for T in eq. (40) is used, and ei(QAR−∆D) is replaced by the asymptotic behaviors

of Jn and Hn. The detailed calculation of the Q integral is given in Appendix B.

C. Asymptotic behavior

For both n = 2k and n = 2k + 1, we finally obtain

Ψn
[L],[K](R, QA) " CiL

(2π)D/2

(QAR)
D−2

2

∑

[N ]

U[L][N ](QA)eiδ[N ](QA)U †
[N ][K](QA)

×
[
JLD(QAR) cos δ[N ](QA) + HLD(QAR) sin δ[N ](QA)

]
(66)
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! CiL
(2π)D/2

(QAR)
D−1

2

∑

[N ]

U[L][N ](QA)eiδ[N ](QA)U †
[N ][K](QA)

×
√

2

π
sin

(
QAR − ∆L + δ[N ](QA)

)
(67)

for R $ 1, which agrees with eq. (51) at n = 2. Eq. (67) is the main result of this paper,

which tells us that the NBS wave function of n-particles for large R can be considered as the

generalized scattering wave of n particles, whose generalized scattering phase shift δ[N ](QA)

is nothing but the phase of the S-matrix in QCD, determined in eq. (40) by the unitarity.

V. CONCLUSION AND DISCUSSION

In this paper, we have investigated the asymptotic behaviors of the NBS wave functions

at large separations for n complex scalar fields. We have first solved the unitarity constraint

of the S-matrix for n ≥ 3, using the D = 3(n − 1) coordinate space and employing the

hyper-spherical harmonic function, together with the non-relativistic approximation for the

energy. The results are summarized in eqs. (39) and (40). We then have calculated the

asymptotic behaviors of the NBS wave functions at large separations for n ≥ 3, using again

the hyper-spherical harmonic function, which is found to be quiet useful for this purpose. We

finally obtain eq. (67), which is the main result in this paper. In appendix C, we generalize

our results to the coupled channels, where the particle mixing occurs during the scattering.

Using the results in this paper, we can generalize the HAL QCD method to hadron in-

teractions for the n-particle system with n ≥ 3. This give a firm theoretical background to

the extraction of interactions among many hadrons by the HAL QCD method, in partic-

ular, the three nucleon force[23, 24], together with an extension to systems with spin 1/2

particles, which is a straightforward but much more complicated task in future. Moreover,

combining it with the results in our previous paper[35], which shows that non-local but

energy independent potentials can be constructed from the NBS wave functions above the

inelastic threshold, the HAL QCD method can be extended to hadronic interactions above

the inelastic threshold energy, where particle productions such as NN → NNπ can occur.

14

scattering wave with “phase shift” !
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4. Energy-independent potential
above inelastic thresholds
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Let us consider NN � NN, NN�

W 0
th = 2mN

W 1
th = 2mN + m�

W 2
th = 2mN + 2m�

�0 = [W 0
th, W 1

th)

�1 = [W 1
th, W 2

th)

W � �1

Therefore we may consider up to NN + 6π with roughly 5% relativistic corrections. Note

that some configurations of momenta may become relativistic for a given value of W . We

exclude such configurations in our consideration of this paper.

A. Simplest case

To illustrate our strategy to construct energy-independent potentials, let us consider the

simplest case at W < W 2
th = 2mN + 2mπ in this subsection. If W ∈ ∆1 ( 2mN + mπ ≤ W <

2mN + 2mπ ), the inelastic scattering with one pion production (NN → NN + π) becomes

possible. We can define in this case a set of 4-independent equal time NBS wave function as

ZNϕ
00
W,c0(x0) = 〈0|T{N(x, 0)N(x + x0, 0)}|NN, W, c0〉in, (10)

ZNZ1/2
π ϕ10

W,c0(x0,x1) = 〈0|T{N(x, 0)N(x + x0, 0)π(x + x1, 0)}|NN,W, c0〉in, (11)

ZNϕ
01
W,c1(x0) = 〈0|T{N(x, 0)N(x + x0, 0)}|NN + π, W, c1〉in, (12)

ZNZ1/2
π ϕ11

W,c1(x0,x1) = 〈0|T{N(x, 0)N(x + x0, 0)π(x + x1, 0)}|NN + π, W, c1〉in, (13)

where ZN and Zπ are renormalization factors for nucleon and pion fields, such that N(x) =

Z1/2
N N r(x) and π(x) = Z1/2

π πr(x), where N r(x) and πr(x) are renormalized nucleon and pion

fields, respectively. We here consider two asymptotic in states |NN, W, c0〉in and |NN +

π, W, c1〉in corresponding to two nucleons and two nucleons plus one pion, where c0 and c1

represent quantum numbers other than the total energy W . In the present case, (W, c0)

and (W, c1) are equivalent to (s1, s2, p1) and (s1, s2,p1,k1) where si is the helicity of the

i-th nucleon and p2 is not independent due to the momentum conservation. As mentioned

before, W & W0 + E0
W & W1 + E1

W . If distances between all operators become large

(|x0|, |x1|, |x1−x0| → ∞), we expect (and will indeed show in the separated paper[22]) that

all NBS wave functions given above satisfy free Schrödinger equations such that

(
E0

W − H0
0

)
ϕ0i

W,c0 & 0,
(
E1

W − H1
0

)
ϕ1i

W,c0 & 0, i = 0, 1. (14)

We consider the coupled channel Schrödinger equations for NN and NN + π, which is

given by

(Ek
W − Hk

0 )ϕki
W,ci

=
∑

l=0,1

∫ l∏

n=0

d3yn Ukl([x]k, [y]l)ϕ
li
W,ci

([y]l), k, i ∈ (0, 1), (15)

6

2 operators 2 states

N(x)N(y)
N(x)N(y)�(z)

|NN, W, c0�
|NN + �, W, c1�

energy

other quantum numbers

�

4 NBS wave functions

�ij
W,cj

([x]i) i(j): number of �’s in the operator(state)where [x]0 = x0 and [x]1 = x0,x1. Note that E1
W ! W − W 1

th < 0 if W ∈ ∆0. Our task is

to show that a W -independent 2 × 2 potential matrix Ukl exists.

For this purpose, we define vectors from these NBS wave functions at W ∈ ∆1 as

ϕi
W,ci

≡
(
ϕ0i

W,ci
([x]0),ϕ

1i
W,ci

([x]1)
)T

, i = 0, 1, (16)

while at W ∈ ∆0 we take only ϕ0
W,c0 as

ϕ0
W,c0 ≡

(
ϕ00

W,c0([x]0),ϕ
10
W,c0([x]1)

)T
, (17)

where the second component ϕ10
W,c1([x]1) vanishes as distances between all operators go to

infinity. (No asymptotic NN + π state exists at W < 2mN + mπ.) Note that, instead of

eq. (17), we may define

ϕ0
W,c0 ≡

(
ϕ00

W,c0([x]0), 0
)T

, (18)

at W ∈ ∆0. Since the definition of ϕ0
W,c0 at W ∈ ∆0 in eq. (17) will be required in Sec. III for

the time-dependent method, we use it in the main text of this paper, and the construction

with eq. (18) and other variations will be discussed in Appendix A.

As in the elastic case, we introduce the norm kernel in the space spanned by ϕi
W,ci

as

N ij
W1ci,W2dj

=
(
ϕi

W1,ci
,ϕj

W2,dj

)
≡

∑

k=0,1

∫ k∏

l=0

d3xl ϕki
W1,ci

([x]k)ϕ
kj
W2,dj

([x]k). (19)

Here indices i, j run over different ranges depending on values of W1,W2 such that i ∈ I(W1)

and j ∈ I(W2), where I(W ) = {0} for W ∈ ∆0 and I(W ) = {0, 1} for W ∈ ∆1. Otherwise

stated, we assume this in this subsection.

As long as ϕi
W,ci

are linearly independent, the Hermitian operator N has an inverse as

∑

W∈∆0+∆1

∑

h∈I(W ), eh

(N−1)ih
W1ci,Weh

N hj
Weh,W2dj

= δijδW1,W2δci,dj . (20)

Schematically N has a following structure:

N =





N 00(∆0, ∆0), N 00(∆0, ∆1), N 01(∆0, ∆1)

N 00(∆1, ∆0), N 00(∆1, ∆1), N 01(∆1, ∆1)

N 10(∆1, ∆0), N 10(∆1, ∆1), N 11(∆1, ∆1)




(21)

where N ab(∆i, ∆j) represent a sub-matrix whose components are given by N ab
Wica,Wjdb

with

Wi ∈ ∆i and Wj ∈ ∆j for i, j, a, b = 0 or 1. The corresponding inverse N−1 has of course

the same structure.
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coupled channel equation

Therefore we may consider up to NN + 6π with roughly 5% relativistic corrections. Note
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00
W,c0(x0) = 〈0|T{N(x, 0)N(x + x0, 0)}|NN, W, c0〉in, (10)

ZNZ1/2
π ϕ10

W,c0(x0,x1) = 〈0|T{N(x, 0)N(x + x0, 0)π(x + x1, 0)}|NN,W, c0〉in, (11)

ZNϕ
01
W,c1(x0) = 〈0|T{N(x, 0)N(x + x0, 0)}|NN + π, W, c1〉in, (12)

ZNZ1/2
π ϕ11

W,c1(x0,x1) = 〈0|T{N(x, 0)N(x + x0, 0)π(x + x1, 0)}|NN + π, W, c1〉in, (13)

where ZN and Zπ are renormalization factors for nucleon and pion fields, such that N(x) =

Z1/2
N N r(x) and π(x) = Z1/2

π πr(x), where N r(x) and πr(x) are renormalized nucleon and pion

fields, respectively. We here consider two asymptotic in states |NN, W, c0〉in and |NN +
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and (W, c1) are equivalent to (s1, s2, p1) and (s1, s2,p1,k1) where si is the helicity of the

i-th nucleon and p2 is not independent due to the momentum conservation. As mentioned

before, W & W0 + E0
W & W1 + E1

W . If distances between all operators become large

(|x0|, |x1|, |x1−x0| → ∞), we expect (and will indeed show in the separated paper[22]) that

all NBS wave functions given above satisfy free Schrödinger equations such that

(
E0

W − H0
0

)
ϕ0i

W,c0 & 0,
(
E1

W − H1
0

)
ϕ1i

W,c0 & 0, i = 0, 1. (14)

We consider the coupled channel Schrödinger equations for NN and NN + π, which is

given by

(Ek
W − Hk

0 )ϕki
W,ci

=
∑

l=0,1

∫ l∏

n=0

d3yn Ukl([x]k, [y]l)ϕ
li
W,ci

([y]l), k, i ∈ (0, 1), (15)
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potentials. In Sec. III, using results obtained in the previous section, we generalize the time

dependent method for the extraction of the potential[23] to the case at W ≥ Wth, in order to

treat inelastic processes. Conclusions and discussions are given in Sec. IV. In Appendix A,

we compare the construction of the energy-independent potential above inelastic threshold

given in the main text with other possible variations.

II. CONSTRUCTION OF ENERGY-INDEPENDENT POTENTIALS ABOVE IN-

ELASTIC THRESHOLDS

We here construct energy-independent (non-local) potentials even above inelastic thresh-

olds for the NN scattering in the center of mass system. In this report we only consider

pion productions whose n-th threshold energy is given by W n
th = 2mN + n × mπ with mπ

being the pion mass. Extensions to other particle productions such as NN̄ or KK̄, etc. are

straightforward.

We introduce energy intervals defined by ∆n = [W n
th, W

n+1
th ) for n = 0, 1, 2, · · ·. Given

the total energy W , the kinetic energy of the NN + nπ system is denoted by En
W , which is

given by

En
W =

p2
1

2mN
+

p2
2

2mN
+

n∑

i=1

k2
i

2mπ
, W =

√
m2

N + p2
1 +

√
m2

N + p2
2 +

n∑

i=1

√
m2

π + k2
i , (9)

where p1+p2+
∑n

i=1 ki = 0. The corresponding free hamiltonian is denoted by Hn
0 . Note that

En
W cannot be determined from the total energy W alone, except for the elastic scattering at

n = 0, where E0
W is uniquely determined from a given value of W . Since the determination of

En
W from W is important to construct potentials from the Schrödinger equation and En

W for

n ≥ 1 cannot be determined from W in general, we restrict our considerations in this paper

to cases where all momenta p1,p2,k1, k2, · · · , kn are non-relativistic, so that we can write

W # W k
th + Ek

W for k = 1, 2, · · · , n at W ∈ ∆n. (We can exclude k = 0 case since E0
W can

always be determined from W without non-relativistic approximation.) This condition is

explicitly written as p2
i < m2

N for i = 1, 2 and k2
i < m2

π for i = 1, 2, · · · , n. Unless otherwise

stated, we assume this condition in this paper. We roughly estimate how many pions can be

treated within this approximation. If the total energy of two nucleons with one pion at rest is

equal to the minimum energy of n-pion production such that 2
√

m2
N + p2+mπ = 2mN+nmπ,

the non-relativistic condition, say p2 # 0.9 × m2
N , leads to n − 1 ≤ mN

mπ
(
√

7.6 − 2) # 5.
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Proof of existence for U

Define a vector of NBS wave functions as

where [x]0 = x0 and [x]1 = x0,x1. Note that E1
W ! W − W 1

th < 0 if W ∈ ∆0. Our task is

to show that a W -independent 2 × 2 potential matrix Ukl exists.

For this purpose, we define vectors from these NBS wave functions at W ∈ ∆1 as

ϕi
W,ci

≡
(
ϕ0i

W,ci
([x]0),ϕ

1i
W,ci

([x]1)
)T

, i = 0, 1, (16)

while at W ∈ ∆0 we take only ϕ0
W,c0 as

ϕ0
W,c0 ≡

(
ϕ00

W,c0([x]0),ϕ
10
W,c0([x]1)

)T
, (17)

where the second component ϕ10
W,c1([x]1) vanishes as distances between all operators go to

infinity. (No asymptotic NN + π state exists at W < 2mN + mπ.) Note that, instead of

eq. (17), we may define

ϕ0
W,c0 ≡

(
ϕ00

W,c0([x]0), 0
)T

, (18)

at W ∈ ∆0. Since the definition of ϕ0
W,c0 at W ∈ ∆0 in eq. (17) will be required in Sec. III for

the time-dependent method, we use it in the main text of this paper, and the construction

with eq. (18) and other variations will be discussed in Appendix A.

As in the elastic case, we introduce the norm kernel in the space spanned by ϕi
W,ci

as

N ij
W1ci,W2dj

=
(
ϕi

W1,ci
,ϕj

W2,dj

)
≡

∑

k=0,1

∫ k∏

l=0

d3xl ϕki
W1,ci

([x]k)ϕ
kj
W2,dj

([x]k). (19)

Here indices i, j run over different ranges depending on values of W1,W2 such that i ∈ I(W1)

and j ∈ I(W2), where I(W ) = {0} for W ∈ ∆0 and I(W ) = {0, 1} for W ∈ ∆1. Otherwise

stated, we assume this in this subsection.

As long as ϕi
W,ci

are linearly independent, the Hermitian operator N has an inverse as

∑

W∈∆0+∆1

∑

h∈I(W ), eh

(N−1)ih
W1ci,Weh

N hj
Weh,W2dj

= δijδW1,W2δci,dj . (20)

Schematically N has a following structure:

N =





N 00(∆0, ∆0), N 00(∆0, ∆1), N 01(∆0, ∆1)

N 00(∆1, ∆0), N 00(∆1, ∆1), N 01(∆1, ∆1)

N 10(∆1, ∆0), N 10(∆1, ∆1), N 11(∆1, ∆1)




(21)

where N ab(∆i, ∆j) represent a sub-matrix whose components are given by N ab
Wica,Wjdb

with

Wi ∈ ∆i and Wj ∈ ∆j for i, j, a, b = 0 or 1. The corresponding inverse N−1 has of course

the same structure.
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W,c0([x]0),ϕ
10
W,c0([x]1)

)T
, (17)

where the second component ϕ10
W,c1([x]1) vanishes as distances between all operators go to

infinity. (No asymptotic NN + π state exists at W < 2mN + mπ.) Note that, instead of

eq. (17), we may define

ϕ0
W,c0 ≡

(
ϕ00

W,c0([x]0), 0
)T

, (18)

at W ∈ ∆0. Since the definition of ϕ0
W,c0 at W ∈ ∆0 in eq. (17) will be required in Sec. III for

the time-dependent method, we use it in the main text of this paper, and the construction

with eq. (18) and other variations will be discussed in Appendix A.

As in the elastic case, we introduce the norm kernel in the space spanned by ϕi
W,ci

as

N ij
W1ci,W2dj

=
(
ϕi

W1,ci
,ϕj

W2,dj

)
≡

∑

k=0,1

∫ k∏

l=0

d3xl ϕki
W1,ci

([x]k)ϕ
kj
W2,dj

([x]k). (19)

Here indices i, j run over different ranges depending on values of W1,W2 such that i ∈ I(W1)

and j ∈ I(W2), where I(W ) = {0} for W ∈ ∆0 and I(W ) = {0, 1} for W ∈ ∆1. Otherwise

stated, we assume this in this subsection.

As long as ϕi
W,ci

are linearly independent, the Hermitian operator N has an inverse as

∑

W∈∆0+∆1

∑

h∈I(W ), eh

(N−1)ih
W1ci,Weh

N hj
Weh,W2dj

= δijδW1,W2δci,dj . (20)

Schematically N has a following structure:

N =





N 00(∆0, ∆0), N 00(∆0, ∆1), N 01(∆0, ∆1)

N 00(∆1, ∆0), N 00(∆1, ∆1), N 01(∆1, ∆1)

N 10(∆1, ∆0), N 10(∆1, ∆1), N 11(∆1, ∆1)




(21)

where N ab(∆i, ∆j) represent a sub-matrix whose components are given by N ab
Wica,Wjdb

with

Wi ∈ ∆i and Wj ∈ ∆j for i, j, a, b = 0 or 1. The corresponding inverse N−1 has of course

the same structure.

7

energy state

bra, ket

Using this inverse, we define the ket vector |ϕi
W,ci

〉 and the corresponding bra vector

〈ψi
W,ci

|, whose k-th components are given by

〈[x]k|ϕi
W,ci

〉 = ϕki
W,ci

([x]k), (22)

〈ψi
W,ci

|[x]k〉 =
∑

W1∈∆0∪∆1

∑

j∈I(W1),dj

(N−1)ij
Wci,W1dj

ϕkj
W1,dj

([x]k) (23)

for k = 0, 1, where dj runs over states which satisfies non-relativistic condition. It is then

easy to see that

〈ψi
W1,ci

|ϕj
W2,dj

〉 =
∑

k=0,1

∫ k∏

l=0

d3xl 〈ψi
W1,ci

|[x]k〉〈[x]k|ϕj
W2,dj

〉 = (N−1 · N )ij
W1ci,W2dj

= δijδW1,W2δci,dj . (24)

Introducing operators EW , H0 and U such that

〈[x]k|(EW − H0)|[y]l〉 ≡ δkl(E
k
W − Hk

0 )
k∏

n=0

δ(3)(xn − yn) (25)

〈[x]k|U |[y]l〉 ≡ Ukl([x]k, [y]l), (26)

the coupled channel Schrödinger equation (15) can be compactly written as3

(EW − H0)|ϕi
W,ci

〉 = U |ϕi
W,ci

〉. (27)

Now it is easy to construct U which satisfies the above equation as

U =
∑

W∈∆0∪∆1

∑

i∈I(W )

∑

ci

(EW − H0)|ϕi
W,ci

〉〈ψi
W,ci

|, (28)

since

U |ϕi
W,ci

〉 =
∑

W1∈∆0∪∆1

∑

j∈I(W1)

∑

dj

(EW − H0)|ϕj
W1,dj

〉〈ψj
W1,dj

|ϕi
W,ci

〉 = (EW − H0)|ϕi
W,ci

〉.(29)

An energy-independent potential matrix U indeed exists. Note that U is not unique since,

for example, one can use eq. (18) instead of eq. (17) for ϕi
W,ci

, so that the resulting potential

from eq. (28) differs from the one with eq. (17).

Finally let us consider the Hermiticity of U . A matrix element of U is evaluated as

U ij
W1ci,W2dj

≡ 〈ϕi
W1,ci

|U |ϕj
W2,dj

〉 = 〈ϕi
W1,ci

|(EW2 − H0)|ϕj
W2,dj

〉, (30)

3 Here and hereafter the sum over ci with i %= 0 is always restricted to non-relativistic states if the number
of particles is more than 2.
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orthogonality

Using this inverse, we define the ket vector |ϕi
W,ci

〉 and the corresponding bra vector

〈ψi
W,ci

|, whose k-th components are given by

〈[x]k|ϕi
W,ci

〉 = ϕki
W,ci

([x]k), (22)

〈ψi
W,ci

|[x]k〉 =
∑

W1∈∆0∪∆1

∑

j∈I(W1),dj

(N−1)ij
Wci,W1dj

ϕkj
W1,dj

([x]k) (23)

for k = 0, 1, where dj runs over states which satisfies non-relativistic condition. It is then

easy to see that

〈ψi
W1,ci

|ϕj
W2,dj

〉 =
∑

k=0,1

∫ k∏

l=0

d3xl 〈ψi
W1,ci

|[x]k〉〈[x]k|ϕj
W2,dj

〉 = (N−1 · N )ij
W1ci,W2dj

= δijδW1,W2δci,dj . (24)

Introducing operators EW , H0 and U such that

〈[x]k|(EW − H0)|[y]l〉 ≡ δkl(E
k
W − Hk

0 )
k∏

n=0

δ(3)(xn − yn) (25)

〈[x]k|U |[y]l〉 ≡ Ukl([x]k, [y]l), (26)

the coupled channel Schrödinger equation (15) can be compactly written as3

(EW − H0)|ϕi
W,ci

〉 = U |ϕi
W,ci

〉. (27)

Now it is easy to construct U which satisfies the above equation as

U =
∑

W∈∆0∪∆1

∑

i∈I(W )

∑

ci

(EW − H0)|ϕi
W,ci

〉〈ψi
W,ci

|, (28)

since

U |ϕi
W,ci

〉 =
∑

W1∈∆0∪∆1

∑

j∈I(W1)

∑

dj

(EW − H0)|ϕj
W1,dj

〉〈ψj
W1,dj

|ϕi
W,ci

〉 = (EW − H0)|ϕi
W,ci

〉.(29)

An energy-independent potential matrix U indeed exists. Note that U is not unique since,

for example, one can use eq. (18) instead of eq. (17) for ϕi
W,ci

, so that the resulting potential

from eq. (28) differs from the one with eq. (17).

Finally let us consider the Hermiticity of U . A matrix element of U is evaluated as

U ij
W1ci,W2dj

≡ 〈ϕi
W1,ci

|U |ϕj
W2,dj

〉 = 〈ϕi
W1,ci

|(EW2 − H0)|ϕj
W2,dj

〉, (30)

3 Here and hereafter the sum over ci with i %= 0 is always restricted to non-relativistic states if the number
of particles is more than 2.
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Abstract operators

Using this inverse, we define the ket vector |ϕi
W,ci

〉 and the corresponding bra vector

〈ψi
W,ci

|, whose k-th components are given by

〈[x]k|ϕi
W,ci

〉 = ϕki
W,ci

([x]k), (22)

〈ψi
W,ci

|[x]k〉 =
∑

W1∈∆0∪∆1

∑

j∈I(W1),dj

(N−1)ij
Wci,W1dj

ϕkj
W1,dj

([x]k) (23)

for k = 0, 1, where dj runs over states which satisfies non-relativistic condition. It is then

easy to see that

〈ψi
W1,ci

|ϕj
W2,dj

〉 =
∑

k=0,1

∫ k∏

l=0

d3xl 〈ψi
W1,ci

|[x]k〉〈[x]k|ϕj
W2,dj

〉 = (N−1 · N )ij
W1ci,W2dj

= δijδW1,W2δci,dj . (24)

Introducing operators EW , H0 and U such that

〈[x]k|(EW − H0)|[y]l〉 ≡ δkl(E
k
W − Hk

0 )
k∏

n=0

δ(3)(xn − yn) (25)

〈[x]k|U |[y]l〉 ≡ Ukl([x]k, [y]l), (26)

the coupled channel Schrödinger equation (15) can be compactly written as3

(EW − H0)|ϕi
W,ci

〉 = U |ϕi
W,ci

〉. (27)

Now it is easy to construct U which satisfies the above equation as

U =
∑

W∈∆0∪∆1

∑

i∈I(W )

∑

ci

(EW − H0)|ϕi
W,ci

〉〈ψi
W,ci

|, (28)

since

U |ϕi
W,ci

〉 =
∑

W1∈∆0∪∆1

∑

j∈I(W1)

∑

dj

(EW − H0)|ϕj
W1,dj

〉〈ψj
W1,dj

|ϕi
W,ci

〉 = (EW − H0)|ϕi
W,ci

〉.(29)

An energy-independent potential matrix U indeed exists. Note that U is not unique since,

for example, one can use eq. (18) instead of eq. (17) for ϕi
W,ci

, so that the resulting potential

from eq. (28) differs from the one with eq. (17).

Finally let us consider the Hermiticity of U . A matrix element of U is evaluated as

U ij
W1ci,W2dj

≡ 〈ϕi
W1,ci

|U |ϕj
W2,dj

〉 = 〈ϕi
W1,ci

|(EW2 − H0)|ϕj
W2,dj

〉, (30)

3 Here and hereafter the sum over ci with i %= 0 is always restricted to non-relativistic states if the number
of particles is more than 2.
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Abstract coupled channel equation

Using this inverse, we define the ket vector |ϕi
W,ci

〉 and the corresponding bra vector

〈ψi
W,ci

|, whose k-th components are given by

〈[x]k|ϕi
W,ci

〉 = ϕki
W,ci

([x]k), (22)

〈ψi
W,ci

|[x]k〉 =
∑

W1∈∆0∪∆1

∑

j∈I(W1),dj

(N−1)ij
Wci,W1dj

ϕkj
W1,dj

([x]k) (23)

for k = 0, 1, where dj runs over states which satisfies non-relativistic condition. It is then

easy to see that

〈ψi
W1,ci

|ϕj
W2,dj

〉 =
∑

k=0,1

∫ k∏

l=0

d3xl 〈ψi
W1,ci

|[x]k〉〈[x]k|ϕj
W2,dj

〉 = (N−1 · N )ij
W1ci,W2dj

= δijδW1,W2δci,dj . (24)

Introducing operators EW , H0 and U such that

〈[x]k|(EW − H0)|[y]l〉 ≡ δkl(E
k
W − Hk

0 )
k∏

n=0

δ(3)(xn − yn) (25)

〈[x]k|U |[y]l〉 ≡ Ukl([x]k, [y]l), (26)

the coupled channel Schrödinger equation (15) can be compactly written as3

(EW − H0)|ϕi
W,ci

〉 = U |ϕi
W,ci

〉. (27)

Now it is easy to construct U which satisfies the above equation as

U =
∑

W∈∆0∪∆1

∑

i∈I(W )

∑

ci

(EW − H0)|ϕi
W,ci

〉〈ψi
W,ci

|, (28)

since

U |ϕi
W,ci

〉 =
∑

W1∈∆0∪∆1

∑

j∈I(W1)

∑

dj

(EW − H0)|ϕj
W1,dj

〉〈ψj
W1,dj

|ϕi
W,ci

〉 = (EW − H0)|ϕi
W,ci

〉.(29)

An energy-independent potential matrix U indeed exists. Note that U is not unique since,

for example, one can use eq. (18) instead of eq. (17) for ϕi
W,ci

, so that the resulting potential

from eq. (28) differs from the one with eq. (17).

Finally let us consider the Hermiticity of U . A matrix element of U is evaluated as

U ij
W1ci,W2dj

≡ 〈ϕi
W1,ci

|U |ϕj
W2,dj

〉 = 〈ϕi
W1,ci

|(EW2 − H0)|ϕj
W2,dj

〉, (30)

3 Here and hereafter the sum over ci with i %= 0 is always restricted to non-relativistic states if the number
of particles is more than 2.
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construction of non-local coupled channel potential 

Using this inverse, we define the ket vector |ϕi
W,ci

〉 and the corresponding bra vector

〈ψi
W,ci

|, whose k-th components are given by

〈[x]k|ϕi
W,ci

〉 = ϕki
W,ci

([x]k), (22)

〈ψi
W,ci

|[x]k〉 =
∑

W1∈∆0∪∆1

∑

j∈I(W1),dj

(N−1)ij
Wci,W1dj

ϕkj
W1,dj

([x]k) (23)

for k = 0, 1, where dj runs over states which satisfies non-relativistic condition. It is then

easy to see that

〈ψi
W1,ci

|ϕj
W2,dj

〉 =
∑

k=0,1

∫ k∏

l=0

d3xl 〈ψi
W1,ci

|[x]k〉〈[x]k|ϕj
W2,dj

〉 = (N−1 · N )ij
W1ci,W2dj

= δijδW1,W2δci,dj . (24)

Introducing operators EW , H0 and U such that

〈[x]k|(EW − H0)|[y]l〉 ≡ δkl(E
k
W − Hk

0 )
k∏

n=0

δ(3)(xn − yn) (25)

〈[x]k|U |[y]l〉 ≡ Ukl([x]k, [y]l), (26)

the coupled channel Schrödinger equation (15) can be compactly written as3

(EW − H0)|ϕi
W,ci

〉 = U |ϕi
W,ci

〉. (27)

Now it is easy to construct U which satisfies the above equation as

U =
∑

W∈∆0∪∆1

∑

i∈I(W )

∑

ci

(EW − H0)|ϕi
W,ci

〉〈ψi
W,ci

|, (28)

since

U |ϕi
W,ci

〉 =
∑

W1∈∆0∪∆1

∑

j∈I(W1)

∑

dj

(EW − H0)|ϕj
W1,dj

〉〈ψj
W1,dj

|ϕi
W,ci

〉 = (EW − H0)|ϕi
W,ci

〉.(29)

An energy-independent potential matrix U indeed exists. Note that U is not unique since,

for example, one can use eq. (18) instead of eq. (17) for ϕi
W,ci

, so that the resulting potential

from eq. (28) differs from the one with eq. (17).

Finally let us consider the Hermiticity of U . A matrix element of U is evaluated as

U ij
W1ci,W2dj

≡ 〈ϕi
W1,ci

|U |ϕj
W2,dj

〉 = 〈ϕi
W1,ci

|(EW2 − H0)|ϕj
W2,dj

〉, (30)

3 Here and hereafter the sum over ci with i %= 0 is always restricted to non-relativistic states if the number
of particles is more than 2.
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�

Using this inverse, we define the ket vector |ϕi
W,ci

〉 and the corresponding bra vector

〈ψi
W,ci

|, whose k-th components are given by

〈[x]k|ϕi
W,ci

〉 = ϕki
W,ci

([x]k), (22)

〈ψi
W,ci

|[x]k〉 =
∑

W1∈∆0∪∆1

∑

j∈I(W1),dj

(N−1)ij
Wci,W1dj

ϕkj
W1,dj

([x]k) (23)

for k = 0, 1, where dj runs over states which satisfies non-relativistic condition. It is then

easy to see that

〈ψi
W1,ci

|ϕj
W2,dj

〉 =
∑

k=0,1

∫ k∏

l=0

d3xl 〈ψi
W1,ci

|[x]k〉〈[x]k|ϕj
W2,dj

〉 = (N−1 · N )ij
W1ci,W2dj

= δijδW1,W2δci,dj . (24)

Introducing operators EW , H0 and U such that

〈[x]k|(EW − H0)|[y]l〉 ≡ δkl(E
k
W − Hk

0 )
k∏

n=0

δ(3)(xn − yn) (25)

〈[x]k|U |[y]l〉 ≡ Ukl([x]k, [y]l), (26)

the coupled channel Schrödinger equation (15) can be compactly written as3

(EW − H0)|ϕi
W,ci

〉 = U |ϕi
W,ci

〉. (27)

Now it is easy to construct U which satisfies the above equation as

U =
∑

W∈∆0∪∆1

∑

i∈I(W )

∑

ci

(EW − H0)|ϕi
W,ci

〉〈ψi
W,ci

|, (28)

since

U |ϕi
W,ci

〉 =
∑

W1∈∆0∪∆1

∑

j∈I(W1)

∑

dj

(EW − H0)|ϕj
W1,dj

〉〈ψj
W1,dj

|ϕi
W,ci

〉 = (EW − H0)|ϕi
W,ci

〉.(29)

An energy-independent potential matrix U indeed exists. Note that U is not unique since,

for example, one can use eq. (18) instead of eq. (17) for ϕi
W,ci

, so that the resulting potential

from eq. (28) differs from the one with eq. (17).

Finally let us consider the Hermiticity of U . A matrix element of U is evaluated as

U ij
W1ci,W2dj

≡ 〈ϕi
W1,ci

|U |ϕj
W2,dj

〉 = 〈ϕi
W1,ci

|(EW2 − H0)|ϕj
W2,dj

〉, (30)

3 Here and hereafter the sum over ci with i %= 0 is always restricted to non-relativistic states if the number
of particles is more than 2.
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Energy independent (coupled channel) potential exists above the inelastic threshold.



Hermiticity

Using this inverse, we define the ket vector |ϕi
W,ci

〉 and the corresponding bra vector

〈ψi
W,ci

|, whose k-th components are given by

〈[x]k|ϕi
W,ci

〉 = ϕki
W,ci

([x]k), (22)

〈ψi
W,ci

|[x]k〉 =
∑

W1∈∆0∪∆1

∑

j∈I(W1),dj

(N−1)ij
Wci,W1dj

ϕkj
W1,dj

([x]k) (23)

for k = 0, 1, where dj runs over states which satisfies non-relativistic condition. It is then

easy to see that

〈ψi
W1,ci

|ϕj
W2,dj

〉 =
∑

k=0,1

∫ k∏

l=0

d3xl 〈ψi
W1,ci

|[x]k〉〈[x]k|ϕj
W2,dj

〉 = (N−1 · N )ij
W1ci,W2dj

= δijδW1,W2δci,dj . (24)

Introducing operators EW , H0 and U such that

〈[x]k|(EW − H0)|[y]l〉 ≡ δkl(E
k
W − Hk

0 )
k∏

n=0

δ(3)(xn − yn) (25)

〈[x]k|U |[y]l〉 ≡ Ukl([x]k, [y]l), (26)

the coupled channel Schrödinger equation (15) can be compactly written as3

(EW − H0)|ϕi
W,ci

〉 = U |ϕi
W,ci

〉. (27)

Now it is easy to construct U which satisfies the above equation as

U =
∑

W∈∆0∪∆1

∑

i∈I(W )

∑

ci

(EW − H0)|ϕi
W,ci

〉〈ψi
W,ci

|, (28)

since

U |ϕi
W,ci

〉 =
∑

W1∈∆0∪∆1

∑

j∈I(W1)

∑

dj

(EW − H0)|ϕj
W1,dj

〉〈ψj
W1,dj

|ϕi
W,ci

〉 = (EW − H0)|ϕi
W,ci

〉.(29)

An energy-independent potential matrix U indeed exists. Note that U is not unique since,

for example, one can use eq. (18) instead of eq. (17) for ϕi
W,ci

, so that the resulting potential

from eq. (28) differs from the one with eq. (17).

Finally let us consider the Hermiticity of U . A matrix element of U is evaluated as

U ij
W1ci,W2dj

≡ 〈ϕi
W1,ci

|U |ϕj
W2,dj

〉 = 〈ϕi
W1,ci

|(EW2 − H0)|ϕj
W2,dj

〉, (30)

3 Here and hereafter the sum over ci with i %= 0 is always restricted to non-relativistic states if the number
of particles is more than 2.
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while

(U †)ij
W1ci,W2dj

= 〈ϕj
W2,dj

|(EW1 − H0)|ϕi
W1,ci

〉 = 〈ϕi
W1,ci

|(EW1 − H0)|ϕj
W2,dj

〉. (31)

Therefore potential U is not Hermite in general. However it is effectively Hermite since in

practice we solve the Schrödinger equation under the condition that EW1 = EW2 , which is

equivalent to W1 = W2 in our non-relativistic approximation.

B. General cases

It is not so difficult to extend the argument in the previous subsection to more general

cases, where the total energy satisfies W < W nmax+1. As discussed before, the validity of

the non-relativistic approximation requires nmax = 5 at most.

Let us consider W ∈ ∆0 ∪ ∆1 ∪ · · · ∪ ∆nmax . At W ∈ ∆s with s ≤ nmax, we define a set

of the equal time NBS wave functions as

ZNZk/2
π ϕki

W,ci
([x]k) = 〈0|T{N(x, 0)N(x + x0, 0)

k∏

l=1

π(x + xl, 0)}|NN + iπ, W, ci〉in, i ≤ s,

= 0, i > s,

(32)

where indices k, i run from 0 to nmax, but ϕki
W,ci

([x]k) with k > s vanishes, as distances

among all operators (two nucleons and k pions) becomes large, [x]k = x0,x1, · · · ,xk and ci

represents quantum number other than the total energy W of the in state. In the present

case, (W, ci) are equivalent to s1, s2, p1,k1,k2, · · · ,ki where sl is a helicity of the l-th nucleon.

The coupled channel Schrödinger equation for this system at W ∈ ∆s (s ≤ nmax) is given

by

(Ek
W − Hk

0 )ϕki
W,ci

([x]k) =
nmax∑

l=0

∫
d[y]l U

kl([x]k, [y]l)ϕ
li
W,ci

([y]l), i ∈ I(W ) (33)

where d[y]l =
l∏

m=0

d3ym, I(W ) = {0, 1, · · · , s} for W ∈ ∆s, and k = 0, 1, · · · , n. Note

that Ek
W ' W − W k

th < 0 if k /∈ I(W ). It is now clear that the non-relativistic condition

is necessary here to determine Ek
W from W, ci if k (= i. Our task is to show that a W -

independent (nmax + 1) × (nmax + 1) potential matrix U exists.

9

e�ectively Hermite for EW1 = EW2

The construction of U can easily be generalized to NN + n� � NN + k�

or to ��� ��, N�, ��



5. Related results

Kenji Sasaki, et al. (HAL QCD),  in preparation

Takumi Doi et al. (HAL QCD), PTP 127 (2012) 723



 H-dibaryon with the flavor SU(3) breaking
mu = md != ms
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Gauge ensembles 

2+1 flavor gauge configurations by PACS-CS collaboration.

RG improved gauge action & O(a) improved clover quark action

β = 1.90, a-1 = 2.176 [GeV], 323x64 lattice, L = 2.902 [fm].

κ
s
 = 0.13640 is fixed, κ

ud
 = 0.13700, 0.13727 and 0.13754 are chosen.

Flat wall source is considered to produce S-wave B-B state.

The KEK computer system A resources are used.  

u,d quark masses lighter

π 701±1 570±2 411±2

K 789±1 713±2 635±2

m
π
/m

Κ
0.89 0.80 0.65

N 1585±5 1411±12 1215±12

Λ 1644±5 1504±10 1351±  8

Σ 1660±4 1531±11 1400±10

Ξ 1710±5 1610±  9 1503±  7

Esb 1Esb 1 Esb 2Esb 2 Esb 3Esb 3

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration

In unit 
of MeV

Numerical setupNumerical setupNumerical setupNumerical setup

2700

2800

2900

3000

3100

3200

3300

Esb 1Esb 1 Esb 2Esb 2 Esb 3Esb 3

ΛΛ : 3288MeV

ΝΞ : 3295MeV

ΣΣ  : 3320MeV

3008MeV

3021MeV

3062MeV

2702MeV

2718MeV

2800MeV

SU(3) breaking effects becomes larger

2+1 flavor gauge configurations by PACS-CS collaboration.

RG improved gauge action & O(a) improved clover quark action

β = 1.90, a-1 = 2.176 [GeV], 323x64 lattice, L = 2.902 [fm].

κ
s
 = 0.13640 is fixed, κ

ud
 = 0.13700, 0.13727 and 0.13754 are chosen.

Flat wall source is considered to produce S-wave B-B state.

The KEK computer system A resources are used.  

u,d quark masses lighter

π 701±1 570±2 411±2

K 789±1 713±2 635±2

m
π
/m

Κ
0.89 0.80 0.65

N 1585±5 1411±12 1215±12

Λ 1644±5 1504±10 1351±  8

Σ 1660±4 1531±11 1400±10

Ξ 1710±5 1610±  9 1503±  7

Esb 1Esb 1 Esb 2Esb 2 Esb 3Esb 3

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration

In unit 
of MeV

Numerical setupNumerical setupNumerical setupNumerical setup

2700

2800

2900

3000

3100

3200

3300

Esb 1Esb 1 Esb 2Esb 2 Esb 3Esb 3

ΛΛ : 3288MeV

ΝΞ : 3295MeV

ΣΣ  : 3320MeV

3008MeV

3021MeV

3062MeV

2702MeV

2718MeV

2800MeV

SU(3) breaking effects becomes larger

ΛΛ, ΝΞ, ΣΣ ΛΛ, ΝΞ, ΣΣ (I=0) (I=0) 11SS
00
 channel         channel        ΛΛ, ΝΞ, ΣΣ ΛΛ, ΝΞ, ΣΣ (I=0) (I=0) 11SS

00
 channel         channel        

In this channel, our group found the “H-dibaryon” in the SU(3) limit.
Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration

All channels have repulsive core

Esb1 : mπ= 701 MeV 

Esb2 : mπ= 570 MeV

Esb3 : mπ= 411 MeV

Esb1 : mπ= 701 MeV 

Esb2 : mπ= 570 MeV

Esb3 : mπ= 411 MeV

Diagonal elements

Off-diagonal elements

shallow attractive pocket Deeper attractive pocket Strongly repulsive

Relatively weaker than the others

coupled channel 3x3 potentials



�� and N� phase shift Preliminary !

Bound H-dibaryon Resonance H Resonance H

This suggests H-dibaryon becomes resonance at physical point.

  

ΛΛ ΛΛ and and ΝΞΝΞ phase shifts phase shiftsΛΛ ΛΛ and and ΝΞΝΞ phase shifts phase shifts

Esb1:
Bound H-dibaryon

Esb2:

H-dibaryon is near the ΛΛ threshold
Esb3:

The H-dibaryon resonance energy is close to ΝΞ threshold..

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration

 We can see the clear resonance shape in ΛΛ phase shifts for Esb2 and 3.

 The “binding energy” of H-dibaryon from ΝΞ threshold becomes smaller 
as decreasing of quark masses.

Esb3 : mπ= 411 MeVEsb3 : mπ= 411 MeVEsb1 : mπ= 701 MeV Esb1 : mπ= 701 MeV Esb2 : mπ= 570 MeVEsb2 : mπ= 570 MeV

Preliminary!

��

N�



 Three nucleon force (TNF)
Linear setup
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Figure 24: (Left) The wave function with linear setup in the triton channel. Red, blue, brown points
correspond to ϕS, ϕM , ϕ3D1 , respectively. (Right) The scalar/isoscalar TNF in the triton channel,
plotted against the distance r = |r12/2| in the linear setup. Taken from Ref. [58].

the TNF can be extracted unambiguously in this channel, without the information of parity-odd 2N
potentials.

Same gauge configurations used for the effective 2N potential study are employed in the numerical
simulations. Fig. 24(Left) gives each wave function of ϕS = 1√

2
(−ψ1S0 +ψ3S1), ϕM ≡ 1√

2
(+ψ1S0 +ψ3S1),

ψ3D1 as a function of r = |r12/2| in the triton channel at t − t0 = 8. Among three ϕS dominates the
wave function, since ϕS contains the component for which all three nucleons are in S-wave.

By subtracting the V2N from the total potentials in the 3N system, the TNF is detemined. Fig. 24
(Right) shows results for the scalar/isoscalar TNF, where the r-independent shift by energies is not
included, and thus about O(10) MeV systematic error is understood. There are various physical im-
plications in Fig. 24 (Right). At the long distance region of r, the TNF is small as is expected. At
the short distance region, the indication of the repulsive TNF is observed. Recalling that the repulsive
short-range TNF is phenomenologically required to explain the saturation density of nuclear matter,
etc., this is very encouraging result. Of course, further study is necessary to confirm this result, e.g., the
study of the ground state saturation, the evaluation of the constant shift by energies, the examination
of the discretization error.

8.2 Meson-baryon interactions

The potential method can be naturally extended to the meson-baryon systems and the meson-meson
systems. In this subsection, two applications of the potential method to the meson-baryon system are
discussed.

The first application is the study of the KN interaction in the I(JP ) = 0(1/2−) and 1(1/2−)
channels in the potential method. These channels may be relevant for the possible exotic state Θ+,
whose existence is still controversial.

The KN potentials in isospin I = 0 and I = 1 channels have been calculated in 2 + 1 full
QCD simulations, employing 700 gauge configurations on a 163 × 32 lattice at a = 0.121(1) fm and
(mπ,mK ,mN) = (871(1), 912(2), 1796(7)) in unit of MeV[60].

Fig. 25 shows the NBS wave functions of the KN scatterings in the I = 0 (left) and I = 1 (right)
channels. The large r behavior of the NBS wave functions in both channels do not show a sign of bound
state, though more detailed analysis is needed with larger volumes for a definite conclusion. On the
other hand, the small r behavior of the NBS wave functions suggests the repulsive interaction at short
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correspond to ϕS, ϕM , ϕ3D1 , respectively. (Right) The scalar/isoscalar TNF in the triton channel,
plotted against the distance r = |r12/2| in the linear setup. Taken from Ref. [58].
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potentials.
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(Right) shows results for the scalar/isoscalar TNF, where the r-independent shift by energies is not
included, and thus about O(10) MeV systematic error is understood. There are various physical im-
plications in Fig. 24 (Right). At the long distance region of r, the TNF is small as is expected. At
the short distance region, the indication of the repulsive TNF is observed. Recalling that the repulsive
short-range TNF is phenomenologically required to explain the saturation density of nuclear matter,
etc., this is very encouraging result. Of course, further study is necessary to confirm this result, e.g., the
study of the ground state saturation, the evaluation of the constant shift by energies, the examination
of the discretization error.
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systems. In this subsection, two applications of the potential method to the meson-baryon system are
discussed.

The first application is the study of the KN interaction in the I(JP ) = 0(1/2−) and 1(1/2−)
channels in the potential method. These channels may be relevant for the possible exotic state Θ+,
whose existence is still controversial.

The KN potentials in isospin I = 0 and I = 1 channels have been calculated in 2 + 1 full
QCD simulations, employing 700 gauge configurations on a 163 × 32 lattice at a = 0.121(1) fm and
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the TNF can be extracted unambiguously in this channel, without the information of parity-odd 2N
potentials.

Same gauge configurations used for the effective 2N potential study are employed in the numerical
simulations. Fig. 24(Left) gives each wave function of ϕS = 1√
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(−ψ1S0 +ψ3S1), ϕM ≡ 1√

2
(+ψ1S0 +ψ3S1),
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wave function, since ϕS contains the component for which all three nucleons are in S-wave.

By subtracting the V2N from the total potentials in the 3N system, the TNF is detemined. Fig. 24
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potentials.

Same gauge configurations used for the effective 2N potential study are employed in the numerical
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2
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ψ3D1 as a function of r = |r12/2| in the triton channel at t − t0 = 8. Among three ϕS dominates the
wave function, since ϕS contains the component for which all three nucleons are in S-wave.

By subtracting the V2N from the total potentials in the 3N system, the TNF is detemined. Fig. 24
(Right) shows results for the scalar/isoscalar TNF, where the r-independent shift by energies is not
included, and thus about O(10) MeV systematic error is understood. There are various physical im-
plications in Fig. 24 (Right). At the long distance region of r, the TNF is small as is expected. At
the short distance region, the indication of the repulsive TNF is observed. Recalling that the repulsive
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systems. In this subsection, two applications of the potential method to the meson-baryon system are
discussed.

The first application is the study of the KN interaction in the I(JP ) = 0(1/2−) and 1(1/2−)
channels in the potential method. These channels may be relevant for the possible exotic state Θ+,
whose existence is still controversial.
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scalar/isoscalar TNF is observed at short distance.

further study is needed to confirm this result.

Doi et al. (HAL QCD), PTP 127 (2012) 723

Analysis by OPE (operator product expansion) in QCD predicts  
universal short distance repulsions in TNF. Aoki, Balog and Weisz, NJP14(2012)043046



6. Conclusion
• HAL QCD approach is shown to be a promising method to extract hadronic 

interactions in lattice QCD.  

• ground state saturation is not required.

• Calculate potential in lattice QCD on a finite box. 

• Calculate phase shift by solving (coupled channel) Shroedinger equation in infinite 
volume. 

• bound-state/resonance/scattering

• Extensions of the HAL QCD method to inelastic/multi-particle scatterings 

• Asymptotic behavior of the NBS wave functions

• Existence of non-local but energy-independent coupled channel potentials

• some preliminary results

• Future problems: Nuclear reactions ?  Your inputs are important !

Thank you !
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Convergence of velocity expansion
If the higher order terms are large, LO potentials determined from NBS wave functions at 
different energy become different.(cf. LOC of ChPT).

Numerical check in quenched QCD
mπ ! 0.53 GeV
a=0.137fm, L=4.0 fm

K. Murano, N. Ishii, S. Aoki, T. Hatsuda 

PTP 125 (2011)1225.

������PBC    (E�0 MeV)         ������������������������APBC  (E�46 MeV)�

potentials

NBS wave functions
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Higher order terms turn out to be very small at low energy in HAL QCD scheme.

Need to be checked at lighter pion mass in 2+1 flavor QCD.

Note: convergence of the velocity expansion can be checked within this method. 

(in contrast to  convergence of ChPT, convergence of perturbative QCD)



4. More on nuclear force

r

p
n

L :orbital angular momentum

S: spin

Consider L=0, P(parity)=+ spin
1
2
⊗ 1

2
= 1 ⊕ 0

↑↑

↓↓
↑↓ + ↓↑ ↑↓ − ↓↑

2S+1LJ

3S1
1S0



Tensor potential

(H0 + VC(r) + VT (r)S12)ψ(r; 1+) = Eψ(r; 1+)

J=1, S=1

mixing between         and          through the tensor force3S1
3D1

ψ(r; 1+) = Pψ(r; 1+) + Qψ(r; 1+)
“projection” to L=0 “projection” to L=2

3S1
3D1

H0[Pψ](r) + VC(r)[Pψ](r) + VT (r)[PS12ψ](r) = E[Pψ](r)
H0[Qψ](r) + VC(r)[Qψ](r) + VT (r)[QS12ψ](r) = E[Qψ](r)

Aoki, Hatsuda, Ishii, PTP 123 (2010)89
arXiv:0909.5585



Potentials

VT

!"#$% &'()*+,

! Nconf=1000

! time-slice: t-t0=6

! m-=0.53 GeV, m.=0.88 GeV, mN=1.34 GeV

from

R.Machleidt,

Adv.Nucl.Phys.19

The wave function
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Figure 8: (Left) The spin-triplet central potential VC(r)(1,0) obtained from the orbital A+
1 −T+

2 coupled
channel in quenched QCD at mπ " 529 MeV. (Right) The tensor potential VT (r) from the orbital
A+

1 − T+
2 coupled channel. For these two figures, symbols are same as in Fig. 7(Left). Taken from

Ref. [30].
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Figure 9: (Left) 2+1 flavor QCD results for the central potential and tensor potentials at mπ " 701
MeV. (Right) Quenched results for the same potentials at mπ " 731 MeV. Taken from Ref. [33].

4.4 Full QCD results

Needless to say, it is important to repeat calculations of NN potentials in full QCD on larger volumes
at lighter pion masses. The PACS-CS collaboration is performing 2 + 1 flavor QD simulations, which
cover the physical pion mass[31, 32]. Gauge configurations are generated with the Iwasaki gauge action
and non-perturbatively O(a)-improved Wilson quark action on a 323 × 64 lattice. The lattice spacing a
is determined from mπ, mK and mΩ as a " 0.091 fm, leading to L " 2.9 fm. Three ensembles of gauge
configurations are used to calculate NN potentials at (mπ,mN) "(701 MeV, 1583 MeV), (570 MeV,
1412 MeV) and (411 MeV,1215 MeV )[33] .

Fig. 9(Left) shows the NN local potentials obtained from the PACS-CS configurations at E " 0
and mπ = 701 MeV, which is compared with the previous quenched results at comparable pion mass
mπ " 731 MeV but at a " 0.137 fm, given in Fig. 9(Right). Both the repulsive core at short distance
and the tensor potential become significantly enhanced in full QCD. The attraction at medium distance
tends to be shifted to outer region, while its magnitude remains almost unchanged. These differences
may be caused by dynamical quark effects. For more definite conclusion on this point, a more controlled
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full QCD quenched QCD

a ! 0.091 fm a ! 0.137 fmL ! 2.9 fm L ! 4.4 fm

• no repulsive core in the tensor potential.

•  the tensor potential is enhanced in full QCD



Quark mass dependence (full QCD)
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• the tensor potential increases as the pion 
mass decreases.

•manifestation of one-pion-exchange ?

• both repulsive core and attractive pocket are 
also grow as the pion mass decreases.
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Superfluidity 3P2 in neutron star  
ÍÎ neutrino cooling 

Nf=2 clover (CP-PACS), L=2.5fm, mS=1.1GeV 

ÍÎ Cas A NS: cooling is being measured ! 

NLO

LONLO

LO

2S+1LJ



Murano et al. (HAL QCD), lat2012

2-flavor QCD, a=0.16 fm 

m� � 1.1 GeV

Preliminary Results (full QCD)

18 S. Aoki et al. (HAL QCD Collaboration),
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Fig. 7. Potentials in odd parity sector obtained from 3P0,
3P1 and 3P2 +3 F2 NBS wave functions

calculated at mπ = 1136 MeV. Left, center, and right figure shows central, tensor and spin-orbit
force in parity odd sector respectively.

Hereafter ”potential” in this report means the local potential at the leading
order, unless otherwise stated.

4.4. Nuclear force in odd parity sectors and the spin-orbit force
In this section, we consider the potentials in odd parity sectors. Together with

the nuclear forces in even parity sectors, the information on odd parity sectors is nec-
essary in studying many-nucleon systems with Schrödinger equations. In particular,
we are interested in the spin-orbit force. The spin-orbit force in the two-nucleon
potential gives rise to a spin-orbit coupling in the average single-particle potential
of nuclei. It thereby has an important influence on the magic number of atomic
nuclei. It is also expected to induce superfluidities in neutron stars by providing an
attraction between two neutrons in 3P2 channel.

The LS force appear at NLO of the derivative expansion as
[
H0 + VC(r)(S,I) + VT (r)S12 + VLS(r)!L · !S

]
ϕW (r; J−, I) = Ekϕ

W (r; J−, I) (4.3)

To obtain three unknown potentials, VC , VT and VLS , we need three independent
NBS wave functions. We therefore generalize the two-nucleon source for odd parity
sectors, by imposing a momentum on the composite nucleon fields as

Jαβ(t0; f (i)) ≡ Nα(t0; f (i))Nβ(t0; f (i)∗) for i = ±1,±2,±3, (4.4)

where N denotes a composite nucleon source field carrying a momentum as

Nα(t0; f (i)) ≡
∑

x1,x2,x3

εabc (ua(x1)Cγ5db(x2)) qc,α(x3)f (i)(x3) (4.5)

with f (±j)(x) = exp[±2πixj/L]. The star “*” in the r.h.s. of Eq. (4.4) represents
the complex conjugation, which is used to invert the direction of the plane wave. A
cubic group analysis shows that the two-nucleon source Eq. (4.4) contains the orbital
contribution A+

1 ⊕ E+ ⊕ T−
1 , whose main components are S-wave, D-wave and P-

wave, respectively. Thus the two-nucleon source Eq. (4.4) covers all the two-nucleon
channels with J ≤ 2.

For the spin-triplet odd-parity sector, Eq. (4.4) generates the lowest-lying NBS
wave functions for (JP , I) = (A−

1 , 1), (T−
1 , 1), (E−, 1) and (T−

2 , 1), which roughly

from 3P0

from 3P1

from 3P2 + 3F2

LO LO NLO

Very weak !
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