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Emergence of light cone dominance at high energies 

Properties of the light cone density matrix and SRCs

Deuteron - LC - nonrelativistic  correspondence

Outline

Polarized deuteron

❖

❖

❖

❖

❖

Part I : SRC -few nucleon approximation 

Part II: EMC effect 30 years after

First theoretical  ideas

From “Every Model Cool” to facing tough constrains 

❖ Shift of emphasize on large x and SRC; can pA at LHC help 



Consensus of the 70’s:   it is hopeless to look for SRC experimentally 

NO GO theorem: high momentum component of the nuclear wave function is not observable (Amado 78)
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Way out - use processes with large energy
 and momentum transfer:

Adjusting resolution scale  as a function of the 
probed nucleon momentum allows to avoid Amado 
theorem. Standard trick in QCD.

Theoretical analysis of F&S (75) :  results from the medium energy  studies of short-range 
correlations are inconclusive due to insufficient energy/momentum transfer leading to complicated 
structure of interaction (meson exchange currents,...), enhancement of the final state contributions.

q0 � 1GeV ⇥ |V SR
NN |,  q � 1GeV/c⇥ 2 kF

Actually it is  now a standard trick 
in atomic (10 eV vs 1000 eV) and solid 
state physics (0.2 eV vs 30 eV) scales.

⇒ Need to treat the processes in the relativistic domain.  The  
price to pay is a need to treat the nucleus wave function using 
light-cone quantization - - One cannot use (at least in a simple 
way) nonrelativistic description of nuclei.  



Relativistic 
projectile

t1, z1 t2, z2

t1 − z1 = t2 − z2

⇒ High energy process develops along the 
light cone. 

Similar to the perturbative QCD the amplitudes of 
the processes are expressed through the wave 
functions on the light cone. Note: in general no benefit 
for using LC for low energy processes.

4



LC quantization is uniquely  selected in high energy processes if one tries to 
express cross section through elementary amplitudes near energy shell. 

Consider the break up of the deuteron in the impulse approximation:
 h+D→X+N, for Eh→∞

D N

h

{ sf = (ph + pD − pN )2}
N’

sin = (ph + pN ′)2

In quantum mechanical treatment energy in the D→NN vertex is 
not conserved.  As a result 

is infinite at high energies.  Amplitude is far off energy shell. 
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� ⌘ (sin � sf ) ! 2Eh(2
q

m2
N + p2N �mD) |Eh!1
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In di⇥erence from deep inelastic processes it is impossible here to choose a ref. frame, where hadron h cannot
produce particles. As a result there are energy dependent corrections as the life-time of any configuration in the
hadron h depends on the ref. frame. There is not such a problem at high energies, where due Feynman scaling
inclusive cross sections become energy independent. To suppress corrections due to the structure of hadron h we
choose a ref. frame, where the nucleus is fast and the hadron at rest. In this case account of finite energy e⇥ects only
du to structure of energy denominators leads to the following equation:

Eb
d3⌅h+A⇤b+···

d3pb

=
⇤

⇤N
A(�, k⌅)

d�d2k⌅
�

Eb
d3⌅h+N⇤b+X

d3pb

(⇥̃, pb) (2.19)

where

⇥̃ = (⇥ + M2
A �M2

n) · �/A. (2.19a)

In the sections 2 2.5, 7 7.3 we will explain that eq. (2.19) is applicable for the description of a wide range of
phenomena.

In conclusion, we have demonstrated that the space-time evolution of the scattering process and vacuum fluctuations
are adequately accounted for if one uses IMF (non-covariant light cone) WF of nuclei [1–3, 61–63]. On the contrary
a more traditional approach to high energy nuclear reactions - so called fixed nucleon approximation - which uses
the rest frame Schrödinger WF of nuclei does not take into account the increase of essential - longitudinal distances
with energy. The simplest way to reveal this problem is to consider the process h + D ⇧ X and to check that the
non-conservation of invariant energy in the amplitude of the elementary subprocess h + N ⇧ X tends to infinity
with increase of Eh. Really in the deuteron rest frame at Eh ⇧ ⌥ the non-conservation of invariant energy in the
intermediate state is as follows (all notations correspond to fig. 2.5)

� = (pNN + ph)2 � (pD + ph)2 = M2
NN �M2

D + 2 · Eh

�
2
⇧

m2
N + k2 �MD

⇥
⇧⌥.

Here MNN is invariant mass of the two nucleon system M2
NN = 4(m2

N + k2) and k is nucleon momentum in the
deuteron. One should expect that due to this energy non-conservation the amplitude of elementary process tends to
zero at Eh ⇧⌥. The origin of this puzzle is rather transparent. The characteristic time for development of the high
energy process is Ph/m2 (cf. discussion in sections 2 2.1, 2 2.2). It is much larger than the characteristic life-time
of the studied fluctuation in the deuteron ⌅ 1/(2

⌅
m2

N + k2 �MD). As a result the fixed nucleon approximation is
inapplicable, one has to take into account fluctuations of this configuration in the deuteron!

On the contrary, if the deuteron WF is quantized at the hyperplane t + z = 010 - so called light cone WF of the
deuteron - there is no such di⇧culty provided the z-axis is chosen in the direction of the projectile momentum. Indeed,
in this approach

p+ = p0 + pz = (m2 + p2
⌅)/p�

is not conserved (m ⇤ p2), though p� = p0 � pz and p⌅ components of momentum p are conserved. As a result the
non-conservation of invariant energy is finite at Eh ⇧⌥. Really in the deuteron rest frame:

� = (pNN + ph)2 � (pD + ph)2 = M2
NN �M2

D + (ph)+(pNN � pD)� + (ph)�(pNN � pD)+

= M2
NN �M2

D +
1
2
(m2

h/Eh)(M2
NN/MD �MD) ⌃M2

NN �MD

Thus � is finite only if the z-axis coincides with the ph direction. We conclude that the necessity of using the light
cone WF of the bound state quantized in the direction of rapid projectile for description of high energy processes
unavoidably follows from the requirement of near on shellness of the amplitudes.

It is easy to demonstrate that light cone WFs are equivalent to the IMF WFs (see e.g. [138]). This equivalence
will be of much use for the understanding of relationship between IMF (light cone) WFs of nuclei and conventional
non-relativistic theory of nuclei. It helps also to generalize the fixed nucleon approximation to the relativistic case and
to understand the cause of the di⇥erence between the spectator momentum and the internal momentum of nucleon
produced in the p + D⇧ p + X reaction discussed in section 2 2.5.

10 The light cone quantization was introduced by P. Dirac in 1949 [137]

In case of LC quantization along reaction axis

Δ is finite and hence amplitude is close to the mass shell

Requirement of finite Δ uniquely fixes quantization 
axis for the high energy limit to be according to LC 
prescription

Here M2
NN   is invariant mass squared of the two nucleon system
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Onset of LC dominance in (e,e’) 

Consider example of  high Q2 (e,e’) process at fixed large x >1 in 
the many nucleon approximation for the nucleus

The on-shell condition for the produced nucleon

γ* q
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LC variables:

m̃2 = (PA � prec)+(P
A � prec)� � (PA � prec)2t
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γ* q
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Use the nucleus rest frame

⇒
0  for large Q,  fixed x,  ∝ 1/q+

In high energy limit the cross section depends only on  the 
spectral function integrated over all variables but α - light-cone 
dominance, in particular no depend on the mass of the recoil 
system. Relevant quantity light-cone nucleon density matrix.

⇒

10
⇒ �eA(x,Q2)

�eD(x,Q2)
=

⇢A(↵tn)

⇢D(↵tn)



For intermediate Q2 corrections can be treated by taking an average 
value of recoil mass. The two nucleon  approximation for p-rec is 

with Fermi motion of the pair leading to a spread of distribution 
over p-rec is but not to a significant change of <p-rec>.

⇒ “super”scaling of the (e,e’) ratios in 
αt.n. - α calculated using (*).

(*)

At α ≳ 1.5 (*) three nucleon correlations start to reduce p-rec as 
compared to (*). The (e,e’) A/D ratios should start increasing at these α.

Warning:  FSI is small in (e,e’) for interaction of struck nucleon with 
nucleons not belonging to SRC. However  different local  FSI in two and 
three nucleon correlations may not cancel in the ratios.
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prec� = m(A�2)⇤ +
m2 + p2t
m(2� ↵)



kmin=0.3 GeV

kmin=0.25 GeV

Frankfurt et al, 
93

Right momenta for onset of 
scaling !!!

=
a2(A1)
a2(A2) |1.6>��1.3

W − MD ≤ 50 MeV

Masses of NN system produced in 
the process are small - strong 

suppression of isobar, 6q degrees of 
freedom.

The local FSI interaction,
up to a factor of 2, cancels 

in the ratio of σ’s



High energy processes are dominated by  interactions near LC- 
➜ cross sections are simply expressed

 through LC wave functions

80

FIG. 6.1: Prediction of eq. (6.2) for F (N)
2C (x ≥ 1, Q2) for several nuclear wave functions.

arise from some kind of superdense configurations either consisting of few nearby nucleons with large momenta or a
more complicated multiquark configuration. Consequently, the dependence of F2A(x,Q2) for x > 1 on the average
nuclear density 〈ρ〉 should be more pronounced F2A(x,Q2)

∣∣
x>1

∝ 〈ρ〉n, n > 1, see below] than for the kinematical
region of the EMC effect (x ∼ 0.3−0.7), where the small deviation of F2A/F2N from unity is proportional to 〈ρ〉. Thus,
it may provide important information on the equation of state at large densities. Evidently, by measuring F2A(x,Q2)
at x > 1 one can demonstrate the presence of correlations, but cannot determine their quark-gluon structure. For
this purpose a comparison of F2A(x,Q2) with the data on near-threshold (e, e′) reactions and related processes is
necessary. Note also that knowledge of F2A(x,Q2) at x > 1 is necessary for the accurate extraction of ΛQCD from
the measurements on nuclear targets on the basis of the evolution equation. It is easy to demonstrate [321] that the
existing procedure, like, e.g., in ref. [322], where it is assumed that F2A(x,Q2) → 0 for x → 1, underestimates ΛQCD

(Λtrue
QCD − ΛQCD may be as 20 − 30 MeV cf. ref. [323]).
In the pre EMC effect era the value of F2A(x,Q2) at x > 1 has been predicted in ref. [324–326] on the basis of

the few-nucleon correlation model (FNCM) for the single-nucleon light-cone density matrix ρN
A(α, pt) (see summary

in Appendix B). The presence of a large tail of superfast quarks was suggested for deuterons [327]] and nuclei [328]
by assuming that for fast backward pion production58

GA/π
h (xF, pt) ≡

dσ(h + A → π + X)
(dxF/xF) d2pt

∝ F2A(xF, Q2). (6.1)

The calculation of ref. [324–326] neglects possible nonnucleon degrees of freedom and uses the convolution equation
whose derivation was briefly discussed in section 5 5.1 (for a detailed discussion see ref. [320]):

F2A(x,Q2) =
∑

N=p,n

∫
F2N(x/α, Q2)ρN

A(α, kt)
dα

α
d2kt. (6.2)

Since ρN
A(α, kt) at α > 1 rapidly decreases with α (∼ exp−7α), the prediction of eq. (6.2) for the shape of the

x-distribution is rather insensitive to uncertainties in the value of F2N(x,Q2) at x > 0.8 (cf. eq. (5.15) in ref. [320]).
We want to draw attention to the fact that practically the same shape of F2A(x,Q2) is expected in models where the

58 The phenomenological observation that for x ! 0.8, Gp/π+

h (x) ∝ u(x), Gp/π−

h (x) ∝ d(x), was first made in ref. [329]. At x > 0.8, where

the triple-Regge limit contribution dominates, these relations underestimate GN/π
h (x), e.g. Gp/π+

h (x) ∝ (1− x)2 for x > 0.8 [330]. Note
also that with increasing number of quarks in the system the difference between the behaviour of the pion spectrum for xF → A and
the quark distribution for x → A is expected to become more and more pronounced, e.g. for the deuteron perturbative QCD predicts

[320] GD/π
h (xF) ∝ (2 − xF)5 for xF → 2, while F2D(x) ∝ (2 − x)10 for x → 2.
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⇤p
A(�, k⌅) =

↵
⌅2(�1 . . .�A, k1⌅ . . . kA⌅)

A⌦

i=1

d�i

�i
d2ki⌅⇥

�
1�
⌥

�i

A

⇥

⇥ ⇥

� A 

i=1

ki⌅

⇥ Z 

i=1

�i⇥(�� �i)⇥(ki⌅ � k⌅). (2.31)

Here ⌅ is the light cone nucleus WF, the solution of Weinberg equation (2.29), which is normalized a usually for
bound state:

↵
⌅2(�1 . . .�A, k1⌅ . . . kA⌅)

A⌦

i=1

d�i

�i
d2ki⌅⇥

�
1�
⌥

�i

A

⇥
⇥(
 

ki⌅) = 1. (2.32)

It is easy to check that ⇤N
A(�, k⌅) as defined in eq. (2.31) satisfies two important sum rules:

A↵

0

⇤N
A(�, k⌅)

d�

�
d2k⌅ = A (2.33)

A↵

0

�⇤N
A(�, k⌅)

d�

�
d2k⌅ =

A↵

0

⇤N
A(�, k⌅)

d�

�
d2k⌅

⌥
�i

A
= A. (2.34)

These sum rules can be derived in a somewhat independent way. Eq. (2.33) represents the sum rule for the baryon
charge conservation. It follows directly from the condition that the matrix element of the baryon current at zero
momentum transfer is equal ⌅A|jB

0 |A⇧/pA|pA⇥⇤ = A. Eq. (2.34) represents the sum rule for the momentum con-
servation. To obtain this sum rule we can use the fact that the matrix element of the energy-momentum tensor
Tµ�(⌅A|Tµ�|A⇧/p2

A|pA⇥⇤) at zero momentum transfer does not depend on the target. This property of Tµ� is a
consequence of the universality of gravitation.

Comment. To check the consistency of the developed approach one can use the celebrated Adler, Dashen, Gell-
Mann, Fubini sum rules [149, 150] and momentum conservation sum rule [151] valid for an arbitrary target in any
renormalizable quantum field theory (QCD) [152, 153]. The application of these sum rules together with eqs. (2.14)
for the nucleus structure functions leads to eqs. (2.33), (2.34) correspondingly. Note however that both of these sum
rules are not fulfilled in the approaches based on the Bethe-Salpeter WF with the o�-mass-shell interacting nucleon
(see the discussion in Appendix A).

2.4.3. Connection with non-relativistic theory of the nucleus

To obtain the usual Schrödinger equation from the Weinberg type eq. (2.29) the approximation

�i

⇤1� k3i/m, (2.35)

{For authors: Shouldn’t the sign be just ⇤ ? } should be used (cf. eq. (2.16)). In this approximation
⇤N
A(�, k⌅) is simply related to the single nucleon density matrix n(k):

n(k) =
↵

⌅̃2
A(k1 . . . kA)

⌦

j=1

d3kj⇥

⇤

⇧
A 

j=1

kj

⌅

⌃
A 

i=1

⇥(k � ki)
A

. (2.36)

Here ⌅̃2
A = ⌅2

A/mA�2 and therefore
�

n(k)d3k = A. From the comparison of eqs. (2.35), (2.36) and eq. (2.30) we
have

⇤N
A(�, k⌅) = m n(k), k =

�
m2(1� �)2 + k2

⌅. (2.37)

An equivalent though more complicated procedure is to consider IMF diagrams for the nuclear WF and to verify that
the angular condition for an A-nucleon system has the same form as for free nucleon system in the approximation
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Example

Single 
nucleon light 
cone density 

matrix
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If one uses a rest frame approaches - one needs to use a spectral function 

116

FIG. 8.4:

8.3.1. “y”-scaling

In the impulse approximation (corrections to this approximation due to the final state interaction will be briefly
discussed below) the process is described by the diagram in fig. 8.4, where the virtual photon is absorbed by a nucleon
with momentum k. In the kinematic region described in eq. (8.3) the difference between the invariant mass of the
produced system, W , and MA is small as compared to Q2 and |q|. To produce such a state the momentum k of
the struck nucleon in the wave function of the nucleus should be large (in the rest frame of the nucleus), roughly
k ∼ −q/2 (for γ∗ scattering of the two-nucleon correlation), cf. eq. (8.29) below.

Another characteristic feature of the reaction discussed is that the intrinsic energy E of the residual system X is
comparable with W −MA. (By definition E = MX −MA−1, where MX and MA−1 are the invariant masses of X and
of a nucleus consisting of A − 1 nucleons.) For example, in the two-nucleon correlation approximation E # q2/8m.
As a result the closure approximation is inapplicable here and therefore the cross section of reaction (8.1) could not
be expressed through the ground state wave function of nucleus A. One should use instead the spectral function of
the nucleus, PA(k,E), which accounts for the probability of removing a nucleon with momentum k from the target
nucleus A, leaving the final nuclear system X with excitation energy E. By definition102 (see, e.g., ref. [458])

PA(k,E) = 〈ψA|a+
N(k)δ(E + ER − EfX)aN(k)|ψA〉, (8.25)

where ER # k2/2m2
X is the recoil energy of the residual system X. a+

N(k) and aN(k) are the creation and annihilation
operators of a nucleon with momentum k. It follows from the definition (8.25) that PA(k,E) and the single-nucleon
momentum distribution nA(k) are related as

nA(k) =
∞∫

0

PA(k,E)dE. (8.26)

In the plane wave impulse approximation the cross section of the (e, e′) reaction is given by

σA(ν, q) ≡ dσ

dE′
e′ dΩe′

=
∫

d3k dE σeNPA(k,E)

× δ(ν + (mA − mA−1 − mN) − E(kN) − E(k) − ER(k))δ(kN − k − q). (8.27)

Here ν = q0 = Ee−E′
e′ is the photon energy and σeN = 1

2 (σep +σen) denotes the cross section for the scattering of the
electron from a nucleon with momentum k times the flux factor (1 + k3/mN) [458]. To avoid difficulties with gauge
invariance (due to off-energy-shell effects) the component j3 of the electromagnetic current is usually reconstructed
from the j0 component using the gauge invariance of the whole amplitude. (The 3-axis is chosen in the direction of
the photon momentum.)

Digression. This approach enables us to illustrate many of the basic qualitative features of the process, avoiding
a more cumbersome light-cone quantum mechanical formulation. However, to obtain quantitative results in the
kinematic region considered in this section (Q2 ≥ 1 GeV2, k > 0.3 GeV/c) it is necessary to take into account
relativistic effects resulting from the relativistic space-time development of the scattering process characteristic for
a quantum field theory, QCD. This requirement is naturally fulfilled in light-cone quantum mechanics but not in
approaches which use the Schrödinger wave functions of nuclei and therefore arbitrarily neglect the production of NN̄
pairs from the vacuum by γ∗. This is not a small effect even at q2 = 0 [459, 460] and this is more true for processes
due to the high-momentum nucleon component in the wave function of the nucleus.

102 To simplify the discussion spin and isospin labels are omitted here.

Information contained in n(k) is not sufficient/ of limited value
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kinematic region considered in this section (Q2 ≥ 1 GeV2, k > 0.3 GeV/c) it is necessary to take into account
relativistic effects resulting from the relativistic space-time development of the scattering process characteristic for
a quantum field theory, QCD. This requirement is naturally fulfilled in light-cone quantum mechanics but not in
approaches which use the Schrödinger wave functions of nuclei and therefore arbitrarily neglect the production of NN̄
pairs from the vacuum by γ∗. This is not a small effect even at q2 = 0 [459, 460] and this is more true for processes
due to the high-momentum nucleon component in the wave function of the nucleus.

102 To simplify the discussion spin and isospin labels are omitted here.

No correspondence between asymptotic of n(k→∞) and  
ρN

A (α → A)

Some resemblance between structure of diagrams for high 
momentum dependence of various contributions to the 
spectral function P(k,E) and ρ(α,pt).

14



LC spectral function  - removal of a nucleon with given α, pt 
with a distribution over recoil “+” component: S(α, pt , p+rec)

∫S(α, pt , p+rec)dp+rec =ρAN(α, pt) similar to ∫S(k, Erec)dErec =nAN(k)

BUT
ρAN(α, pt) is a physical observable while nAN(k) is not

Similarly  the LC decay function D(α, pt, β,rt,p+rec)
has recoil effects build in (nonlinear relation between internal 
and observed momenta) - problem for using nonrel. decay 
function. Reminder - decay function parametrically differs from 
double momentum distribution (even different A-dependence)
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Question: If one needs to introduce  LC wave functions - why not 
switch directly to quarks & gluons? Parton densities are anyway defined 
on LC.  Too many degrees of freedom, difficult to take into account 
overlapping integrals. For some cases one can demonstrate that impulse 
approximation (plus rescattering corrections) in terms of hadronic 
degrees of freedom is justified.

To illustrate this point let us consider whether / in what situations  
we trust impulse approximation form for the amplitude in the 
hadronic basis for the nucleus wave function (for simplicity we 
consider DIS where on quark level impulse approximation is fine) 
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Consider interference between scattering off two different nucleons

N1
i

A-2

q
q

A A

q q
γ* γ*

N1
fN2

i N2
f

Introduce nucleon light-cone fractions, α. Free nucleon α=1, α f  1� x
For nucleus to have significant overlap of |in> and <out| states

αN f
1
 αNi

1
� x⇠ 1, αNi

2
 αN f

2
� x⇠ 1
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Interference is very strongly suppressed for  x >0.2 - would 
require very large  momenta in the nucleus WF

Additional suppression because of the suppression of large

z⌘ xF =
α
1� x for x� 0.1

dσ(z)
dz/z |z!1

∝ (1� z)n(x) , n(x� 0.2)⇠ 1, n(0.02< x< 0.1)⇠ 0, n(x< 0.01)⇠�1.
FS77

⇒
⇒

Interference is small for  x> 0.1 and impossible for x>0.3.  
More subtle situation for pion fields.

Large interference for  x< 0.01 leading to large leading twist shadowing.
How big is HT shadowing is an open question. Issue of duality. 
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FIG. 4.2: The dominant QCD diagram for the process ⇤ + D ⇤ ⇤� + N + X at fixed x ⇥ 1
3 and � ⇤ 2�X in the 6q model of

the deuteron.

4.1.2. Transitional region

To estimate the deuteron WF in the transitional region

0.5 < k < 1.0 GeV/c,

where two-nucleon system is far o�-energy shell, one has to consider a process which is hard at finite x and which can
be simultaneously described in terms of QCD diagrams and in terms of NN wave function of the deuteron. Recall
that �/2 is the fraction of the deuteron momentum carried by the nucleon in the infinite momentum frame (IMF) of
the deuteron, the so-called light cone fraction.

One of the simplest processes is the deep inelastic reaction:

↵ + D⌅ ↵⇤ + N(�) + X

at average x ⇤ 1
4 �

1
3 and �⌅ 2� x (� = 2� x is the phase space boundary for this reaction). In the calculation we

assume that the fast nucleon (colourless 3q system) is formated before the ⇤⇥ interaction. As a result the scattering
from configurations in the deuteron with finite number of partons (6q configuration) gives dominant contribution due
to finite phase space restrictions.

Under these assumptions the space-time evolution of the process is described by noncovariant diagrams of old-
fashioned perturbation theory in the infinite momentum frame of the deuteron (fig. 4.2)31. In the initial state the
quarks (1,2,3) and (4,5,6) form two nucleons in the average configuration (xqi ⇤ 0.2�0.3). Only hard gluon exchanges
are shown in fig. 4.2. The Coulomb and transverse gluons are labelled as C and T, respectively. For dominant diagrams
C, T gluon exchanges are alternated. Due to the vector coupling selection rule [189] a rather peculiar diagram 4.2
with qq̄ pair emission in the intermediate state gives dominant contribution — other diagrams are suppressed at least
by factor (2� �� x), (cf. the analysis of the nucleon structure function in Appendix C).

Neglecting weak a dependence of the overlapping integral of the 3q system (4,5,6) with the nucleon (see below) we
obtain for the QCD diagram (fig. 4.2)

FD/N
2 (x,Q2,�) ⇤

2���x�

0

d⇥1 d⇥2

⇥1⇥2
⌅(�4� + �5 + �6 + ⇥1 + ⇥2 � 2 + x)

⇥ (
⇥

⇥1

⇥
⇥2)�2(⇥1(1/⇥1 + 1/⇥2)�2)2 ⇤ (2� �� x)3. (4.6)

31 The rules of calculation are the same as in QED [188] because three, four gluon vertices are inessential in the lowest order in strong
coupling constant �s. The rules necessary for the calculation of the asymptotics of QCD diagrams in the limit under consideration are
given in Appendix C
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The factor ⇤ (2� �� x)6 originates from 6 hard energy denominators, factor ⇤ (2� �� x)�2 is due to four gTqq̄
vertices; factor (2 � � � x)�1 is due to phase-space integration. Since the quark 1 which interacts with ⇥⇥ is in the
average configuration, the weak x dependence due to quark soft interactions is not explicitly written here. In the
derivation we neglect the final state interaction between the colourless (4⇤,5,6) system and the quarks (2,3⇤) as in deep
inelastic scattering energy ⇥ 1 GeV is transferred to the struck nucleon (see [1–3] and discussion in section 3 3.3).
The condition that 3q state (quarks 4⇤,5,6) is colourless is necessary also to avoid large gluon bremsstrahlung which
would otherwise suppress the yield of leading particles due to the Sudakov type form factor.

The derived expression is justified for x ⇤ 0.2 � 0.4 and 1.5 � � � 2 � x ⇤ 1.8. The low boundary is determined
from the condition for the energy denominators to be far o⇥ the energy shell. The upper boundary is due to the
condition that no additional hard gluon exchanges are necessary.

The overlapping integrals of 3q systems (1,2,3⇤), (4⇤,5,6) with nucleon can be roughly estimated as F2N(x/(2� �))
and F2N((�� 2

3 )/�), correspondingly, since the leading quark carries a large fraction of nucleon momentum x/(2��),
(� � 2

3 )/�. (Note that the same type estimate is valid for admixture of baryon resonances since quark distribution
at large x has a universal form [128].) It is easy to check that in the discussed � range the overlapping integral for
nucleon with light-cone fraction � rather weakly depends on �. Actually the dependence of this overlapping integral
is even weaker since F2N(x) includes contributions of configurations like 3qg, which decrease faster with x than the
3q contribution.

Neglecting the admixture of baryon resonances in the deuteron WF we can compare eq. (4.6) with the two-nucleon
approximation (section 3) according to which

F2D(x,�) = F2N(x/(2� �))⇤N
D(�, k⌅ = 0). (4.7)

Here ⇤N
D(�, k⌅) is the single nucleon density matrix of the deuteron (for formal definition of ⇤N

D see eq. (2.31)). The
comparison of eqs. (4.6) and (4.7) at x/(2� �) ⇤ 1, where eq. (4.6) is applicable, gives [4–6]

⇤N
D(�, k⌅ = 0) ⇤ (2� �)3 at 1.5 < � < 1.8. (4.8)

The presence of NN⇥ component in the deuteron WF would not a⇥ect eq. (4.8) — in this case ⇤N
D would correspond

to inclusive distribution of nucleons in the deuteron. At small transverse momenta of the nucleon the k⌅ dependence
of ⇤N

D cannot be calculated within perturbative QCD as is determined by the premordial quark distribution in the
initial state. However in the two-nucleon approximation the k⌅ dependence can be reconstructed using the angular
condition (eq. (2.22)).

Eq. (4.8) should be compared with quark counting rules expectations [71, 100] ⇤N
D(�) ⇤ (2� �)6. (Here and below

we give predictions of quark counting rules accounting for QCD selection rules [189].)
Since inclusive cross section of FB nucleon production in h + D ⇧ p + X reaction, � d⌅/d� d2k⌅, is proportional

to ⇤N
D(�, k⌅) [61–63], eq. (4.8) predicts � dependence of this reaction at k⌅ ⌅ 0. Recent high energy data [27] on the

p + D⇧ p + X reaction are consistent with eq. (4.8) and contradict the quark counting rule predictions [71, 100] (see
fig. 3.15).

We would like to emphasize that the derived momentum dependence of deuteron WF and the realistic deuteron
WFs like the Reid, Hamada-Johnston WF practically coincide in a range of nucleon momenta 0.5 < k < 0.8 GeV/c.
Consequently, there exists a smooth transition between non-relativistic and QCD rescription of the deuteron. At the
same time this means that we predict not only the momentum dependence but also the absolute value of cross section
of this process since Hamada-Johnston WF describes the data up to � < 1.7 (see fig. 3.15).

Note, however, that for rare components like q̄ the NN approximation (with ⇤N
D from (4.8)) and QCD perturbation

approach lead to di⇥erent predictions for the semi-inclusive reactions [4–6]

[FD/N
2 (�, x)� xFD/N

3 (�, x)] ⇤ (2� �� x)7 in QCD
⇤ (1� x/(2� �))7(2� �)3 in NN approximation.

Therefore smooth correspondence exists for dominant configuration only. At the same time antiquark distribution in
the deuteron is the same in both approaches.

4.1.3. Estimate of � admixture in the deuteron

Diagram 4.2 describes not only nucleon but also � production at large �. However � production is suppressed
due to flavour combinatorics of “u” and “d” quark interchange and due to zero deuteron isospin. As a result [190]

Structure of  the light cone density matrix.

FS79
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In principle one can start from calculating many body LC wave function based 
on many body bound state equation  (involves three body potential to keep 
rotational invariance satisfied). We use cluster expansion and analog of quark 
counting rules.
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the Weinberg type eq. (2.22)). Following the QCD in of section 4 we shall approximate it below by the WF of the
two-nucleon correlation. In the calculation we neglect the Fermi motion of the nucleons in the initial configuration,
i.e. we take �i ⌃ 1, ki⇤ ⌃ 0. Within the approximations the expression for ⌅3(�, k⇤ = 0) is given by

⌅3(�, k⇤ = 0) =
�

d⇥1

⇥1
d2k1⇤

d⇥2

⇥2
d2k2⇤⇤(⇥1 + ⇥2 + �� 3)

⇤ ⇤(k1⇤ + k2⇤ + k⇤)⇧2(2� ⇥1, k1⇤)⇧2

��
2� 2⇥2

�

⇥
, k2⇤

⇥
. (2.41)

Here ⇧ is the WE of a two-nucleon correlation. The additional dependence of the upper blob in fig. 2.8 on ⇥1, ⇥2

can be neglected, since in the essential region of integration ⇥1, ⇥2 ⇧ 0, when � ⇧ 3. Here we use the evident
consequence of eq. (2.19) that the short-range behaviour of the WF is determined by the singularities of the potential
and is independent of the binding energy.

Assuming that ⇧2(2� ⇥1, k⇤)�1⇥0 ⌅ (2� ⇥1)n+1f(k2
⇤) we obtain

⌅3(�, k⇤ = 0) ⌅ (3� �)2n+1. (2.42)

To generalize this result to the case of any j-nucleon correlation at �⇧ j we assume that its WF can he approximated
by the convolution of two-nucleon correlations. Simple calculations lead to:

⌅j(�, k⇤ = 0) ⌅ (j � �)n(j�1)+j�2. (2.43)

The factor (j � �)(1+n)(j�1) is due to j � 1 two-body amplitudes. The factor (j � �)�1 is due to phase volume of
fast nucleon. A similar expression was obtained by Schmidt and Blankenbecler in the case j = A [71]. Now it seems
di⌅cult to calculate absolute value of ⌅j(�, k⇤). To account for inclusive origin of ⌅j(�, k⇤) we assume that

1
j

j�

1

⌅j(�, k⇤)
d�

�
d2k⇤

is independent of j. A violation of the last condition would lead to redefinition of aj in eq. (2.38). The final formula
for ⌅N

A(�, k⇤ = 0) is as follows

⌅N
A(�, k⇤ = 0) =

A⌥

j=2

ajCj

�
1� �� 1

j � 1

⇥n(j�1)+j�2

(2.44)

where ⌅j = ajCj(1� (��1)/(j�1))n(j�1)+j�2. C is practically independent of j and fixed by the condition ⌅2 = ⌅N
D.

In summary:

1. The estimate of ⌅j(�, k⇤ = 0) is in accordance with the Brodsky-Farrar attempt to calculate high momentum
component of hadron WF in terms of quark models [160]. Eq. (2.41) can be obtained more formally by
transforming the many-body equation into a Faddeev type equation [161] and by finding its asymptotic solution.
It follows from this analysis that in eq. (2.41) the region ⇥1 > ⇥2 > · · · > ⇥j�1 mostly contributes. As a result
the invariant mass of the recoiling system is di�erent from the mass of a nucleus with the atomic number j.

2. It seems now that a rather complicated behaviour of ⌅2(�, k⇤) expected for � > 1.8 (see section 4 4.2) does
not influence strongly the form of ⌅N

A (�, k⇤ = 0) because in this kinematic region ⌅2(�, k⇤ = 0) is small and
therefore the three-nucleon correlation dominates (see analysis of experimental data in the section 8 8.1)

3. If � is not large eq. (2.43) can be approximated as

⌅j(�) ⌃ exp
⇤
��(n + 1)

⇧
1� 1

j

�
n + 2
n + 1

� �

2

⇥⌃⌅
.

In other words at � < 1.8 the contributions of two and three-nucleon correlations into ⌅N
A(�, k⇤ = 0) have

similar functional form.

4. It is well that the high momentum behaviour of deuteron WF is dominated by D wave in a large kinematical
region. Therefore the above calculation of ⌅j(�, k⇤) really indicates that contribution of partial waves with
L ⌥= 0 is large in the nuclear WF.
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FIG. 2.8: A typical diagram for the three-nucleon correlation.

k/m ⌃ 1 (i.e. the Schrödinger equation can be directly derived from IMF diagrams). Eq. (2.29) combined with eq.
(2.35) gives a practical possibility to apply existing experience in nuclear physics to estimate short-range phenomena.

For a long time two qualitatively di�erent hypotheses on the high momentum components of nuclear WF have been
discussed. It was suggested that n(k) is determined either by short-range two-nucleon correlations or by the average
field configurations.

The pair correlation hypothesis was proposed in early 1950’s to explain nuclear photodisintegration [154, 155]
absorption of slow pions [156] and it is still successfully applied for description of these and other experiments,
sensitive to the quasideuteron pn configuration with nucleon momenta kp ⇧ �kn � 400MeV/c [120]. The up to date
analysis of photonuclear reactions indicates that contribution of the triplet pn pairs (quasideuterons) to n(k) is given
by n(k) = L · N(Z/A)⇤2

D(k) where L is the Levinger factor 8-10 (see e.g. [120]). After consideration of the singlet
pn and pp pairs in the Wigner-model, this analysis suggests that 25 � 40% (?) of the nucleons in the nucleus have
momenta larger than 300MeV/c.

At the same time one can estimate the high momentum components in the deuteron using the Hamada-Johnstone
or the Reid soft core WF’s which describe well the short-range part of the deuteron WF. We obtain

�
⇤2

D(k)d3k�(k�
0.3 GeV/c) � (4� 5)%. For 4He the calculations performed in [118] with the Reid potential lead to 1

4

�
n(k)d3k�(k�

0.3 GeV/c) � 10%. For heavier nuclei the estimations using gas approximation indicate that the probability of a two
nucleon correlation increases with atomic number A by factor ⌅ 1.5 in the range A = 12 � 207 (see eq. (2.40))14.
Thus the existing experience in the non-relativistic nuclear physics hints that 15�25% of nucleons (not quasiparticles)
have momenta above the Fermi surface of the non-interacting system.

It seems instructive to estimate the value of two-nucleon correlations using the nuclear WF in coordinate space.
Really due to the large value of the D-state for realistic deuteron WFs ⇤D(k) =

�
eikr⇤D(r)d3r for k = 0.4 GeV/c

is determined by integration in coordinate space over a large region near the nuclear core r0 ⌅ 1.2� 1.4fm ⇤ r > rc

(rc ⌅ 0.4fm is the position of nuclear core). Therefore for heavy nuclei the probability a2 of pair correlation is
proportional to the probability for two nucleons to be in a volume of the radius r0; a2 ⇧ (r0/rNN)3. Here rNN is mean
distance between nucleons in nuclei. Taking a realistic value for rNN ⌅ 2fm we obtain a2 ⌅ (10� 20)%. This purely
geometric estimate indicates that:

1. In most of the phenomena related to the high momentum component in the nucleus WF essential relative
distances between nucleons are considerably larger than rc. Therefore overlapping between quarks which belong
to di�erent nucleons is not large.

2. Since a2 is large, three, four-body correlations could not be small.

In di�erence from the pair correlation model in the average field models it is assumed that n(k) is dominated by
the configurations, where the momentum of a fast nucleon-k is balanced by the rest of the nucleus (i.e. the nucleon
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the Weinberg type eq. (2.22)). Following the QCD in of section 4 we shall approximate it below by the WF of the
two-nucleon correlation. In the calculation we neglect the Fermi motion of the nucleons in the initial configuration,
i.e. we take �i ⌃ 1, ki⇤ ⌃ 0. Within the approximations the expression for ⌅3(�, k⇤ = 0) is given by
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Here ⇧ is the WE of a two-nucleon correlation. The additional dependence of the upper blob in fig. 2.8 on ⇥1, ⇥2

can be neglected, since in the essential region of integration ⇥1, ⇥2 ⇧ 0, when � ⇧ 3. Here we use the evident
consequence of eq. (2.19) that the short-range behaviour of the WF is determined by the singularities of the potential
and is independent of the binding energy.

Assuming that ⇧2(2� ⇥1, k⇤)�1⇥0 ⌅ (2� ⇥1)n+1f(k2
⇤) we obtain

⌅3(�, k⇤ = 0) ⌅ (3� �)2n+1. (2.42)

To generalize this result to the case of any j-nucleon correlation at �⇧ j we assume that its WF can he approximated
by the convolution of two-nucleon correlations. Simple calculations lead to:

⌅j(�, k⇤ = 0) ⌅ (j � �)n(j�1)+j�2. (2.43)

The factor (j � �)(1+n)(j�1) is due to j � 1 two-body amplitudes. The factor (j � �)�1 is due to phase volume of
fast nucleon. A similar expression was obtained by Schmidt and Blankenbecler in the case j = A [71]. Now it seems
di⌅cult to calculate absolute value of ⌅j(�, k⇤). To account for inclusive origin of ⌅j(�, k⇤) we assume that
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is independent of j. A violation of the last condition would lead to redefinition of aj in eq. (2.38). The final formula
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where ⌅j = ajCj(1� (��1)/(j�1))n(j�1)+j�2. C is practically independent of j and fixed by the condition ⌅2 = ⌅N
D.

In summary:

1. The estimate of ⌅j(�, k⇤ = 0) is in accordance with the Brodsky-Farrar attempt to calculate high momentum
component of hadron WF in terms of quark models [160]. Eq. (2.41) can be obtained more formally by
transforming the many-body equation into a Faddeev type equation [161] and by finding its asymptotic solution.
It follows from this analysis that in eq. (2.41) the region ⇥1 > ⇥2 > · · · > ⇥j�1 mostly contributes. As a result
the invariant mass of the recoiling system is di�erent from the mass of a nucleus with the atomic number j.

2. It seems now that a rather complicated behaviour of ⌅2(�, k⇤) expected for � > 1.8 (see section 4 4.2) does
not influence strongly the form of ⌅N

A (�, k⇤ = 0) because in this kinematic region ⌅2(�, k⇤ = 0) is small and
therefore the three-nucleon correlation dominates (see analysis of experimental data in the section 8 8.1)

3. If � is not large eq. (2.43) can be approximated as
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In other words at � < 1.8 the contributions of two and three-nucleon correlations into ⌅N
A(�, k⇤ = 0) have

similar functional form.

4. It is well that the high momentum behaviour of deuteron WF is dominated by D wave in a large kinematical
region. Therefore the above calculation of ⌅j(�, k⇤) really indicates that contribution of partial waves with
L ⌥= 0 is large in the nuclear WF.
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FIG. 6.1: Production of a fast backward nucleon in the W � scattering from the two-nucleon correlation spectator mechanism.

function ⇧̃N
A(�, k⌅,M2

Rec). One can in particular investigate the increase with x of the average number of fast forward
nucleons which balance the momentum of struck nucleon. However the cross section of this reaction is rather low and
the final state interaction between forward going nucleons could be essential.

Therefore it seems much more feasible to use as a trigger the presence of a fast nucleon (pN > 0.3 GeV/c) in
the backward (relative to ⇥�, W �) hemisphere. This selection enhances the contribution of short range correlations,
because such protons cannot be produced in a collision of a free nucleon or in the nucleus evaporation. (In fact the
data on such reaction were accumulated as byproduct on the DST of all big neutrino bubble chambers for a long time.
First analysis of such data was undertaken recently by Fermilab-ITEP-IHEP-Michigan collaboration in FNAL [22, 23]
and SCAT collaboration in Serpukhov [24].) An evident advantage of using a leptonic probe (instead of hadronic one)
is that the lepton provides a rather direct information about the struck nucleon momentum. At the same time the
study of the final state gives information about the structure of correlation. (Therefore in a certain sense reaction
(6.1) is more close to low energy eA ⌃ e⇤ + p + p + X reactions discussed e.g. in [203, 210] than to eA ⌃ e⇤ + p + X
reactions.)

A natural mechanism for reaction (6.1) is the following: ⇥�, W � strikes one of the nucleons of the correlated system,
which has a forward momentum in the nucleus rest frame releasing the backward going nucleon from the correlation
(see fig. 6.1). Before starting a formal derivation let us consider what one should expect if reaction (6.1) is dominated
by the scattering o� the pair correlation. In this case large � of the backward nucleon40 is balanced by �⇤ ⇧ 2� � of
the struck nucleon. Consequently the average light cone momentum carried by the quarks of the balancing nucleon is
2�� times smaller than for the average nucleon with � ⌅ 1. Therefore the mean x for events with backward nucleon
should be smaller than in the average case:

⌥x�� = (2� x)⌥x�. (6.2)

The decrease of ⌥x�� was first predicted in [31] and it is observed now in two experiments [22–24].

6.1. The basic formulae

To describe the reaction (6.1) quantitatively it is necessary to introduce the production function
⇧N1N2
A (�1, k1⌅,�2, k2⌅). By definition ⇧N1N2

A (�1, k1⌅, �2, k2⌅)/⇧N2
A (�2, k2⌅) is the probability for a nucleon N1 to

be produced if a nucleon N2 is instantaneously removed from the nucleus. In principle ⇧N1N2
A can be calculated by

solving the many-body Weinberg type equation for the nuclear WF and decomposing the WF of the recoiling system
over the free particle states (nucleons, nucleus fragments). This procedure is analogous to that used for the calculation
of the nuclear spectral function.

It is important that the removal of a nucleon from the nucleus in the reaction (6.1) can well be considered as
instantaneous because the energy transfer to the target nucleon in ⇤N scattering is large at any x. Thus, the spectator
contribution to the cross section of the reaction (6.1) is given by eq. (6.3) (cf. equations for the ✓ + D ⌃ ✓⇤ + p + X
reaction in section 3 3.3) which is really a particular case of the sudden approximation:
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40 In the nucleus lab. frame � = ( m2 + p2 � (pq)/|q|)/mN, where p is the lab. frame nucleon momentum. Large � > 1 corresponds to
backward going nucleon in the nucleus rest frame.
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FIG. 7.1: Production of fast backward spectators in hA collision.

In the case of nucleon production, we impose also the condition pN > 0.3 GeV/c, to avoid any significant contribution
of nucleon evaporation. To simplify the presentation, we shall use, for a while the two-nucleon (pair) correlation
approximation for the nuclear WF (see section 2 2.4).

At large incident energy, the average energy transfer to each of the ⇤ inelasticly interacting nucleons is of the
order 0.5 GeV (the same as in the elementary hN inelastic interaction). Similar to the deuteron case this energy is
su⌅cient to destroy all pair correlations associated with any of ⇤ nucleons, i.e. the incident hadron h going through
the nucleus knocks out nucleons moving forward (in the nucleus rest frame) releasing backward moving nucleons of
the pair correlations (see fig. 7.1). Similarly to the case of deuteron stripping it is natural to call this process a
spectator mechanism [69, 70]. In the approximation of the pair correlation matrix the probability to find a nucleon
with momentum pN(�, p�), correlated with a given nucleon is equal to (1/A)⌅N

A(�, p�). (Cf. eq. (2.38). Recall that
⌅N
A(�, p�) is the single nucleon density of the nucleus in the momentum space.) Therefore using eq. (7.3) we obtain

[106–110]42

GA/N
h (�, p�) =

A�

n=1

1
A

⌅N
A(�, p�)n⇧n = ⇧hN

in ⌅N
A(�, p�) (7.5)

since the nucleon can be emitted in each of the n collisions.
Eq. (7.5) is quite similar to the impulse approximation. This is so because we neglected in the derivation that the

spectator could have had the same impact parameter as the projectile and, thus, would lose its � due to inelastic
interactions with the incoming hadron. Taking into account this possibility, we are lead, similarly, to the deuteron
case (section 2 2.5), to the Glauber screening factor ⇥h in eq. (7.5)

GA/N
h (�, p�) = ⇥hA⇧hN

in ⌅N
A(�, p�). (7.6)

The inclusion of j-nucleon correlations with j > 2 may modify eq. (7.6). In this case, ⇥h will depend on �, as the
e⌅ciencies of breaking 2- and 3-nucleon correlations are somewhat di�erent (cf. eq. (7.10)). Consequently, in a wide
region, GA/N

h (�, p�) is proportional to ⌅N
A(�, p�) and therefore measurement of GA/N

h provides a direct information
about the nuclear WF.

We explained in section 2 2.5 that �, p� dependence of ⌅N
A varies slowly with A. Thus, it follows from eq. (7.6)

that GA/N
h (�, p�) should universally depend on A, �, p� for di�erent projectiles. In particular the following universal

relationship is valid

GA1/N
h1

(�, p�)/GA1/N
h2

(�, p�) = GA2/N
h1

(�, p�)/GA2/N
h2

(�, p�). (7.7)

One should not be confused by the resemblance of the form (7.5) with the impulse approximation. It reflects merely
the inclusive nature of the reaction (7.4): not one but several target nucleons participate in the collision and are
knocked forward in each hA collision. To illustrate this point, we calculate GA/(N1+N2)

h – inclusive cross section for
production of two FB nucleons which is equal zero in the impulse approximation, provided only scattering from pair

42 Gb/c
a (x, p⇥) � x d�a+b�c+X/dx d2p⇥ is the inclusive cross section of the reaction a + b⇥ c + X.

Production of a fast backward 
nucleon in the pA scattering

dσh+A→N+X

dαd2pt

α

= κhAσhN
in ρN

A (α, pt)

where  factor             accounts for local screening effects κh

G
A/N

h
(α, pt) ≡
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FIG. 8.2: Comparison of the FB nucleon yields from 4He and D. The experimental points from [27, 38, 39] illustrate precocious
limiting fragmentation for p+4 He⇥ p+X reaction. Dot-dashed curve for 4He is the calculation in the two-nucleon correlation
approximation which uses as input n(k) from [118]. The shaded region is the calculation with inclusion of three-nucleon
correlations described in the text.

FIG. 8.3: The ratio of the di�erential cross sections per nucleon for the p+A⇥ p+X reaction (A1 = Ta, A2 = C) for di�erent
emission angles. The experimental data are from 400 GeV measurement for 70 � � � 160� [35, 36] and 9 GeV measurement
for � = 180� [33, 34].

demonstrate that universality is valid practically in all backward hemisphere at � ⇤ 1.2. For example the ratio

R(pN, Ta, C) =
1

ATa
GTa/P

p (pN)
�

1
Ac

GC/P
p (pN)

does not change more than by a factor ⌅ 2 (fig. 8.3) while the cross sections decrease by a factor 2 ⇥ 104! (see figs.
8.4(a), 8.4(b)). (The data [33–36] indicate some small increase of the ratio R(pN,Ta, C) and also R(pN,Ta,6 Li) in the
region � � 2.2 though in the region 1.2 < � < 2.2 the ratio is constant within experimental accuracy.)

At small nucleon momenta (pN ⌅ 0.4 GeV/c) GA/N
a rather weakly depends on the emission angle ⇥, though with

increase of pN the spectrum becomes strongly anisotropic (figs. 8.4(a), 8.4(b)).
To compare the data obtained using di�erent targets and projectile it is convenient to fit GA/N

a (pN) in the form

GA/N
a (pN) = Ca exp{�T/T0(⇥)} ⇧ Ca exp{�B(⇥)p2}

which reasonably describes the data (especially exp(�T/T0) fit) up to pN ⌅ 1 GeV/c (as usually T is kinetic energy
of the FB nucleon).
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(a) (b)

FIG. 8.4: Comparison of the FNC model with the 400 GeV data [35, 36].

FIG. 8.5: The dependence of the slope parameter B on the incident energy for di�erent targets [31, 40, 41].

Comparison of the data [31, 32, 40, 41] indicates that the slope parameter B(⇥) does not depend on A, on the
projectile (�, ⌅, p and even ⇤, ⇤̄) and its energy with accuracy < 10% (see, e.g. fig. 8.5). B(⇥) does not change also
if events with fixed number of FB nucleons (2, 3, 4) are selected [228, 229].

There are some indications of irregularities in the momentum shape of GA/N
h : a bump was observed in n, ⌅�+C�

p + X reactions at pN = 0.4 GeV/c (pn = 7 GeV/c, p�� = 4 GeV/c) and in p +D� p+ X reaction at pN = 0.35 GeV
[230] (EN = 1 GeV); in D(p) + Pb � p + X collisions a minimum was observed at 150⇥ (170⇥) [231] in the angular
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FIG. 7.9: Production of fast backward pions in the hA collision.

In conclusion, the energy dependence of GA/N
h is determined by two factors: (1) growing role of two, three-nucleon

contributions due to increase of available phase-space, (2) increase of ⇥e� with Eh from ⇥e� = 1 to ⇥e� ⌅ A1/3.
The possible role of the nuclear cascade and final state interaction will be considered below in sections 7 7.4 and

7 7.5.

7.3. Production of fast backward particles. Direct mechanism

A natural mechanism for production of FB particles, which are absent in the nuclear WF (⇤, K, �, . . .), in the
reaction

h + A⇧ b + X (h = N, ⇤; b = ⇤, K, �, p̄), (7.16)

is the scattering of the incident hadron h from a fast backward nucleon (see fig. 7.9). We shall refer to this mechanism,
which was suggested in many works [9–11, 25, 26, 69–71] as the direct mechanism.

Within the framework of the Gribov-Glauber model at su⇤ciently high energy the impulse approximation is valid
for inclusive production of particles in nucleus fragmentation region (see e.g. ref. [163, 164]). This can be understood
semiquantitatively using argumentation of previous subsection (eq. (7.5)). Namely, if the incident energy is high
enough, the probability of emission of the particle “b” in each of ⇥ collisions is independent of Eh due to the Feynman
scaling and equals GN/b

h (xb, p�). Therefore in the fixed nucleon approximation (which is reasonable only at 0 < xb < 1)
we obtain

GA/b
h (xb, p�) = (probability of inelastic hA interaction)⇤ (number of hN interactions)⇤ (probability

of emission of b in one elementary interaction) = ⇧hA
inel · ⇥ · GN/b

h (x, p�)/⇧hN
inel = AGN/b

h (xb, p�). (7.17)

Using a more consistent reggeon field theory technique, which fully accounts for unitarity [134] it is easy to prove
that the observed cancellation of Glauber screening correction follows just from AGK combinatorics and does not
depend on momenta of the interacting nucleons. As a result GA/b

h is equal to the convolution of the single nucleon
density ⌅p,n

A (�, k�) and GN/b
h (x, p) (see eq. (2.18) and section 2 2.5, where reaction h + D ⇧ b + X is considered)

[106–109]45:

GA/b
h (�, p�) =

⇤

N=p,n

⌅
⌅N
A(x, k�)GN/b

h

�
�/x, p� �

�

x
k�

⇥ dx

x
d2k�. (7.18)

As in the case of nucleon production, expressions for more complicated processes such as double inclusive reaction
h + A ⇧ b1 + b2 + X (b1,2 = ⇤, p, K; �bi > 1) have no resemblance with the impulse approximation. They are
described by eq. (7.9) after the substitution Ni ⇧ bi.

Energy dependence of GA/b
h : Just as in the case of the spectator mechanism su⇤ciently high energies are necessary

for the validity of eq. (7.18)

Eh/⇥ > E0(�). (7.19)

45 Equations similar to eq. (7.18) were applied by Blankenbecler and Schmidt [71] for description of the prolon yield at TN ⇥ (1� 2) GeV
while Amado, Woloshyn and Frankel [68, 91, 92] used an equation similar to eq. (7.21) to describe the data at TN = 0.6 � 0.8 GeV.
Both these groups assumed that impulse approximation is applicable at these low energies.
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FIG. 8.16: Comparison of the FNC model predictions with the FB pion yields at Ep = 9 GeV [33, 34] and Ep = 400 GeV
[35, 36].

T0(G
A/�
p (T�) ⇤ exp(�T�/T0)) increases rapidly with primary energy up to ⇤ 3 � 4 GeV, where a limiting value

⌅ 60 MeV appears to be reached (fig. 8.17a).
The ⇥�/⇥+ ratio is small at Tp ⇥ 1 GeV then rises sharply and reaches a limiting value ⇤ 1 again around 3-4

GeV (fig. 8.17b). Really, the approximate equality of ⇥�, ⇥+ yields at high energies is a consequence of the general
properties of strong interaction-dominance of vacuum exchange and approximate equality of the number of protons
and neutrons in nuclei.66

Theoretical discussion. We shall demonstrate below that the FNC model enables to describe the basic features of
the FB pion production without introducing any new parameters into the model.

8.5.2. High energies

The observed universality of the momentum shape of the pion spectra follows from universality of the shapes of
(section 2 2.4) manifested in the universality of the FB nucleon spectra (section 8 8.1). The A-dependence of GA/�

h
is determined by the A dependence of ⇤N

A because production of FB pions in the interactions of secondary hadrons
is strongly suppressed, ��

A ⇤ 1 (see the discussion in section 7 7.4). Thus, for light A the A-dependences of GA/�
p ,

GA/p
p should be approximately the same (cf. eqs. (7.18) and (7.25)). This is in good agreement with data [33–36]. In

particular in [33, 34] a cluster structure of 6Li was observed not only for FB nucleons (section 8 8.1) but also for FB
pions. The di�erence of A dependences of p, ⇥ yields for A > 12 is reasonably explained by the cascade enhancement
factor �p

A for nucleon production (eq. (7.25)).

[e.g. at x = 0.2 cross section varies by a factor 103 in the studied energy range). This is in line with the observation [106–109] that
x-scaling is strongly violated for the case of nucleon production.

66 Thus, we shall ignore preliminary indications [35, 36] from 400 GeV, p + Ta ⇥ ⇥± + X reaction at �lab = 160⇤ that ⇥+/⇥� ratio

increases from about 1 at p� � 0.5 GeV/c to about 4 at p� � 0.9 GeV. Actually, calculations of the absolute value of GA/�
p have led

us to conclusion that it is ⇥+ data that should be lowered.

Comparison of the FNC model predictions with the fast 
backward  pion yields at E= 9 GeV  and E= 400 GeV 
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Now we focus on the LC dynamics for two body case  - 
more technical discussion
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Decomposition over hadronic states could be useless if too 
many states are involved in the Fock representation

|D〉 = |NN〉 + |NNπ〉 + |∆∆〉 + |NNππ〉 + ...

Problem - we cannot use a guiding principle experience of the 
models of NN interactions based on the meson theory of nuclear 
forces - such models have a Landau pole close to mass shell and hence 
generate a lot of multi meson configurations. (On phenomenological 
level - problem with lack of enhancement of antiquarks in nuclei)

Instead, we can use the information on NN interactions at energies 
below few GeV and the chiral dynamics combined with the following 
general quantum mechanical principle - relative magnitude of different 
components in the wave function should be similar to that in the NN 
scattering at the energy corresponding to off-shellness of the component.  
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The analyses using QCD dispersion sum rules [49–51] have demonstrated that the properties of light hadrons
(nucleon, π-, ρ-mesons, . . .) are basically determined by the quark condensates. For example, if there were no quark
condensate, a nucleon would have a mass of the order of 10 MeV due to terms mqq̄q in the QCD Lagrangian. (mq is
the current mass of the light quarks, mu ≈ 4 MeV, md ≈ 7 MeV, ms ≈ 150 MeV.) The numerical value of the chiral
condensate in the normalization point ∼ 0.5 GeV is [52, 53]

〈0|ūu|0〉 = 〈0|d̄d|0〉 ≈ −(240 MeV)3. (2.14)

This number can be roughly interpreted as the presence in the vacuum of one quark and antiquark of each flavour
per fm3.

2.2.3. Is the spontaneously broken chiral symmetry responsible for most of nuclear physics?

Due to the small values of the bare masses of the u, d, and s quarks as compared to the typical scale of the
strong interactions, mρ ≈ 770 MeV, the QCD Lagrangian is approximately symmetric under the group of chiral
transformations: q → exp(iγ5ωaλa)q, where ωa is a constant vector and λa are the Gell-Mann matrices for SU(3).
If the chiral symmetry were unbroken in the limit mq = 0 (as is the case in perturbative QCD) an approximate
degeneracy of the hadron states with different space parity would be observed. In particular, the vector meson 1−
(nucleon 1/2+) would have the same mass as the axial meson 1+ (nucleon resonance 1/2−). The observed splittings
mA1 − mρ ≈ 0.4 GeV and mN(1535) − mN ≈ 0.6 GeV are too large to be induced by nonzero bare masses of quarks.
This discussion shows that the almost precise chiral symmetry of the QCD Lagrangian is spontaneously broken due
to nonperturbative effects, e.g. due to the formation of a quark-antiquark condensate 〈0|ūu + d̄d + s̄s|0〉. But if
a continuous symmetry is spontaneously broken, the Goldstone theorem predicts the existence of massless bosons
(in the limit mq = 0). The real masses of these bosons are nonzero since the mass term in the QCD Hamiltonian
HI = muūu + mdd̄d + mss̄s violates the chiral invariance. The “pseudo-goldstone” bosons can be identified with the
nonet of pseudoscalar mesons π, K, η, η′. The large mass of η′ is due to the ghost pole specific for QCD (see refs.
[54, 55]).

As a consequence of the small masses of pseudogoldstones, the physics of the strong interactions at space-time
intervals

√
(∆x)2 ' 1/mρ (2.15)

should be determined by their interactions. The effective chiral Lagrangian (including terms with four derivatives of
the field U) has been calculated in refs. [56–58]:

L =
∫

d4x
1
4
F 2

πTr(∂µU(x)∂µU+(x) + LWZ + Lm + · · · . (2.16)

Fπ = 94 MeV is the π → µν decay constant. U(x) = exp iπa(x)λa/Fπ, and πa(x) is the nonet of chiral fields
(a = 1, . . . , 9). LWZ is the Wess-Zumino term arising due to the Adler-Bardeen axial anomaly. The term Lm is
proportional to the quark masses. We shall not write these terms explicitly. The dots denote terms containing higher
derivatives of U . The chiral QCD Lagrangian enables us to calculate (in good agreement with experiment) low-energy
π-meson and K-meson interactions and even the properties of the η(560) and η′(960) mesons. (See, e.g., ref. [59].)
The broken chiral symmetry (PCAC) has been successfully applied to the πN interaction (see ref. [60] and references
therein).

Since the pion is a Goldstone boson, its interaction with hadrons is proportional to the pion momentum kπ for
small kπ (in the limit of zero quark masses). As a result, the dominant contribution to nonresonant pion production
comes from pion emission off the external nucleon lines. The emission from the interaction blob is suppressed by an
extra factor ∼ kπ/mρ [61]. Therefore, direct (nonresonant) pion production in the process NN → NNπ is small in a
wide kinematical region:

σ(NN → NNπ)
σ(NN → NN)

( k2
π

16π2F 2
π

. (2.17)

The right-hand side of eq. (2.17) is actually the standard parameter of chiral perturbation theory. Equation (2.17)
explains the well-known experimental observation that up to Tp ( (2 − 5) GeV the inelastic nucleon cross section is
determined by two-body processes of baryon resonance production (predominantly ∆-isobar for Tp ≤ 1.5 GeV). Thus
the typical mass scale that determines the admixture of nonnucleon components in the wave function of the nucleus
is not mπ but m∆ − mN ≈ 0.3 GeV and for the deuteron (due to its isoscalarity) ! 2(m∆ − mN) ≈ mN∗ − mN ∼
(0.5 − 0.6) GeV. Thus, broken chiral symmetry seems relevant for the dominance of the nucleon degrees of freedom
in the wave function of the nucleus.
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Important simplification of the final states in NN interactions: direct 
pion production is suppressed for a wide range of energies due to 
chiral properties of the NN interactions:

⇒ Main inelasticity for NN scattering for Tp ≤ 1 GeV is Δ-isobar 

production which is forbidden in the deuteron channel.  

|Δ Δ> threshold is kN =

√

m2
∆
− m2

N
≈ 800 MeV !!!

Small parameter for inelastic effects in the deuteron WF, 
while relativistic effects are already significant as v/c ~1

kN ≈ 550 MeVFor the nuclei where single Δ can be produced 
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Warning:  Correspondence argument (WF <--> continuum ) is not  applicable
for the cases when the probe interacts with rare configurations 
(EMC effect?)  in the bound nucleons due to the presence of an additional scale



Light-cone Quantum mechanics of two nucleon system

Due to the presence of a small parameter (inelasticity of NN interactions) 
it makes sense to consider two nucleon approximation for the LC wave 
function of the deuteron.  

Key point is presence of the unique matching between nonrelativistic and 
LC wave functions in this approximation. Proof is rather involved.

First step: include interactions which do not have two nucleon 
intermediate states into kernel  V (like in nonrel. QM) to build a 
Lippman-Schwinger type (Weinberg type) equation.

=

T TV V

+

i i if f fn
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The LC “energy denominator” is 1/(pn+
− pf+

)

Using explicit expression for the propagator in terms of the 
LC variables and using corresponding expressions for the 

two-body phase volume on LC we obtain:

T (αi,kit,α f ,k f t) =V (αi,kit,α f ,k f t)+
Z
V (αi,kit,α0,k0t)

dα0

4α0(1�α0)
d2k0t
(2π)3

⇥ T (α0,k0t,α f ,k f t)
[(m2+ k0t2)/α0(1�α0)� (m2+ k2f t)/α f (1�α f )]/2
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Second step: Impose condition that master equation should 
lead to the Lorentz invariance of the on-energy-shell 
amplitude of NN scattering

Introduce  three- vector !k = (k3, kt) with 

Invariant mass of two 
nucleon system is
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deuteron can be reasonably described as a system of two nucleons. In the approximation where the high-momentum
component of the wave function of the nucleus is due to a succession of hard two-nucleon collisions practically the
same argument indicates the dominance of the nucleon degrees of freedom in the wave function of the nucleus in a
wide kinematical region.

In the light-cone quantum mechanics of the NN system the Weinberg equation for the off-light-cone-energy-shell
amplitude, T , of the NN system plays the same role as the Schrödinger equation in the nonrelativistic theory. To
simplify the discussion we restrict ourselves to the case of spinless nucleons:

T (αi, kit,αf, kft) = V (αi, kit,αf, kft) +
∫

V (αi, kit,α
′, k′

t)
dα′

4α′(1 − α′)
d2k′

t

(2π)3

× T (α′, k′
t,αf, kft)

[(m2 + k′
t
2)/α′(1 − α′) − (m2 + k2

ft)/αf(1 − αf)]/2
. (A1)

Here (αj , kjt) is the light-cone momentum of a nucleon in the initial, intermediate and final state. As usual the kernel
V does not contain diagrams which have two-nucleon intermediate states. It is convenient to introduce new variables
kj3 [495]:

αj =
1
2

(
1 + kj3

/√
k2

j + m2
)

. (A2)

kj = (kj3, kjt) is the nucleon momentum in the c.m. system of the two-nucleon system. In these variables eq. (A1)
obtains the form:

T (ki, kf, ki3, kf3) = V (ki, kf, ki3, kf3)

+
∫

V (ki, k
′, ki3, k

′
3)

d3k′
√

k′2 + m2

1
4(2π)3

T (k′, kf, k′
3, kf3)

k′2 − k2
f

. (A3)

On the energy shell T (k, k3, kf, kf3) = T (k2, k2
f , kkf), V (k, k3, kf, kf3) = V (k2, k2

f , kkf). The necessity to reproduce the
rotational invariance of the on-shell T puts a severe restriction on the form of V off energy shell: V = V (k2, k2

f , kkf).
The simplest method to prove this statement is to calculate T on energy shell in terms of perturbation theory in the
potential V . For example, in second order in the potential V we obtain:

T (k, kf) − V (k, kf)

=
∫

V (k, k3, k
′, k′

3)V (k′, k′
3, kf, k3f)

d3k′

4
√

k′2 + m2

1
(2π)3

1
k′2 − k2

f

. (A4)

For arbitrary potential V the right-hand side of eq. (A4), contrary to the left-hand side, depends on the direction of
the 3-axis. Evidently, the only form compatible with eq. (A4) is

V (k, k3, kf, kf3) = V (k2, k2
f , kkf). (A5)

This argument can easily be improved by considering an arbitrary order of perturbation theory in the potential V .
Equation (A5) recovers the rotational invariance for the light-cone quantum mechanics of the two-nucleon system.
(The same form of the angular momentum constraint has been suggested in ref. [495] in the context of quark models of
a hadron.) As a consequence of eq. (A5) the Weinberg equation (A3) obtains a form quite similar to the nonrelativistic
Schrödinger equation:

T (k, kf) = V (k, kf) +
∫

V (k, k′)
d3k′

4
√

k′2 + m2

1
k′2 − k2

f

1
(2π)3

T (k′, kf).

In the light-cone dynamics of the deuteron this equation has been discussed in refs. [494, 496]. The suggested method
of deducing angular momentum conservation can be easily generalized to account for spin and isospin of nucleons,
and unequal masses of nucleons. The above discussed derivation of angular condition shows that, in order to establish
the form of the angular condition in a more general case which includes nonnucleon degrees of freedom, one should
investigate the many-channel Weinberg equation and use the Lorentz invariance of all on-energy-shell amplitudes.

For a many-nucleon system the form of the angular constraint, in spite of a number of interesting attempts, has
not been clarified. For a discussion of the many-body Weinberg equation and its relationship with the nonrelativistic
theory of nuclei, and for references, see ref. [494].
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We also derived LC Eqs for N-nucleon bound state (1991)

↵ =

p
m2 + k2 + k3p

m2 + k2

M2
NN = 4

m2 + k2t
↵(2� ↵)

= 4m2 + 4k2



On-mass-shell
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For arbitrary potential V the right-hand side of eq. (A4), contrary to the left-hand side, depends on the direction of
the 3-axis. Evidently, the only form compatible with eq. (A4) is

V (k, k3, kf, kf3) = V (k2, k2
f , kkf). (A5)

This argument can easily be improved by considering an arbitrary order of perturbation theory in the potential V .
Equation (A5) recovers the rotational invariance for the light-cone quantum mechanics of the two-nucleon system.
(The same form of the angular momentum constraint has been suggested in ref. [495] in the context of quark models of
a hadron.) As a consequence of eq. (A5) the Weinberg equation (A3) obtains a form quite similar to the nonrelativistic
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In the light-cone dynamics of the deuteron this equation has been discussed in refs. [494, 496]. The suggested method
of deducing angular momentum conservation can be easily generalized to account for spin and isospin of nucleons,
and unequal masses of nucleons. The above discussed derivation of angular condition shows that, in order to establish
the form of the angular condition in a more general case which includes nonnucleon degrees of freedom, one should
investigate the many-channel Weinberg equation and use the Lorentz invariance of all on-energy-shell amplitudes.

For a many-nucleon system the form of the angular constraint, in spite of a number of interesting attempts, has
not been clarified. For a discussion of the many-body Weinberg equation and its relationship with the nonrelativistic
theory of nuclei, and for references, see ref. [494].
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In the light-cone dynamics of the deuteron this equation has been discussed in refs. [494, 496]. The suggested method
of deducing angular momentum conservation can be easily generalized to account for spin and isospin of nucleons,
and unequal masses of nucleons. The above discussed derivation of angular condition shows that, in order to establish
the form of the angular condition in a more general case which includes nonnucleon degrees of freedom, one should
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For a many-nucleon system the form of the angular constraint, in spite of a number of interesting attempts, has
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For rotational invariance of T it is sufficient that the same 
relation is satisfied for V off-mass-shell. The proof that this 
condition is also necessary  is much more complicated (FS + 
Mankievich 91) . At the same time  it is obvious  that it would 
be very difficult to satisfy the highly nonlinear equation for the 
on-shell amplitude if this condition were violated. 

The proof uses methods of complex angular momentum plane 
and assumption that the amplitude is decreases sufficiently 
fast with momentum transfer (actually rather slow decrease 
was sufficient).
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Very similar structure for the equation for the scattering 
amplitude in NR QM and for LC. If a NR potential leads to a 
good description of phase shifts the same is true for its LC 
analog. Hence simple approximate relation for LC and NR two 
nucleon wave function 
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Similarly for the spin 1 case we have two invariant vertices as in NR theory:

 hence there is a simple connection to the S- and D- wave NR WF of D

16

for a fixed number of particles within Foldy’s approach. In contrast to [101] we consider eq. (2.20) as an approximate
equation, valid for the deuteron WF due to the small value of inelasticities only, and, observe, that the form of eq.
(2.22) for the deuteron WF is unambiguously determined by the physical approximations discussed above. Eq. (2.20)
coincides with the light cone form of the quasipotential equation [142]. However in this approach the angular condition
restrictions have not been imposed. Thus, in ref. [142] eq. (2.22) has not been obtained.

2.3.2. Properties of the light cone WF of the deuteron

1. Due to the rotational invariance in the transverse plane ⌅D(�, k⇥) = ⌅D(�, k2
⇥).

2. In the two-nucleon approximation for the deuteron WF due to antisymmetry ⌅D(�, k⇥) = �⌅D(2� �, k⇥).

3. Within the two-nucleon approximation due to the angular condition ⌅D(�, k⇥) = ⌅D(k2), see the discussion
above.

4. Account of the deuteron and nucleon spins. The form of the IMF deuteron WF follows from the space parity
conservation and from the condition that the two nucleon system has the total angular momentum equal to 1:

⌅D
µ ⇧D

µ = Ū(p1){⇥µ�1(M2
NN) + (p1 � p2)µ�2(M2

NN)}U(�p2)⇧D
µ . (2.23)

Here p1 and p2 are the momenta of the proton and of the neutron. M2
NN = 4(m2 + k2

⇥)/{�(2 � �)} is the invariant
mass of two nucleon system. ⇧D

µ is the deuteron polarization vector. Evidently, eq. (2.23) is a direct generalization of
the ⇥� WF considered in section 2 2.1.

In the case of the longitudinal deuteron polarization, due to the increase of the components of the vector ⇧D
µ with

the deuteron momentum, energy non-conservation in the vertex D⇥ NN requires special treatment. As a result it is
necessary to account for the terms of the order 1/P in the spin structure of the vertex D ⇥ NN (really the vacuum
pairs in the deuteron WF). If the contact terms in the high energy scattering amplitude are absent the contribution of
the longitudional deuteron polarization can be calculated from the physical requirement that the deuteron is mostly
formed long before the moment of the interaction. Consequently, the conservation of the angular momentum leads
to a constraint on the light cone WF of deuteron that the two nucleon system has angular momentum equal to 1.
Therefore

⇧D
L = {(p1 + p2)z, (p1 + p2)0}/MNN. (2.24)

Eq. (2.24) enables to separate e⇥ects of the nucleon inner motion in the deuteron. In the deuteron rest frame the
constraint due to angular momentum conservation is simplified and the vector ⇧D

L coincides with ez. Eq. (2.24)
naturally arises in the dispersion approach since in this case the “mass” of the deuteron is equal to the mass of the
two nucleon system.

In the case of ⇥� eqs. (2.23, 2.24) are not valid for the longitudinal polarization of ⇥� as the point-like nature of ⇥
allows small longitudinal distances. The method to reconstruct this amplitude was suggested by Gribov [125].

For applications it is convenient to express ⌅D through the two-component spinors ⌃ in two-nucleon rest frame,
and the S- and D-wave functions of deuteron, U(k2), W (k2), which are solutions of eq. (2.22)

⌅D = ⌃�
⌥

⇤µU(k2)� W (k2)⌃
2

�
⇤µ �

3kµ(⇤k)
k2

⇥�
⌃. (2.25)

Here M2
NN = 4(m2 + k2), 1

3

 
|⌅D|2 = U2 + W 2 the sum goes over nucleon, deuteron spin states. It is convenient to

normalize these WF as
↵

1
3

⌦
|⌅2

D|d3k =
↵

[U2(k) + W 2(k)]d3k = 1. (2.26)

Comparing eqs. (2.23) and (2.25) and using the standard formulae

U(k) =
⌃

⇧ + m

⇤
1

⇤k/(⇧ + m)

⌅
⌃, U(�k) =

⌃
⇧ + m

⇤
⇤k/(⇧ + m)

1

⌅
⌃

which express Dirac-spinors through two-component spinors ⌃, we obtain:

�1(M2) =
1⌃
⇧

⇧
U(k)� W (k)⌃

2

⌃
(2.27)
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For two body system in two nucleon approximation 
the biggest difference between NR and virtual nucleon 
approximation and LC is in the relation of the wave 
function and the scattering amplitude

Let us illustrate this  for the high energy deuteron break up
 h + D→X + N  in the impulse approximation with nucleon been in 

the deuteron fragmentation region - spectator contribution.

For any particle, b,   in the final state in the target fragmentation region the 
light cone fractions are conserved under longitudinal boosts
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2.5. Relativistic e�ects in the hadron scattering from deuteron

A theoretical description of high-energy hadron-deuteron interactions is considerably more complicated than that
for lepton-deuteron scattering processes. Realistic models of these reactions however can be constructed by applying
traditional physical approximations like the impulse approximation or Glauber theory generalized by Gribov [162] to
the high energy processes with multiparticle production (see also [163, 164] There exist two important reasons for the
validity of these approximations for high-energy hadronic processes: (a) In the high-energy process the fast deuteron
prescattering state is formed long before the target at distances of order

⇤ 1
EN2 + EN2 � ED

⇤ 2P

4(m2 + k2
⇤)/�(2� �)�M2

D

. (2.50)

Moreover, due to Lorentz dilatation the characteristic time between di⇥erent fluctuations within the fast deuteron
becomes larger at high energy than the characteristic time for the interaction with the target ⇤ 1/m. Therefore the
deuteron in some sense can be considered as a collection of free nucleons. In typical high energy hadronic reactions the
energy transfer is not su⇧cient to resolve quarks and gluons. Thus, soft hadronic processes could not be considered
as incoherent in terms of pointlike quarks and gluons. That is why they are usually described in terms of hadron
exchanges. (b) Experimentally average Feynman x, p⇤ for nucleon in inelastic h + N ⌅ N + X reaction are about
0.5 and 0.4 GeV/c respectively. Thus in inelastic hD reaction large momentum ⇤ 1 GeV/c is transfered to the target
nucleon in the deuteron rest frame.

Let us now consider inclusive high-energy reactions

hadron + D⌅ b + X,

where the produced hadron b is kinematically forbidden for the scattering from a free nucleon. Let particle ”b” be in
the deuteron fragmentation region. At infinite energies this kinematic region corresponds to the condition that the
light cone fraction of the deuteron momentum carried by particle ”b” �b/2 = (Eb + pbZ)/(ED + pDZ) is within the
limits 2 > �b > 1. The condition �b = 1 is the kinematic boundary for the elementary processes h + N⌅ b + X. In
the deuteron rest frame and Eh ⌅⇧ this condition has the form:16
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b � pbZ
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where the Z axis is chosen along the projectile direction. For light particles b like N, ⇥, k this region covers backward
angles only. For mb > mN it covers also forward angles. In this review we restrict ourselves to the discussion of fast
backward (FB) particles production, since only this kinematic region has been investigated experimentally. These
particles are referred to in the literature as cumulative particles [13, 14], backward particles [22, 23], backward emitted
particles [46] etc.

Since these reactions are typical fragmentation processes their inclusive cross section should be independent of
initial energy at Eh ⌅⇧:

Eb
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d3pb

⇥ GD/b
h (ED, pb) = GD/b

h (�b, pb�). (2.52)

This property is known as Feynman scaling [128] and it is observed for all high energy hadron reactions if �b is not
small (see e.g. [127]). The experience in quantum field theory (cf. section 2 2.1) hints that GD/b

h cointains information
on the deuteron WF.

2.5.1. Direct mechanism of fast backward (FB) particles production

Let us first consider the case of FB particles “b” absent in the deuteron WF (⇥, k, �). A natural mechanism for
this reaction is the production of particle “b” in the scattering of an initial hadron h from a nucleon with � > 1 (a
backward nucleon in the deuteron rest frame) [25, 59, 61–63, 76–78]. In impulse approximation the direct mechanism

16 Evidently at intermediate energies kinematic restrictions are more stringent and part of the region �b < 1 is forbidden for the scattering
from free nucleon.

Hence in the rest frame 
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FIG. 2.13: The spectator mechanism of the nucleon production.

done by applying the general equation (2.19) for the impulse approximation and eq. (2.49) for ⇤N
D(�, k⌅). The final

formula has the form

Eb
d3⌅D+h⇤b+···

d3pb

=
�

[U2(k) + W 2(k)]d3kEb
d3⌅h+N⇤b+···

d3pb

(⇥̃, pb). (2.53)

Here ⇥̃ is given by eq. (2.19a) and the relationship between � and k is given by eq. (2.21).

2.5.2. Spectator mechanism of fast backward nucleon production

The so called spectator mechanism dominates FB nucleon (see fig. 2.13a). One of nucleons of the deuteron scatters
from hadron h, loses its energy and therefore releases its neighbour-spectator. In the impulse approximation the cross
section of this process is determined by the imaginary part of the zero-angle amplitude (see fig. 2.13b)

d⌅D+h⇤N+···

(d�/�)d2k⌅
=

1
⇥

Imf [⇥̃]
⇧2

D(�, k⌅)
(2� �)2

. (2.54)

Here ⇧D(�, k⌅) is the light cone deuteron WF. All notations correspond to eq. (2.19). In section 2 2.4 it has been
found that ⇧2

D is directly expressed through the S, D deuteron WF: ⇧2
D(k) = [U2(k) + W 2(k)]

⇤
m2 + k2 (cf. eq.

(2.49)). The factor (2 � �)�2 in the eq. (2.54) is due to the initial and final state phase volume of the interacting
nucleon. ⇥̃ is given by eq. (2.19a). Because of the optical theorem Imf(⇥) = ⇥⌅tot(⇥). We neglect here elastic and
di�ractive processes because energy transferred to the interacting nucleon is not large in this case and therefore final
state interaction will suppress yield of spectators (cf. section 7 7.4). Finally we obtain [61–63]:

d⌅D+h⇤N+···

(d�/�)d2p⌅
= ⌅hN

inel.[⇥̃] · [U2(k) + W 2(k)]
(2� �)

⇥
k2 + m2. (2.55)

The relationship between � and k is given by eq. (2.21).

2.5.3. Glauber screening of spectator mechanism

Eq. (2.55) overestimates the spectator yield since the projectile h can transfer positive longitudinal momentum to
the FB nucleon provided both nucleons are at close impact parameters, see fig. 2.14.

This is the Glauber correction familiar from the analysis of total and elastic cross sections. Recall that AGK
cancellation is not complete in this case since the spectator itself participates in the reggeon-deuteron interaction.
To explain basic features of this phenomenon we assume that similar to quantum mechanics Glauber screening
corresponds to the eikonal diagram 2.15. Within the eikonal approach this procedure overestimates the Glauber
screening as rescattering diagrams of next order fig. 2.16 will somewhat reduce the contribution of diagram fig. 2.15.

LC imp.approx.

NR imp.approx.

NR/Virtual nucleon:  observed momentum is the same as in the WF,  
asymptotic at α→2,kt=0, is determined by WF at finite momentum 0.75 
m, and has the same (2-α) dependence on α.

LC nucleon:  nonlinear relation between internal momentum k and 
observed momentum p (see next slide).   Asymptotic behavior at  α→2 
is determined by WF at k→∞.  Similar to particle physics.

d�D+h!N+···

(d↵/↵)d2p?
= �hN

inel.[(2� ↵)sNN ] · (2� ↵)[U2(p) +W 2(p)]
p
p2 +m2

d�D+h!N+···
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inel.[(2� ↵)sNN ] · [U
2(k) +W 2(k)]

(2� ↵)

p
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FIG. 3.17:

�/2 = (
�

m2 + p2�p3)/mD. The result of the calculation overestimates experimental data by (30-50 %26. It is worth

noting that in the studied range of spectator momenta the dominant contribution is given by D-wave. To check this

important feature of the realistic WFs experiments with polarized deuteron beams are necessary (see [7] and section

3 3.3).

3.5.3. Comparison with other approaches

First we compare predictions of eq. (3.37) with the quantum mechanical approach and the Bethe-Salpeter approach

[65], which is similar to approaches [114, 170, 171] for the deuteron structure functions and the deuteron form factor,

which were discussed in the previous subsections. These approaches lead to eqs. (3.44) and (3.45)respectively27

G
D/N
h (p) = ⇤hN

tot⌅
2
D(p)(1 + p3/M)(2� �). (3.44)

G
D/N
h (p) = ⇤hN

tot⌅
2
D(p)(2� �)⇥(2� �). (3.45)

Here p is the spectator momentum in the deuteron rest frame. 1 + p3/M , (2 � �) is the Möller flux factor, which

reflects the Doppler shift for the frequency of the interacting nucleon. � is given by eq. (3.43) and ⌅2(p) = (U2(p) +

W 2(p))/(
�

m2 + p2). ⇥(2� �) accounts for the phase space restrictions due to energy conservation.

Eq. (3.37) and eqs. (3.44), (3.45) correspond to a qualitatively di�erent space-time picture of the strong interaction.

Thus it seems instructive to compare predictions of these models for the nucleon yield. To be definite we use the

deuteron rest frame.

(1) In the Bethe-Peierls approximation when p/m ⇥ 1 (p2 � m⇧D) all formulae coincide. Really this case cor-

responds to the pointlike vertex D ⇤ NN, where expression (3.37) follows from the exact calculation of the

Feynman diagrams [1–3, 61–63].

26 We consider this as one of the evidencies that the absolute normalization of the data [27] should be increased by a factor 1.5-2 (cf.

footnote on p. 84. Note also that it is necessary to check the accuracy of scaling in variable � at � 1.5 at higher energies.

27 To simplify the comparison we consider here the predictions of the models in the impulse approximation.
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FIG. 3.15: The fast backward proton production in the pD scattering at p� = 0 [27, 39]. The solid curve is the result of
calculation in the relativistic Glauber approximation. Dashed curve is the QCD prediction of section 4 normalized at pN =
0.5 GeV/c. The broken (dashed) curves is the prediction of the Schmidt-Blankenbecler model [71] assuming �(pcm/pcm max)
scaling normalized at pN = 0.3 GeV/c.

FIG. 3.16: Test of the � scaling hypothesis in p+p⇥ ⇥+ +X reaction at pN = 8.9 GeV/c [27] (p� = 0). The solid and dashed
curves are the predictions based on the high energy data [182, 183] assuming � scaling and radial scaling (x = Ecm/Ecm max �
pcm/pcm/pcm max) For authors: is this relation OK? correspondingly.

The same pattern of scaling onset is observed for the process p+p� � +X (fig. 3.16). We want to emphasize that
condition (3.42) is not fulfilled if standard variables such as x = p�L/p�max or E�/E�

max are used (see e.g., [25, 37, 71]) to
compare asymptotic formulae with experiment. In particular these variables vary up to x = 1 at any incident energy.
As a result an artificial violation of the Yang scaling is introduced, see e.g. fig. 3.16 and the dotted curve in fig. 3.15.
This is especially clear for the region of small spectator momenta pN, where the validity of the impulse approximation
can be strictly proved. For example the use of variable x = p�/p�max leads to a change of the cross-section of the
p + D � p + X reaction by a factor of 300 at x = 1

2 , p⇥ = 0 in the range Einc
N = 2-100 GeV (at large energy x = 1

2 ,
p⇥ = 0 corresponds to pN = 0).

In fig. 3.15 a calculation of p + D � p + X [61–63, 106–109] using eq. (3.37) is compared with experimental data
[27, 38, 39]. We use the Hamada-Johnston WF of the deuteron-solution of Weinberg eq. (2.22) and scaling variable

↵ = (
p

p2 +m2 � p3)/(mD/2)

↵ = 1� k3p
k2 +m2
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FIG. 7.4: The meson exchange current diagram for the reaction γ∗ + D → N + N.

description of w(r) for r > 2 fm (k ! 0.15 GeV/c) and the prediction of conventional models for the total probability
of the D-wave, PD = (6 ± 1)%, is consistent with the analysis of µd; cf. the discussion in ref. [420]. The recent
measurements [413, 414, 421] of elastic eD → e!D scattering for q ∼ 2 fm−1 probe w(k) for k ∼ 0.2 GeV/c, while
elastic high-energy pD scattering is sensitive to GQ(Q2) at Q2 ∼ 0.3 GeV2/c (see, e.g., ref. [422]).

It has been suggested in the literature that the nuclear core hypothesis may be checked by measuring Gc(Q2)
and GQ at −q2 > 0.5 GeV2 inelastic e!D scattering or by measuring the tensor polarization of the recoil deuteron
(see, e.g., ref. [423], where the experimental problems involved in such measurements are also discussed). Incoherent
phenomena, discussed below, have a number of obvious advantages for performing a critical test of the nuclear core
hypothesis (this was first explained in ref. [424]):

(i) In incoherent processes at high energy one can measure the deuteron wave function directly in momentum space
instead of a convolution of wave functions as in the case of elastic deuteron form factors.

(ii) The nucleon yields in incoherent fragmentation of a two-nucleon correlation and of a 6q bag are qualitatively
different (see the discussion in sections 2 and 8 8.6), while in elastic scattering processes the separation of 6q and
2N contributions is hardly possible.

(iii) The absolute values of the cross sections are much larger than for elastic eD scattering.
(iv) In the kinematical region where the contribution of the high-momentum component of the deuteron wave

function dominates (k > 0.2 GeV/c) the cross section of these reactions should strongly depend on the deuteron
polarization.

7.2. High-Q2 e + "D → e + p + n, e + N + X, e + X reactions

Evidently, detailed information about the structure of the deuteron wave function can be obtained only if the
distribution of spectator nucleons is measured. The high-Q2 exclusive reactions e + D → e + p + n(∆,N∗) seem to
be the simplest for a theoretical analysis, since a large energy-momentum (q) is transferred to the struck nucleon in
a controlled way. At sufficiently high Q2 and W − md " 100 MeV the interference diagram (fig. 8.12 below) is small
(a few percent) in the essential kinematic region. The difference between the final state momenta of the nucleons is
large, so the correction due to misidentification of a spectator and the “active” nucleon is also small even for forward
moving spectators. Besides, the final state interaction estimated within the nonrelativistic approach (sec, e.g., ref.
[425, 426]) is expected to be rather small, ! (10 − 30)%, in the kinematic region discussed. In fact it is even smaller
because at Q2 " 2 GeV2 nucleons are produced in compressed configurations, which have a small interaction cross
section (section 6 6.3). Moreover, in the ratio of the cross sections for γ∗ scattering from polarized and unpolarized
deuterons uncertainties due to the off-energy-shell effects in γ∗N interaction, discussed in section 8 8.3, are cancelled
to a large extent. Note also that in order to suppress two-step processes like e + D → e + ∆ + N → e + p + n one
should choose W far enough from W = m∆ + mN.

Since the total cross section of unpolarized electron scattering off a polarized nucleon does not depend on the
nucleon polarization, the ratio of the cross sections of scattering off a polarized and an unpolarized deuteron has a
rather simple form if the polarization of the produced nucleon is not measured [427]:

dσ(e + DΩ → e + N + X)
(dα/α) d2pt

/
dσ(e + D → e + N + X)

(dα/α) d2pt

= 1 +
(

3kikj

k2
Ωij − 1

) 1
2w2(k) +

√
2u(k)w(k)

u2(k) + w2(k)
≡ P (Ω, k), (7.1)

where Ω is the spin density matrix of the deuteron, SpΩ = 1 [the expression for the case of unpolarized deuterons is
given in ref. [410]. eq. (3.17)].93 The relationship between the spectator nucleon momentum, p, in the deuteron lab.

93 In line with the convention of ref. [428] w(k) is defined so that w(k) > 0 at small k.
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FIG. 7.5: (σ± − σ0)/〈σ〉 for backward nucleon production, (a) in high-energy e"D and p"D scattering for the Reid soft core
wave function, (b) in high-energy e"D scattering for the Pans potential wave function and for the QCB model with bag radius
b = 1.2 fm and 1.4 fm.

frame and the inner momentum, k, is given by eq. (5.31); the 3-axis is chosen in the direction of the γ∗ momentum.94
It follows from eq. (7.1) that by studying the dependence of the nucleon yield on the deuteron tensor polarization

one can directly measure the ratio w(k)/u(k). An independent check of the nuclear core hypothesis can be obtained
from the measurement of the dependence of the nucleon polarization on the deuteron vector polarization, see ref.
[427], pp. 578, 579. (For the parametrization of Ω in terms of tensor and vector polarizations, see, e.g., ref. [429].)

It is convenient to represent the magnitude of spin effects in the form of the tensor asymmetry

R = T20 =
[
1
2
(σ+ − σ−) − σ0

]/
〈σ〉, (7.2)

where 〈σ〉 = 1
3 (σ++σ−+σ0). The indices (+,−, 0) denote deuteron helicities. In the deuteron rest frame the deuteron

spin is quantized in the direction of the γ∗ momentum. Note that in the unpolarized electron case σ+ = σ− due to
space parity conservation. Evidently in the physical region R can vary from −3 to 1.5. Using eq. (7.1) we obtain for
R a rather simple expression:

R(ps) =
3(k2

t /2 − k2
z)

k2

u(k)w(k)
√

2 + 1
2w2(k)

u2(k) + w2(k)
. (7.3)

In nonrelativistic quantum mechanics (ps/m % 1) ps and ks coincide. In this case R has the form

Rnonrel(ps) =
3(p2

t/2 − p2
z)

p2

u(p)w(p)
√

2 + 1
2w2(p)

u2(p) + w2(p)
. (7.4)

Eq. (7.3) with a conventional nuclear core wave function like the Reid soft core predicts a large variation of R(ps)

94 The difference between k and p is due to the fact that in eq. (7.1) the space-time picture characteristic for high-energy processes in
relativistic theory [409, 410] is taken into account.

Consider
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It follows from eq. (7.1) that by studying the dependence of the nucleon yield on the deuteron tensor polarization

one can directly measure the ratio w(k)/u(k). An independent check of the nuclear core hypothesis can be obtained
from the measurement of the dependence of the nucleon polarization on the deuteron vector polarization, see ref.
[427], pp. 578, 579. (For the parametrization of Ω in terms of tensor and vector polarizations, see, e.g., ref. [429].)

It is convenient to represent the magnitude of spin effects in the form of the tensor asymmetry

R = T20 =
[
1
2
(σ+ − σ−) − σ0

]/
〈σ〉, (7.2)

where 〈σ〉 = 1
3 (σ++σ−+σ0). The indices (+,−, 0) denote deuteron helicities. In the deuteron rest frame the deuteron

spin is quantized in the direction of the γ∗ momentum. Note that in the unpolarized electron case σ+ = σ− due to
space parity conservation. Evidently in the physical region R can vary from −3 to 1.5. Using eq. (7.1) we obtain for
R a rather simple expression:

R(ps) =
3(k2

t /2 − k2
z)

k2

u(k)w(k)
√

2 + 1
2w2(k)

u2(k) + w2(k)
. (7.3)

In nonrelativistic quantum mechanics (ps/m % 1) ps and ks coincide. In this case R has the form

Rnonrel(ps) =
3(p2

t/2 − p2
z)

p2

u(p)w(p)
√

2 + 1
2w2(p)

u2(p) + w2(p)
. (7.4)

Eq. (7.3) with a conventional nuclear core wave function like the Reid soft core predicts a large variation of R(ps)

94 The difference between k and p is due to the fact that in eq. (7.1) the space-time picture characteristic for high-energy processes in
relativistic theory [409, 410] is taken into account.
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The best way to look for the difference between LC and NR/Virtual nucleon 
seems to be scattering off the polarized deuteron
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fixed p
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FIG. 7.6: Angular dependence of (σ±−σ0)/〈σ〉 for the spectator distribution in the reaction e+ "D → N+X at different nucleon
momenta. Solid and dashed lines are predictions of relativistic theory and nonrelativistic quantum mechanics, respectively.

FIG. 7.6: (cont.)

for nucleon momenta ps ! 0.1 GeV/c (fig. 7.5a),95 although no significant effect is expected for ps ! 0.4 GeV/c in the
6q model (see the above discussion in section 7 7.1). The use of different realistic potentials with nuclear core leads
to quite similar expressions for R(ps), probably because in this framework the relationship between the phase shifts

95 Indeed, the qualitative picture of the ps dependence of R at not too large nucleon momenta within the deuteron (k/m ! 1) is quite
simple. It is well known that in corrdinate space, due to the presence of the D-wave, the charge distribution in the deuteron with spin
pointing in the direction of the 3-axis is “cigar-shaped”. Evidently due to the properties of the Fourier transform in momentum space
the deuteron with helicity ±1 has the form of a ball flattened in the direction of the 3-axis. As a result the yield of the backward
spectators is minimal for deuteron helicity ±1.

105

FIG. 7.6: Angular dependence of (σ±−σ0)/〈σ〉 for the spectator distribution in the reaction e+ "D → N+X at different nucleon
momenta. Solid and dashed lines are predictions of relativistic theory and nonrelativistic quantum mechanics, respectively.

FIG. 7.6: (cont.)

for nucleon momenta ps ! 0.1 GeV/c (fig. 7.5a),95 although no significant effect is expected for ps ! 0.4 GeV/c in the
6q model (see the above discussion in section 7 7.1). The use of different realistic potentials with nuclear core leads
to quite similar expressions for R(ps), probably because in this framework the relationship between the phase shifts

95 Indeed, the qualitative picture of the ps dependence of R at not too large nucleon momenta within the deuteron (k/m ! 1) is quite
simple. It is well known that in corrdinate space, due to the presence of the D-wave, the charge distribution in the deuteron with spin
pointing in the direction of the 3-axis is “cigar-shaped”. Evidently due to the properties of the Fourier transform in momentum space
the deuteron with helicity ±1 has the form of a ball flattened in the direction of the 3-axis. As a result the yield of the backward
spectators is minimal for deuteron helicity ±1.

106

FIG. 7.6: (cont.)

and the corresponding wave functions is rather rigid. However, once this relationship is changed, e.g., by introducing
the transitions of two nucleons into a quark compound bag (QCB), the prediction for R(ps) changes significantly at
ps > 0.3 GeV/c, see, e.g., fig. 7.5b.96

It is worthwhile to emphasize that eqs. (7.3) and (7.4) predict a different momentum dependence at fixed angle
and at fixed nucleon momentum (fig. 7.6), It can be seen from fig. 7.6 that the calculation based on eq. (7.4) leads
to R ∼ ( 1

2 cos2 θ − sin2 θ), although a rather complicated angular dependence follows from eq. (7.3) (θ is the angle
between ps and the 3-axis). To our knowledge the discussed angular dependence of R(ps) is the clearest relativistic
effect suggested so far in the literature. Actually this is the only effect where the relativistic relation between k and
ps becomes important at momenta as low as 0.3 GeV/c.

Equation (7.3) predicts Q2 independence of R(ps). Besides, the same R(ps) is expected for different final states
like Nsp + N, Nsp + ∆, Nsp + N∗, . . .. Such a universality of R(ps) at fixed ps is a general feature of the two-
nucleon approximation (valid in all approaches, nonrelativistic, covariant, and light-cone). Thus, the independence
of w(k)/u(k) extracted from different measurements for the same spectator momentum would provide an important
check of the extraction procedure and of the role of the final state interaction.

At the same time one can expect that at large spectator momenta R(ps) would depend on Q2 in the transitional Q2

range 2− 4 GeV2, where scattering off the compressed nucleon configuration becomes important. This is because the
deformation of the bound nucleon wave function should be somewhat different for S- and D-waves due to the different
relative roles of the one- and two-pion exchange potentials. Indeed, the contribution of the two-pion exchange potential,
which leads to a larger deformation of the bound nucleon wave function (cf. the discussion in section 2 2.5 2.5.2), is
more important for the S-wave.

In the impulse approximation eq. (7.1) is also valid for the deep inelastic reaction e+D → e+p+X. The final state
interaction between the struck nucleon and the spectator is a correction because a large amount of energy (∼ 1 GeV)
is transferred to the interacting nucleon in an average process. Moreover, the contribution to the nucleon yield due to
the production of nucleons in γ∗N interaction (the direct mechanism) constitutes a small correction to the production
of spectator nucleons in a wide kinematical region, α = (

√
m2 + p2

s − ps3)/m > 1 − x. This region includes (for
sufficiently large x) emission of spectators in the forward direction.

Equation (7.1) may be modified due to suppression of the spectator nucleon yield (with α > 1 − x) as a result
of the final state interaction between hadrons produced in $N interaction and would-be spectators. However, the
suppression of the nucleon yield in different spin states should be rather close, at least at small pt, because secondary
hadron rescatterings mostly suppress the contribution of configurations in the deuteron wave function where p, n are

96 We are indebted to I. M. Narodetski for supplying numerical results for the QCB deuteron wave functions [405].
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Figure 3: ps dependence of the (e, e′p)
tensor polarization at θs = 1800. Solid
and dashed lines are PWIA predictions
of the LC and VN methods, respective
marked curves include FSI.

Figure 4: Q2 dependence of the unpolarized
and tensor polarized cross sections. Solid
line - LC approach with PLC suppression,
dashed - LC, and dashed-dotted - VN.
Experimental data from Ref.[9].

holds even for inclusive "d(e, e′) scattering. In Fig.4, we compare the predictions of the VN and
CT approaches for d(e, e′) reactions with unpolarized and polarized deuteron targets. Yielding
practically the same predictions for a unpolarized target at x < 1, the two approaches differ by
as much as a factor of two in the tensor polarization cross section.

3 Conclusions
We demonstrated that the use of a polarized deuteron target allows to probe effectively

smaller internucleon distances in the deuteron ground state wave function for semiexclusive
(e, e′N) and inclusive (e, e′) reactions. This opportunity can be successfully used to gain a
better understanding of the structure of (moderate) high energy, large Q2 eA interactions. In
particular, we demonstrated that the use of a "d target would allow to observe the onset of Color
Transparency at intermediate energies as well as to confront different descriptions of relativistic
effects in the deuteron and electromagnetic interactions with deeply bound nucleons.
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FIG. 8.15: dσ/dΩ dEe from ref. [434–436] calculated in the collinear approach. Curves R and P correspond to the Reid soft
core and Paris potential wave functions. Open dots include final state interaction as computed by Arenhövel [469, 470].

where

ν̃ = (q, pA − pR) = −1
2
αQ2/αq +

1
2
αq(mA − pR+)m, ν̃ = ν + (m̃2 − m2)/2, sin δ =

√
Q2/q3.

Evidently the equations derived enable one to determine three of the four independent structure functions in the

Conclusions I

Light-cone approach allows to use a hidden parameter of 
medium energy NN interactions - small inelasticity.

Several qualitative differences from virtual nucleon 
approximation

Allows to take into account space-time picture of 
high energy processes.  Good current logic.

⇒

⇒
⇒
⇒ Need to develop approach combining  LC and 

Glauber approach for high energy processes.
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The vahdlty of these calculations can be tested by 
extracting the ratio of the free nucleon structure func- 
tions F~/F~ from the lion and hydrogen data of the 
EMC. Applying, for example, the smearing correction 
factors for the proton and the neutron as given by 
Bodek and Rltchle (table 13 of ref. [8]), one gets a 
ratio whmh is very different from the one obtained 
with the deuterium data [3]. It falls from a value of 
~1 .15  a tx  = 0.05 to a value of ~0.1 a tx  = 0.65 which 
is even below the quark-model lower bound of 0.25. 

A direct way to check the correctmns due to nu- 
clear effects is to compare the deuteron and iron data 
for they should be influenced slmdarly by the neutron 
content of these nuclei. The iron data are the final 
combined data sets for the four muon beam energies 
of 120,200, 250 and 280 GeV; the deuterium data 
have been obtained with a single beam energy of 280 
GeV. The ratio of the measured nucleon structure 
functions for iron F2N(Fe) = 1 wuFe gg* 2 and for deutermm 
FN(D) = {F~ D, ne,ther corrected for Fermi motion, 
has been calculated point by point. For this compari- 
son only data points with a total systematm error less 
than 15% have been used. The iron data have been cor- 
rected for the non-lsoscalarlty of 56Fe assuming that 
the neutron structure function behaves hke F~ = (1 
- 0 .75x)FP .  This gives a correction of ~+2.3% at x 
= 0.65 and of less than 1% forx  < 0.3. The Q2 range, 
which ~s limited by the extent of the deuterium data, 
as different for each x-value, varying from 9 ~< Q2 ~< 27 
GeV 2 for x = 0.05 over 11.5 ~< Q2 < 90 GeV 2 for x 
= 0.25 up to 36 ~ Q 2  ~< 170 GeV 2 forx  = 0.65. 

W~thm the hmlts of statistical and systematm errors 
no slgmficant Q2 dependence of the ratm F ~ ( F e ) /  
FN(D) is observed. The x-dependence of the Q2 aver- 
aged ratio is shown in fig. 2 where the error bars are 
statistical only. For a straight line fit of the form 

FN(Fe)/FN(D) = a + bx , 

one gets for the slope 

b = - 0 . 5 2  + 0.04 (statistical)+ 0.21 (systemattc). 

The systematm error has been calculated by distort- 
mg the measured F N values by the individual system- 
atm errors of the data sets, calculating the correspond- 
mg slope for each error and adding the differences 
quadratically. The possible effect of the systematic 
uncertainties on the slope is lndmated by the shaded 
area m fig. 2. Uncertalntms m the relative normahsa- 
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2, The ratio of the nucleon structure funct ions F N Fig. mea- 
sured on tron and deuter ium as a function o f x  = O2/2M,-,v. 

- 5 6  The iron data are corrected for the non-lsoscalarlty of 26Fe, 
both  data sets are not  corrected for Fermi motion. The full 

hnear fit F N ( F e ) / F N ( D )  = a + b x  which results c u r v e  i s  a in 
a s l o p e b = - 0 5 2 _ +  0.04 (stat.) -+ 0 . 2 1 ( s y s t )  The shaded 
area indicates the effect of systematm errors on this slope. 

tlon of the two data sets will not change the slope of 
the observed x-dependence of the ratio but can only 
move it up or down by up to seven percent. The dif- 
ference F N ( F e ) - F N ( D )  however ,s very sensitwe to 
the relatwe normahsatlon. 

The result is m complete disagreement with the 
calculations dlustrated an fig. 1. At high x, where an 
enhancement of the quark distributions compared to 
the free nucleon case is predicted, the measured struc- 
ture function per nucleon for ~ron ~s smaller than that 
for the deuteron. The ratio of the two is falhng from 
~1.15  a t x  = 0.05 to a value of ~0 .89  a t x  = 0.65 
while it is expected to rise up to 1.2-1.3 at this x 
value. 

We are not aware of any published detailed predic- 
tion presently available which can explain the behav- 
tour of these data. However there are several effects 
known and discussed which can change the quark dis- 
tributions m a high A nucleus compared to the free 
nucleon case and can contribute to the observed ef- 
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the nonrelativistic constituent quark model with parameters fitted to reproduce the nucleon form
factor). An observation of a much larger value of p would signal the presence of large short-range
parton—parton correlations in the nucleon wave function.

At present there exist several pieces of information about (p,~, which are basically consistent with a
naive estimate (for average x):

(i) Production of leading hadrons in the current fragmentation region in the reaction  + N—+ 1’ +
+ h2 + X. The EM Collaboration analysed correlations in the transverse momentum plane between

the leading hadrons using the Lund model. They find that a reasonable description is reached for
(p,) —0.44 GeV/c at x —0.1—0.2 [21].This analysis is likely to overestimate (pj since it does not take
into account the QCD broadening of the p~distribution due to the gluon radiation in the initial state.

(ii) The p-dependence of the leading hadron production in the reaction  + N—~e’ + h + X. The
analyses [22]of this effect lead to (ps) —(0.3—0.4) GeV/c for x—0.1—0.2.

(iii) In Drell—Yan pair production the p~distribution of the  ~ pair is reasonably well described by
the QCD calculations which take into account the gluon radiation (the DDT form factor), see, e.g., ref.
[23].It appears that the agreement would be destroyed if (~~)exceeds 0.5GeV/c. Similarly, the p~
distribution of Xe-meson production is reasonably described by the gluon fusion model with the DDT
form factor [24].This can be considered as an indication that (P5)g also does not exceed 0.5 GeVI c.

3.7. Nuclear effects. Introduction

At the Paris (Rochester) Conference in 1982 the European Muon Collaboration (EMC) first
reported their observation of a difference between the structure functions F2 of heavy (Fe) and light
(D) nuclear targets for 0.05  x  0.65 (fig. 3.11) [25].The difference between the observations and the
expectations of the conventional Fermi motion calculations [26](see discussion in section 5) became
known as the EMC effect.

I I I I I
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_ II

::~ ~‘~‘

Fig. 3.11. Ratio ofnucleon structure functionsF~for iron and deuterium as measured by the EM Collaboration in 1983 125]. The solid curve is the
expectation of the Fermi motion models.

Theoretical 
expectation under 
assumption that 
nucleus consists 
only of nucleons FS 
81
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Why the  effect  cannot be described in the approximation: nucleus = A nucleons?

F

A
q (x) = Af

N
q (x)

In this case probability to find a quark with momentum xPA/A is 

RA(x) ⌘ F

A
q (x)/Af

N
q (x) = 1

Deviation of RA(x) from one is European Muon Collaboration (EMC) effect - 1983

PA α1PA/A
α2PA/A
α3PA/A

α1 +α2 +α3=3

How model dependent was the expectation?
 EMC paper had many curves hence impression that curves could be 
moved easily.

early warning: EMC used different definition of x

If no Fermi motion: αi=1
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Can account of Fermi motion describe the EMC effect?
YES

If one violates baryon charge conservation or momentum 
conservation or both

Many nucleon approximation:

Z
⇥NA (�, pt)

d�

�
d2pt = A baryon charge sum rule

Light cone nuclear 
nucleon density (light 
cone projection of the 
nuclear spectral 
function - ≣probability 
to find a nucleon 
having momentum 
αPA/A

fraction of nucleus 
momentum 
NOT carried by 
nucleons

1

A

Z
�⇤NA (�, pt)

d�

�
d2pt = 1� ⇥A

F2A(x,Q
2) =

Z
⇢

N
A (↵, pt)F2N (x/↵)

d↵

↵

d

2
pt

In nucleus rest frame x=AQ2/2mAq0
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+
xF

0
2N (x,Q2) + (x2

/2)F 00
2N (x,Q2)

F2N (x,Q2)
· 2(TA � T

2H)

3mN

Fermi motion

F2N / (1� x)n, n ⇡ 3 +
xn [x(n+ 1)� 2]

(1� x)2
· (TA � T

2H)

3mN

small negative  for x <0.5 
> 0  and rapidly growing for x >0.5

RA(x,Q
2) = 1� �AxF 0

N (x,Q2)

FN (x,Q2)

RA(x,Q
2) = 1� �Anx

1� x

Since spread in  α due to Fermi motion is modest ⇒ do 

Taylor series expansion in (1- α):   α= 1+ (α-1)

EMC effect is unambiguous evidence for presence of non nucleonic 
degrees of freedom in nuclei. The question - what are they? 

O.Nash: God in his wisdom made a fly 
         But he forget to tell us why
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First explanations/models of the EMC effect

Pionic model:  extra pions  - λπ ~ 4%

+ enhancement from scattering off pion field  

απ~  0.15

6 quark configurations in nuclei with P6q~ 20-30%

◉

◉

◉

Mini delocalization - small swelling - enhancement of  deformation 
at large x due to suppression of small size configurations in bound 
nucleons + valence quark antishadowing

Nucleon swelling - radius of the nucleus is  20--15% larger in nuclei. 
Color is significantly delocalized in nuclei Larger size →fewer fast 
quarks - possible mechanism: gluon radiation  starting at lower Q2

◉
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(1/A)F2A(x,Q
2) = F2D(x,Q2

⇠A(Q
2))/2

RA(x,Q
2) = 1� �Anx

1� x



◉ Traditional nuclear physics strikes back: 
EMC effect is just effect of nuclear binding : account for the nucleus 
excitation in the final state: 

First try: baryon charge violation because of the use of non relativistic 
normalization 

Second  try:  fix baryon charge ➔ violate momentum sum rule

Third try (not always done) fix momentum sum rule by adding mesons 
➠

a version of the pion model
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Pion model addresses a deep question - what is microscopic origin of 
intermediate and short-range nuclear forces   - do nucleons exchange 
mesons or quarks/gluons? Duality?

M

p

pn

n p n

n p

=π +, ρ+
,...

d

d

u

Meson Exchange                                    Quark interchange

d

u

u

qq

may correspond to a tower of meson 
exchanges with coherent phases - high 
energy example is Reggeon; pion 
exchange for low t  special - due to 
small mass

Intermediate state 
may not be = pn

extra antiquarks in nuclei no extra antiquarks
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Drell-Yan experiments (1989):   

Q2 = 15 GeV2

A-dependence of antiquark 
distribution, data are from FNAL 
nuclear Drell-Yan experiment, 
curves - pQCD analysis of 
Frankfurt, Liuti, MS 90. Similar 
conclusions Eskola et al 93-07 
analyses

x

VOLUME 65, NUMBER 14 PHYSICAL REVIEW LETTERS 1 OCTOBER 1990

we find that the difference Rs(x, Q ) —I=S~(x,Q )/
AS~(x, Q )—1, evaluated at x =0.05, increases by a
factor of 2 as Q varies between Q =3 and 25 GeV . In
particular, if we use the QCD aligned-jet model
(QAJM) of Refs. 4 and 5 (which is a QCD extension of
the well-known parton logic of Bjorken) to calculate
Rs(x, Q ), we find, in the case of Ca, Rg(x=0.04,
Q =3 GeV ) =0.9 and Rs(x=0.04, Q =25 GeV )
=0.97. The last number is in good agreement with
Drell-Yan data (see Fig. 2). Thus, we conclude that
the small shadowing for S~ observed in Ref. 3 for
x=0.04 and Q & 16 GeV2 corresponds to a much
larger shadowing for Q =Qo.
Shadowing in the sea-quark distribution at x =0.04
[Rs(x=0.04, Q =3 GeV ) =0.9), combined with the
experimental data for F2 (x,Q )/AF2 (x,Q ) at the
same value of x [F2 (x,Q )/AFi (x,Q ) & I], unambi-
guously implies an enhancement of the valence quarks,
i.e., Rv(x, Q ):—V~(x, Q )/AV~(x, Q ) & 1. For Ca,
Rv(x =0.04-0.1, Q 3 GeV ) = 1.1, whereas for
infinite nuclear matter, we find Rv(x =0.04-0.1, Q =3
GeV ) ~ 1.2. By applying the baryon-charge sum rule
[Eq. (2)], we conclude that experimental data require
the presence of shadowing for valence quarks at small
values of x [i.e., Rv(x, Q ) & 1 for x,h &0.01-0.03].
Moreover, the amount of shadowing for Rv(x, Q ) is
about the same (somewhat larger) as the shadowing for
the sea-quark channel (see Fig. 3). The overall change
of the momentum carried by valence and sea quarks at
Q'= I GeV' is

yv(Qo) =1.3%, )s(Qo) =—4.6%.
To summarize, the present data are consistent with the

parton-fusion scenario 6rst suggested in Ref. 7: All par-
ton distributions are shadowed at small x, while at larger
x, only valence-quark and gluon distributions are en-
hanced. At the same time, other scenarios inspired by
the now popular (see, e.g. , Ref. 8) idea of parton fusion,

which assume that the momentum fraction carried by
sea quarks in a nucleus remains the same as in a free nu-
cleon, are hardly consistent with deep-inelastic and
Drell- Yan data.
Let us brieAy consider dynamical ideas that may be

consistent with the emerging picture of the small-x
(x ~ 0.1) parton structure of nuclei. In the nucleus rest
frame the x =0.1 region corresponds to a possibility for
the virtual photon to interact with two nucleons which
are at distances of about I fm [cf. Eq. (I)]. But at these
distances quark and gluon distributions of different nu-
cleons may overlap. So, in analogy with the pion model
of the European Muon Collaboration effect, the natural
interpretation of the observed enhancement of gluon and
valence-quark distributions is that intermediate-range in-
ternucleon forces are a result of interchange of quarks
and gluons. Within such a model, screening of the color
charge of quarks and gluons would prevent any sig-
nificant enhancement of the meson field in nuclei. Such
a picture of internucleon forces does not necessarily con-
tradict the experience of nuclear physics. Really, in the
low-energy processes where quark and gluon degrees of
freedom cannot be excited, the exchange of quarks
(gluons) between nucleons is equivalent, within the
dispersion representation over the momentum transfer,
to the exchange of a group of a few mesons. Another

1. 10I—

. 00
CL

0. 90

0, 80

1.30
1.20 Ca/D

FIG. 2. Ratio R =(2/A)ug(x, g')/uD(x, g') plotted vs x,
for diff'erent values of Q . Notations as in Fig. 1. Experimen-
tal data from Ref. 3.

1 0

FIG. 3. Ratios R(x,gj) (2/3)F" (x,gf)/FP(x, g$)
(dashed line), R=Rv(x, gS) -(2/A) Vq(x, gf)/Vo(x, QS)
(solid line), and R—=Rs(x, g/) =(2/A)S~(x, g/)/SD(x, g/)
(dot-dashed line) in Ca. All curves have been obtained at
Q) =2 GeV . The Iow-x behavior (x ~ x,h) corresponds to the
predictions of the QA3M of Refs. 4 and 5; the antishadowing
pattern (i.e., a 10/o enhancement in the valence channel
whereas no enhancement in the sea, leading to a less than 5%
increase of F~q at x =0.1-0.2) has been evaluated within the
present approach by requiring that sum rules (2) and (3) are
satisfied. Experimental data are from Ref. 1 (diamonds) and
Ref. 3 (squares), the latter representing the sea-quark ratio Rg
(cf. Fig. 2). The theoretical curves are located below the data
at small x, due to the high experimental values of g~: (g )
=14.5 GeV~ in Ref. 1 and (Q ) =16 GeV2 in Ref. 3, respec-
tively.

1727

vs meson model 
expectation

Q2 = 2 GeV2

q̄Ca/q̄N ⇡ 0.97
q̄ C

a
/q̄

N

q̄Ca(x)/q̄N = 1.1÷ 1.2|x=0.05÷0.1
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However large admixture of nonnucleonic degrees of 
freedom (20-- 30 %) strange but was not ruled out.

Qualitative change due to recent direct observation of  short-range NN 
correlations at JLab and BNL

Thou shalt not introduce dynamic pions into nuclei

Honor baryon conservation law

Honor momentum  conservation law

Thou shalt not introduce large deformations of low momentum nucleons

Five commandments 

Honor  existence of large predominantly nucleonic short-range correlations
enough for one tablet of law

53

http://en.wikipedia.org/wiki/You_shall_not_commit_adultery
http://en.wikipedia.org/wiki/You_shall_not_commit_adultery
http://en.wikipedia.org/wiki/You_shall_not_commit_adultery
http://en.wikipedia.org/wiki/You_shall_not_commit_adultery


54

Are SRC findings, lack of deformation of low  momentum nucleon and lack of 
enhancement of antiquarks  consistent with existence of the EMC effect?

Very few models of the EMC effect survive  when all these constraints are included
 - essentially one scenario survives - strong deformation of rare configurations in 
bound nucleons increasing with nucleon momentum  and with most of the effect 
due to the  SRCs . 

Let us characterize the effect as an averaged over nucleon 
momenta deformation of the bound nucleon pdf

First need to correct for two effects not related to nonnucleonic 
degrees of freedom

In the fast frame (high energy processes) Coulomb photons are 
dynamical degree of freedom - implicit in the Fermi calculation of e.m 
interactions of fast particles. For large Z photons carry a significant 
fraction of the nucleus momentum -λγ ~.65 % for A=200

☛

☛ Experimentalists used xp=Q2/2mpq0  instead of Bj’s  
xA=AQ2/2mAq0
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Correction for these two effects is 

R(x
p

) = f

j

A

(x(1 + r

x

+ �

�

))/f j

N

(x) ⇡ 1� (r
x

+ �

�

)n
x

1� x

,

x

p

/x = Am

p

/m

A

= (1 + (✏
A

� (m
n

�m

p

)N/A)/m
p

) ⌘ 1 + r

x

,

where

at the last step we took fjN(x)   (1-x)n.



Bj x + Coulomb

Bj x + Coulomb 
+Fermi motion

use of correct x is main effect for A< 40; 
correct x and Coulomb are 

approximately the same  

~nearly  half of the EMC effect at 
x≲0.5 is not due to nonnucleonic 
degrees of freedom!!
Correction for F2n/F2p is significantly 
smaller than in the current analyses 
including ours of 85.
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Large hadronic effect only for x>0.5 - natural in 
the mini-delocalization / color screening model of 

F&S 83-85
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Fig. 6. Estimate of the ratio of the bound and free nucleon structure functions in medium and
heavy nuclei as a function of x.

down, leading to overestimate of 1 � Rb(x, Q2) so for such x. A separate analysis
is required which will be presented elsewhere.) The estimate of 1 � Rb(x, Q2) is
presented in Fig. 6 based on the analysis of the SLAC data26.

Since the bound nucleon deformation e↵ect is small up to x ⇠ 0.6 and the prob-
ability of having a quark in a nucleon with x > 0.5 is ⇠ 2 · 10�2 we conclude that
the EMC e↵ect probes very rare deformations of bound nucleons. The deviations
from the discussed approximation on the level of 1÷ 2% at x ⇠ 0.2÷ 0.4 cannot be
excluded experimentally so one can only conclude that the accuracy of the approx-
imation where nucleus consists of nucleons whose structure function coincides with
that for free ones (+ equivalent photons) is on the level of few % for x  0.5 where
the contribution of the mean field approximation to the nucleus WF dominates.

Our analysis also allows to put an upper limit

⌘⇡(A ⇠ 200)  2.0%. (36)

on the fraction of energy carried by pion constituents of nuclei assuming that all
deviation of RA(x ⇠ 0.5, Q2) from the standard model is due to the pion field.

8. Constraints on the models of the EMC e↵ect

In this section we briefly summarize the constraints on the possible mechanism
of the hadronic EMC e↵ect and confront di↵erent classes of models of the EMC
e↵ect with these constraints. Majority of models ignore the e↵ects described by the
standard model which describes half of the EMC e↵ect and hence should be modified
to describe data. So we restrict our discussion by consideration of constraints on

for k~ 300 MeV/c

Estimate of the 
ratio of the bound 
and free nucleon 
structure functions 
in medium and 
heavy nuclei as a 
function of x
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Contribution of nucleon modification to the 
EMC effect - weak function of A for A≥12

Coulomb + x-scale + (hadronic EMC effect ∝ a2(A))

Example - magic point x=0.5 - no Fermi motion 

Theoretical expectation LF & MS85 hadronic effect ∝ <k2> nucleon virtuality

∝ a2(A)

∝a2(A)-1
∝a2(A)-1

∝a2(A)-1
∝a2(A)-1 ∝a2(A)-1

∝a2(A)-1∝a2(A)-1

Coulomb +x-scale +SRC

/ a2(A)� 1

Coulomb + x-scale 

≈∝
accuracy ~ 20% 
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3He data not included - too large errors due to 
p/n ratio uncertainty.
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FIG. 2: The left panel shows the raw and isoscalar-corrected 3He/2H ratios, compared to the
SLAC E139 fit for 3He (solid) and Carbon (dashed). The upper squares are the raw 3He/2H ratios,
while the bottom circles show the isoscalar corrected EMC ratio. The triangles are the HERMES
results [10] which use a different isoscalar correction. The right panel shows the same isoscalar
3He/2H ratios (blue points) and the 3He/(2H+1H) ratio (red points) extracted from E03103 data.
The black curve is the SLAC mass number dependent fit to 3He. Hollow symbols indicate data at
W 2 ≤ 2 GeV2.

Q2 settings show no systematic Q2 dependence in the cross section ratios, even at the largest

x values. This implies that the contribution from higher twist effects and additional scaling

violation mechanisms to the ratios are small even in the high x region.

E03103 provided the first measurement of the EMC effect for 3He in the valence region,

as well as significantly improved data on 4He. Figure 2 shows the EMC ratio for 3He, with

the lower-x data from HERMES [10]. Since 3He contains two protons and a neutron, the raw

cross section ratios must be corrected for the proton excess to obtain the isoscalar corrected

EMC ratios. In the figure, the upper squares are the raw 3He/2H ratios while the bottom

circles show the isoscalar corrected EMC ratios. There is a significant uncertainty in the

neutron cross section in the large x region, hence, the extracted EMC ratios are very sensitive

to these isoscalar corrections. Previous measurements (SLAC E139) used a correction based

on the high Q2 measurements of the free F2n/F2p ratio. Since one is correcting the nuclear

cross sections, one should be using the contributions of F2p and F2n to the nuclear structure

function instead of using the free proton and neutron structure functions. E03103 results

are extracted using global fits of free proton and neutron cross sections and broadened using

the F2n/F2p ratio and the convolution procedure mentioned in [12]. These distributions are

then used to get the bound F2n/F2p ratios in nuclei. It should be noted that the isoscalar

corrections depends on x and Q2, and the Q2 dependence is not negligible at large x values.

In the case of 3He, one can avoid the uncertainty associated with the isoscalar correction,

and thus better evaluate models of the EMC effect, by taking the ratio of 3He to (2H+1H)

which allows comparisons to calculations that are independent of the neutron structure

function. This is shown in the right panel of Figure 2. Here, the blue points show the isoscalar

corrected 3He/2H ratios while the red points shows the 3He/(2H+1H) ratio extracted from

4

Normalization?
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From SRC expected effect is 0.01 for x=0.5 - within the errors



Probability for a quark to have x> 0.5, ~ 0.02

hadronic EMC effect at x ~ 0.5,  ~ 0.04

Probability of exotic component  
relevant for the large x  EMC effect~ 2 10-3

Nuclei are build of nucleons with accuracy ~ 99%, with large 
high momentum 2N SRC component (high density drops)

Note - GE/GM probes amplitude of deformation not 
probability - hence larger effects are possible for small 
momenta - at the same time the data are consistent with 
proportionality of the effect to the virtuality - check 
universality - deuteron !!!
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Dynamical model - color screening model of the EMC effect (FS 83-85)

(a) Quark configurations in a nucleon of a size << average size 
(PLC) should interact weaker than in average. Application of the 
variational principle indicates that  probability of such 
configurations in nucleons is suppressed.

Combination of two ideas: 

(b)  Quarks in nucleon with x>0.5 --0.6 belong to small size 
configurations with  strongly suppressed pion field - while pion field 
is critical for SRC especially D-wave.

Will be possible to test in the just 
completed  pA LHC run  will 
discuss in the end of the talk
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Fig. 6. Estimate of the ratio of the bound and free nucleon structure functions in medium and
heavy nuclei as a function of x.

down, leading to overestimate of 1 � Rb(x, Q2) so for such x. A separate analysis
is required which will be presented elsewhere.) The estimate of 1 � Rb(x, Q2) is
presented in Fig. 6 based on the analysis of the SLAC data26.

Since the bound nucleon deformation e↵ect is small up to x ⇠ 0.6 and the prob-
ability of having a quark in a nucleon with x > 0.5 is ⇠ 2 · 10�2 we conclude that
the EMC e↵ect probes very rare deformations of bound nucleons. The deviations
from the discussed approximation on the level of 1÷ 2% at x ⇠ 0.2÷ 0.4 cannot be
excluded experimentally so one can only conclude that the accuracy of the approx-
imation where nucleus consists of nucleons whose structure function coincides with
that for free ones (+ equivalent photons) is on the level of few % for x  0.5 where
the contribution of the mean field approximation to the nucleus WF dominates.

Our analysis also allows to put an upper limit

⌘⇡(A ⇠ 200)  2.0%. (36)

on the fraction of energy carried by pion constituents of nuclei assuming that all
deviation of RA(x ⇠ 0.5, Q2) from the standard model is due to the pion field.

8. Constraints on the models of the EMC e↵ect

In this section we briefly summarize the constraints on the possible mechanism
of the hadronic EMC e↵ect and confront di↵erent classes of models of the EMC
e↵ect with these constraints. Majority of models ignore the e↵ects described by the
standard model which describes half of the EMC e↵ect and hence should be modified
to describe data. So we restrict our discussion by consideration of constraints on
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Introducing in the wave function of the nucleus explicit dependence 
of the internal variables we find for   weakly interacting 
configurations in the first order perturbation theory using closer we 
find 

where

energy in the energy denominator. Using equations of motion for   ψΑ 
the momentum dependence for the probability to  find a bound nucleon, 
δA(p) with momentum p in a PLC  was determined for the case of two 
nucleon correlations and mean field approximation. In the lowest order

�D(p) =

0

@1 +
2 p2

2m + ✏D

�ED

1

A
�2

 ̃A(i) ⇡

0

@1 +
X

j 6=i

Vij

�E

1

A A(i)

�E ⇠ mN⇤ �mN ⇠ 600� 800MeV average excitation 

After including higher order terms we obtained for SRCs and for  
deuteron:

�A(p) = 1� 4(p2/2m+ ✏A)/�EA
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Accordingly 

which to the first approximation is proportional to a2(A), roughly 
proportional to <ρ2(r)>.  Accuracy is probably  no better than 20%.

Repeat the program for A=3 for a final state with a certain energy and 
momentum for the recoiling system   FS & Ciofi Kaptari 06.  
Introduce formally virtuality of the interacting nucleon as 

p2int�m2 = (mA� pspect)2�m2.

δ(p,Eexc) =
✓
1� p2int�m2

2ΔE

◆�2

Find the expression which is valid both for A=2 and for A=3(both NN and 
deuteron recoil channels):

F2A(x,Q2)

F2N (x,Q2)
� 1 / h�(p)i � 1 = �4

* p2

2m + ✏A

�EA

+
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Dependence of suppression we find for small virtualities: 
1-c(p2int-m2)

 
seems to be very general for the modification of the nucleon properties.  Indeed, 
consider analytic continuation of the scattering amplitude to  p2int - m2=0. At  this 
point modification should vanish. Our quantum mechanical treatment automatically  
took this into account.    

This generalization of initial formula allows a more accurate study of 
the A-dependence of the EMC effect.
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interesting to measure  tagged structure functions where 
modification is expected to increase quadratically with tagged 
nucleon momentum. It is applicable for searches of the form 
factor modification in (e,e’N). If  an effect is observed at say100 
MeV/c - go to 200 MeV/c and see whether the effect would 
increase by a factor of ~3-4.

However since overall genuine EMC effect is small for x ≲0.5 
tagging for such x (x/α) is hardly practical  below p= 400 MeV/c - 
however situation dramatically improves if x/α ≥0.6.

Here α is the light cone fraction of interacting nucleon

Tagging  of  proton and neutron in  e+D→e+ 
backward N +X  (FS 85).

↵spect = (2� ↵) = (EN � p3N )/(mD/2)
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Optimistic possibility - EMC effect maybe missing some 
significant deformations which average out when integrated 
over the angles 
A priori the deformation of a bound nucleon can also depend on 
the  angle φ between the momentum of the struck nucleon and 
the reaction axis as 

Here <σ> is cross section averaged over φ and  dΩ is  the phase 
volume and the factor  c characterizes non-spherical deformation. 

d�/d⌦/ < d�/d⌦ >= 1 + c(p, q).

Optimistic possibility - EMC effect maybe missing some significant 
deformations  

A priori the deformation of a bound nucleon can also depend on the  angle φ 
between the momentum of the struck nucleon and the reaction axis as 

Here <σ> is cross section averaged over φ and  dΩ is  the phase volume and the 
factor  c characterizes non-spherical deformation. 

Such non-spherical polarization  is well known in atomic physics (discussion with 
H.Bethe). Contrary to  QED detailed calculations of this effect  are not possible 
in QCD.    However, a qualitatively similar deformation of the bound nucleons 
should arise  in QCD. One may expect that the  deformation of bound nucleon 
should be maximal in the  direction of radius vector between two nucleons of 
SRC.

d�/d⌦/ < d�/d⌦ >= 1 + c(p, q).

Such non-spherical polarization  is well known in 
atomic physics (discussion with H.Bethe). 
Contrary to  QED detailed calculations of this 
effect  are not possible in QCD.    However, a 
qualitatively similar deformation of the bound 
nucleons should arise  in QCD. One may expect 
that the  deformation of bound nucleon should be 
maximal in the  direction of radius vector 
between two nucleons of SRC. 66
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LHC - jets with large pt - -- no nuclear shadowing effects

Standard Model jet measurements – Jets, dijets and multijets

Inclusive jet/dijet cross section measurements

Using full 2010 dataset (37 pb�1)
! probe perturbative QCD in new kinematic regime
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Next slides: results for inclusive jet measurement, R=0.6
from [ATLAS arXiv 1112.6297, To be published by PRD ]
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A lot of high pt , xp> 0.6 pA events should have been collected in pA run!!!

Possible to measure the number of active nucleons as a function of xp

Test of our interpretation of the EMC effect at large x 
--- a drop of the number of active nucleons at x> 0.5 - 
more “peripheral like” events

The number of events in pA run >  # events in 2010 pp run
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Possible explanations are very much constrained by 

bound nucleon at k< 200 MeV/c ≈ free nucleon

presence of 20% universal 2N SRC build predominantly of nucleons which

appear to give dominant contribution to the hadronic component of EMC effect

Need to explain why effect is small at x< 0.5 and rapidly grows at larger x

Mechanism of suppression of rare small size configurations in bound nucleons 
so far survives,  main issue is whether x > 0.5 selects small size configurations.

Other possible mechanism of suppression of rare large x 
components in far off shell nucleons?

Conclusions II

Experiments at JLab  achieved important progress in the 
quest for understanding quark-gluon structure of nuclei 
by bringing together studies of the EMC effect and SRCs

q̄A/q̄N  1◉
◉
◉


