SHORT DISTANCE STRUCTURE OF NUCLEI: MINING THE WEALTH OF EXISTING JLAB DATA

Larry Weinstein
Old Dominion University, Norfolk, VA
And a cast of thousands

Collaboration:

Spokespeople:

L.B. Weinstein, S.E. Kuhn, M. Strikman, M. Sargsian

Data Mining Scientist: G. Gavalian

Institutions:

ODU, Penn State, Florida International, Tel Aviv, Glasgow, William and Mary, Edinburgh, Ohio State, New Hampshire, MIT, Richmond, George Washington, Your Name Here

Support:

DOE Grant for the Data Mining Scientist plus travel 2011-2014
ODU computer support

Why Data Mining?

- Build on the progress made at JLab on SRC and dynamics of interactions with nuclei at medium Q^2
- Take advantage of the huge CLAS data set
 - Mostly taken with A(e,e') inclusive trigger
- Take advantage of the otherwise "wasted" time while we upgrade JLab to 12 GeV

Jefferson Lab Site

Hall C

Hall B CLAS

Hall A

Sectors 1 and 4

Data Mining, INT, Feb 2013

CLAS in Maintenance Position

Data Sets with inclusive triggers

Run Period	Beam	Energy (GeV)	Targets
E2a	е	2.2, 4.4	³ He, ⁴ He, C, Fe
E2b	е	1.1, 4.5, 4.7	³ He, Fe
EG2	е	4.0, 4.7, 5.0	² H and (C, Al, Fe, ¹²⁰ Sn, or Pb)
G8	gamma	<3.1, <4.0	² H, C, Ti, Fe, Pb
E6	е	5.77	² H
EG1a,b	е	1.6 to 5.7	Polarized NH ₃ , ND ₃ , C
E5	е	2.56, 4.23	¹ H and ² H
E1e	е	2.04	² H
EG3	gamma	<5.76	² H
E8 (BoNuS)	е	1.1, 2.2, 4.3, 5.4	¹ H, ² H, ⁴ He

Topics to investigate

- NN Short Range Correlations with A(e,e'pN)
 - A and Q^2 dependence
 - np vs pp
 - Compare NN forward/forward (x>1) and forward/backward (x<1) events
 - Compare real and virtual photons
 - eg: $\gamma n \rightarrow p \pi^-$ plus a backward proton
- Deuteron d(e,e'p)n
 - unpolarized
 - Beam spin asymmetry (A'_{LT}) $d(\vec{e}, e'p)n$
 - Beam and target spin asymmetry $\vec{d}(\vec{e}, e'p)n$
- Deuteron d(e,e'p)X
 - DIS and EMC

More Topics

- Delta production
 - Backward emitted Deltas
 - Backward hyperons?
 - Forward Delta++ at x > 1
 - Delta production on Quasifree neutron in ³He
- Color Transparency
 - Deuteron transverse kinematics
 - Compare pn and pDelta⁰ final states
 - $\pi^+\pi^-$ vs ρ production in nuclei
 - S₁₁ production in nuclei
- Your idea here!

Project Outline

- Collect all CLAS nuclear target data in one place with one interface
- Provide easy access to this data set to participating universities.
- Provide universal analysis tools for all data sets (data selection, momentum corrections, fiducial cuts).
- Provide easy framework for combining data from different data sets.
- Provide SOA based multi-process analysis.

Analysis Framework

- Same analysis framework for all data sets with Corrections, Fiducial Cuts and Event Constructor modules loaded automatically based on the run info loaded from the file.
- Parallel processing
- The output can be any of these:
 - Event Stream
 - Ntuples
 - Histograms
- Other analysis tools can be deployed to the server, requires a little advanced programming.

Software Progress

G.Gavalian (ODU)

Software progress

+ Current Status:

- ◆ CLARA was developed to meet the needs of data mining project.
- → Parallel data processing is now available on ODU farms for data skimming.
- → The software project was translated to JAVA and requires no compilation to run skimming and do analysis (using Jython).
- ROOT interface
 - convert skimmed files to ROOT tree for further analysis,
 - example analysis routines included in the package.

+ Recent development:

- → Implemented IG5 data format in JAVA, with built in compression (GZ) to reduce data size.
- → Implementing a Graphical User Interface for accessing the data.
- Cataloging existing data sets.
- → Implementing GUI for data viewing and analysis in JAVA.
- → Tools were developed for Jython scripting for quick analysis and plotting with JAIDA.

Data Formats

- → The experimental data is stored in BOS format at 500 MB per file.
- → The EVIO container used to store the data
 - native JAVA interface,
 - allows analysis and skimming of the data using JAVA CLARA Services.
- ◆ Native EVIO interface unacceptable due to data file size
- ◆ EVIO/IG5 data format uses compression to reduce data file size 145 MB.

Data Access Interface

- → Data access interface is extended to allow more flexibility in analysis.
- Users can select a Run-Specific data analyzer
- ◆ Can select experiment-specific corrections (vertex, momentum) and cuts (fiducial cuts, vertex cuts)
- Advanced options for final state selection.
 - Particle selection
 - → Run list
 - → Analysis Services:
 - → BasicAnalysis
 - ◆ EG2Analysis
 - → E2Analysis

Data Output Interface

- Output data options:
 - simple includes particle momentum and vertex with CLAS default particle ID and experiment specific PID.
 - extended includes data from all detectors, for each particle.

```
pid - particle LUND id (experiment specific)
sebpid - particle LUND id assigned by SEB in case it differs from run specific particle ids
charge - particle charge (determined by DC)
status - number of detectors the particle hit
px - x-component of particle momenta
py - y-component of particle momenta
pz - z-component of particle momenta
vx - x-component of particle vertex
vy - y-component of particle vertex
vz - z-component of particle vertex
sctime - time from SC counters (corrected by event start time)
scpath - path length of the particle from vertex to SC counters
scpaddle - the paddle in the SC that was hit
ccnphe - the number of photoelectrons produced in the Cherenkov Detector
ectime - time for EC (corrected by start time)
ecpath - particle path length from vertex to EC
ecin - energy deposited in the Inner EC
ecout - energy deposited in Outer EC
ectot - total EC energy for the particle
ecu - U coordinate for EC hit
ecv - V coordinate for EC hit
ecw - W coordinate for EC hit
```

Particle Selection

- → CLAS default (SEB) or experiment specific particle ID.
- New particle selection filter addresses all possible inclusive and exclusive selections.

```
X+: any number of positive particles (includes 0)
X-: any number of negative particles (includes 0)
Xn: any number of neutral particles (including 0)
```

- Inclusive flags can be combined with particle IDs to make semi-inclusive selections:
- → To specify a definite number of particles with particular charge a number instead of "X" can be used ("2-", "1+" or "3n")
 - → (11:2212:2n:1-) one electron and one proton, two neutral particles and one additional negative particle.
 - ◆ (11:211:2n:X+) one electron and one pion, two neutral particles and
 any number of additional positive particles.
 - ♦ (11:X+:2n:1-) one electron, at least two neutral particles, one
 additional negative particle and any number of positive particles.

Data Browser (simple viewing)

Data Analysis with Jython

cana = ClasAnalysis()cana.addFile(eviofilename)cana.init()

while(cana.next()): iCounter = iCounter+1 cana.getEvent(event) pi0 = oper.getParticle(event,'[22,0]+[22,1]') pQ2 = oper.getParticle(event,'[b]-[11,0]') pW2 = oper.getParticle(event,'[b]+[t]-[11,0]') pEp = oper.getParticle(event,'[11,0]') histPi0.fill(pi0.vector().mass()) histQ2.fill(-pQ2.vector().mass2()) histW2.fill(pW2.vector().mass()) histV.fill(pEp.vertex().z())

Simple Plotting

canvas =

AIDACanvas(500,500)canvas.setVisible(True)c anvas.divide(2,2)canvas.draw(histPi0,0)canva s.draw(histQ2,1)canvas.draw(histW2,2)canvas.draw(histV,3)

Available Data & Analysis

Data Processing:

- → Simple event selection (particle ID based on SEB).
- ◆ EG2 Run specific Particle ID, vertex and momentum corrections and fiducial cuts.
- → E2B Run specific particle ID, cuts and corrections (work in progress).

Software Status

- Current version of Data Mining Software (3.0) is up and running on ODU servers.
- → The data is being converted into EVIO/iG5 format and cataloged.
- ◆ GUI interface is implemented for easy analysis mode selection.
- ◆ New particle final state filters are implemented for flexible selection.
- Data processing for different run groups are implemented.
- ⋆ Tools for simulation and Jython analysis are being developed.

To Do:

- Complete E2b Run specific analysis implementation.
- → Transition to CLARA 2.0 version, which allows multi-computer process distribution (analysis will significantly speed up).
- ◆Complete converting E6 data set for Data Mining.
- ◆Convert E2a data into EVIO format and implement cuts and corrections.

Data Mining Analyses, Feb 2013

- ◆ SRC Proton Transparency: Or Hen (Tel Aviv), submitted to journal
- ◆ Mean Field Proton Transparency: Or Hen (Tel Aviv), under analysis review
- → pp SRC pair cm-momentum distribution, Or Hen, under analysis review
 - See talks today and tomorrow
- ♦ Double Spin asymmetry in d(e,e'p)n, Mike Mayer (ODU), analysis note about to be submitted
- Many proton knockout from nuclei to explore the potential to reach rprocess path below 208Pb, Dan Watts (Edinburgh)
- backward Deltas in deuterium, Chris Wooten (ODU senior thesis)
- → 3He(e,e'pn)p, Uttar Pudaisini (ODU)
- → p- and n- single nucleon momentum distributions in asymmetric nuclei, Tel
 Aviv
- ◆ EMC and SRC: Barak Schmookler and Longwu Ou (MIT)

Deuterium Delta-Delta hunting

Eg2 data set: select p, pi+, pi- events. Cut on d target

 $d(e,e'p\pi^{-}\pi^{+})n$ 200,000 events

Wide range of energy and momentum transfer

No fiducial cuts, CLAS default PID

Note: p threshold 300 MeV/c precludes spectator deltas in the $d(e,e'pp\pi^-)\pi^0$ channel

Now look for Deltas:

Cut on W>1.7 GeV

If W too low, then all $N\pi$ combinations will have a mass near the Delta (i.e. near threshold)

 $p\pi^-$ more likely to be the struck Delta than $p\pi^+$??

Theta($q p\pi^-$)

Theta($q_p\pi^+$)

Cut on pn < 0.25 GeV/c

More likely to come from spectator delta decay

But are they deltas??

Delta Delta summary

```
Still inconclusive No strong evidence in either the d(e,e'pp\pi^-)\pi^0 channel (shown in August) or the d(e,e'p\pi^-\pi^+)n channel It still makes a good BS thesis
```

Data mining summary

- Software is almost final
- Data being added
 - → Two data sets almost complete
 - → Two more data sets in process
 - Cuts and corrections being implemented
- Looking for Delta-Delta events is hard
- → Lots more fascinating physics to analyze
- + Join us!