Cross Sections on the ¹²C(e,e'p) Reaction at High Missing Momentum

Vincent Sulkosky Massachusetts Institute of Technology

INT Workshop INT-13-52W

Nuclear Structure and Dynamics at Short Distances

February 11-22, 2013

University of Washington

Outline

 Introduction: PWIA and Reaction Mechanisms \triangleright Spectroscopic factors and N-N correlations \triangleright Results from Quasi-elastic and x_B < 1 \triangleright Recent Results and Future Perspectives, x_B > 1 \triangleright Summary

Nucleons in the Nucleus

- \triangleright Nucleons are comprised of quarks and gluons, but how do they put together from these constituents?
- \triangleright We can study the constituents and their interactions or the nucleon and it's interactions.
- \triangleright If we take a nucleon and place it inside a nucleus, how is the nucleon modified in the nuclear medium?

Electron scattering has proven to be a valuable tool to understand and investigate nucleons inside the nucleus.

A(e,e'p)A-1 Kinematics

Missing momentum: $p_m = q - p = p_{A-1} = -p_0$ Difference between transferred and detected momentum PWIA

$$
\varepsilon_{\mathsf{m}} = \omega - T_{\rho} - T_{\mathsf{A}-1}
$$

Difference between transferred and detected energy

Plane Wave Impulse Approximation (PWIA) **Simple Theory Of Nucleon Knock-out**

5

Reaction Mechanisms in (e,e'p)

- Final-State Interactions: Interactions of the extracted proton with the residual nucleus.
- Coulomb Distortion and Internal Radiative Corrections: The momentum of the electrons at the reaction point is different to their asymptotic measured values.
- External Effects (From atomic interactions in the target): Energy Loss, External Radiative Corrections, Straggling, Proton Absorption.
- Meson Exchange Currents (MEC)
- Intermediate excited nucleonic configurations: e.g. Delta-isobar contributions

 $\vec{p}_m = \vec{q} - \vec{p} = \vec{p}_{A-1} \neq \vec{p}_0$ $=\vec{q}-\vec{p}=\vec{p}_{A-1}\neq \vec{p}_C$

Classic Result from (e,e'p) Measurements

L. Lapikas, Nucl. Phys. A553 (1993) 297.

Independent-Particle Shell-Model is based upon the assumption that each nucleon moves independently in an average potential (mean field) induced by the surrounding nucleons

The (e,e'p) data for knockout of valence and deeply bound orbits in nuclei gives spectroscopic factors that are **60 – 70%** of the mean field prediction.

One Solution: Correlations Between Nucleons Long-range $(> 2 fm)$ and short-range $(< 1 fm)$

Short-Range Correlations

Laboratory

2bbu, 3bbu "Distorted" Spectral Functions

$$
\frac{d^6\sigma}{dE_e dE_p d\Omega_e d\Omega_p} = K \cdot \sigma_{ep} \cdot S^D(E_m, p_m)
$$

$$
\eta(p_m) = \int \left(\frac{d^6\sigma}{dE_e dE_p d\Omega_e d\Omega_p} / K \cdot \sigma_{ep}\right) dE_m
$$

Performed at High Q²

 \Rightarrow Reduced MEC, Δ contributions

At $p_m > p_F$ distorted spectral function is much larger for 3bbu than for 2bbu due to correlations (SRC)

Calculations reproduce both 2bbu and 3bbu – confidence

Compare $S^D(E_m, p_m)$, n(p_m) to theoretical calculations

F. Benmokhtar *et al.*, Phys. Rev. Lett**. 95** (2004) 082305.

³He(e,e'p)np: 3bbu (High Em) and High p^m

Data: F. Benmokhtar et al., PRL 94, 082305 (2005) Calculations: C. Ciofi degli Atti et al.

Hall B (CLAS) $D(e,e'p)n, x_B < 1$ Data

See W. Boeglin's talk from Feb. 19th

Black Paris Potential Red AV-18 Potential

From Lowest To Highest PWIA PWIA+FSI PWIA+FSI+MEC+NΔ

K. Sh. Egiyan *et al.,* Phys. Rev. Lett. **98** (2007) 262502.

Recent Experimental Results

Carbon: $\triangleright x$ _{*B*} > 1, *Q*² = 2 GeV² Bound data, *p^m* = 200 – 425 MeV/c Continuum data, *p^m* = 200 – 600 MeV/c \triangleright Helium-4: $\triangleright x_B$ > 1, *Q*² = 2 GeV² Bound data, *p^m* = 150 – 500 MeV/c Continuum data, *p^m* = 150 – 800 MeV/c

Kinematics

¹²C(e,e'p) Data

High *pm*: 300-600 GeV/*c* probe small inter-nucleon distances \ddot{o}

High *Q2:* 2 [GeV/*c*] 2

probe small distances less ambiguity about struck nucleon can handle FSI using GA or GEA

High $x_B \sim 1.2$

more than 1 quark share momentum reduce MEC, \triangle contributions

Anti-parallel kinematics reduce FSI

interaction with more than one nucleon

- Quasi-Elastic shaded in Blue
- \triangleright Resonance Even at x_{B} >1

¹²C(e,e'p) ¹¹B Cross Sections

Results from P. Monaghan; arXiv:1301.7027

Laboratory

C(e,e'p) ¹¹B Cross Sections

Results from P. Monaghan; arXiv:1301.7027

Distorted Momentum Distribution

$$
n_{distorted}(P_m) = \left\langle \frac{d^5\sigma}{d\Omega_e d\Omega_p dE_e} \right\rangle_{exp} / \left\langle K\sigma_{cc2} \right\rangle_{unit}
$$

17

C(e,e'p) Continuum Results

Results from P. Monaghan's thesis

Extracted Spectral Functions

Kinematics 1 and 3 with lower and higher *p^m* range are also available

20

E07-006: ⁴He(e,e'pN)pn SRC

See Igor Korover's talk this afternoon

He(e,e'p) Preliminary Results

Low *P^m* **Results**

Laborator

⁴He(e,e'p) ³H Preliminary Results

Results from S. Iqbal

24

Summary

- Quenching of spectroscopic strength might be an indication of N-N correlations.
- \triangleright Reaction dynamics unfortunately complicate the picture and make isolating N-N SRC difficult.
- \triangleright Recent data for ¹²C(e,e'p) and ⁴He(e,e'p) at kinematics favorable to correlations:
	- \triangleright High P_{m} , High Q^2 , x_B > 1, "semi anti-parallel"
	- Analysis of carbon bound state data is complete and shows good agreement with theory: **arXiv:1301.7027**
	- Publication on continuum results expected soon
	- \triangleright Helium-4 is data being analyzed
- Theoretical calculations and input are desired

Acknowledgements

- **Peter Monaghan (Hampton)**
- **Shalev Gilad (MIT)**
- **Douglas Higinbotham (JLab)**
-
-

 Konrad Aniol (California State) Sophia Iqbal (California State)

Thank You!

Electron Scattering (e,e') at Fixed Q²

Spectral Function

In nonrelativistic PWIA:

Example: Final State Interactions (FSI) **Reaction Mechanisms**

Improve Theory

Distorted Wave Impulse Approximation (DWIA)

This is modeled by an optical potential from elastic (p,p) data. Proton is described by Distorted Waves.

$$
\frac{d^6\sigma}{d\Omega_e d\Omega_p dp d\omega} = K \sigma_{ep} \boxed{S^D(p_m, \varepsilon_m, p)}
$$

"Distorted" spectral function

DWIA: If the struck nucleon re-interacts with the rest of the nucleus, then the cross section still factorizes (mostly) but we measure a distorted spectral function.

Madrid Theory

Relativistic wave functions from solutions of the Dirac equation with both scalar and vector mean field potentials used for the initial and final states.

The optical potential is a folding potential with effective NN interactions phenomenologically fitted to elastic proton scattering on light nuclei at energies of interest for this experiment. For more details see: **Relativistic Description of ³He(e,e'p)²H** Reference: Few-Body Systems 50, 359-362(2011) Alvarez-Rodriguez R, Udias JM, Vignote JR, Garrido E, Sarriguren P, Moya de Guerra E, Pace E, Kievsky A, Salme G

The calculation for ⁴He followed similar lines for the final state interactions/optical potential, while the bound state of ⁴He is a simple mean field solution.

Brief Theoretical Review

EXAREQUE APPROACHES: Relativistic Approaches:

 Relativistic Distorted Wave Impulse Approximation (RDWIA): The wave functions are four-component spinor solutions of the Dirac equation with scalar and vector potentials and their lower components are dynamically enhanced with respect to a solution of Dirac equation without potentials (a free spinor).

 Groups: A. Picklesimer, J.W. Van Orden and S. J. Wallace The Madrid Group (J. Udías *et al.)* J. J. Kelly (Effective Momentum Approximation) A. Meucci *et al.*

Far from a complete list of approaches and contributors !

Theoretical Review II

Example 2 Relativistic Approaches:

▶ Relativistic Multiple Scattering Glauber Approximation (RMSGA): Also uses the EA but instead evaluates multiple scattering by the nucleon-nucleon interaction directly rather than through a mean field. Bound-state wave functions are solutions to Dirac equation with scalar and vector potentials fitted to ground state nuclear properties.

Group: Ghent (J. Rychkebusch *et al*.)

▶ Relativistic Optical-Model Eikonal Approximation (ROMEA): Employs an Eikonal Approximation (EA) that should be equivalent to **RDWIA for large Q², but a partial-wave expansion is avoided. Difference** compared to RDWIA is the use of EA to compute the scattering wave functions.

Group: M. Radici *et al.*

Theoretical Review III

C. Ciofi degli Atti and H. Morita:

- \triangleright Mean field calculation using the Woods-Saxon form for the wave function.
- \triangleright FSI modeled using Glauber approach to describe rescattering of the struck proton. Glauber approximation assumed A-1 spectator nucleons are stationary during any rescattering of the struck nucleon.

J. M. Laget:

- \triangleright Microscopic calculation of continuum cross section including a PWIA calculation with correlations but no FSI, and successive implementation of various interaction effects.
- \triangleright Both single and double NN scattering as well as meson exchange and Δ formation are included.
- \triangleright Nucleon and meson propagators are relativistic and no Glauber approximations have been made. For FSI used a global parameterization of the NN scattering amplitudes from experiments

