New Results on SRC from Inclusive Measurements at JLab

Patricia Solvignon

Nuclear Structure and Dynamics at Short Distances Institute of Nuclear Theory February 13, 2013

Quasielastic data

H with 1.5% on Games to 3% on Games to 1 Geven als als minimal in de

> **1.2 1.4**

Kin 5.1: <Q²

Grass bar Snid Mag Deshed Curchi

* This is the region with ~8% discrepancy between the

Motivations

E08-014: the *x***>2 experiment**

Future measurements planned at JLab 12 GeV

a

Kin 4.2: <Q²

¹Structure Function

 $\overline{}$ ϵ

b

Blue

 2.4 2.6 2.8 3 3.2

¹Structure Function

Inclusive scattering at large x

 \rightarrow Motion of nucleon in the nucleus broadens the peak. \rightarrow little strength from QE above $x \approx 1.3$.

Jefferson Lab

Inclusive scattering at large x

JLab E02-019 data from N. Fomin

High momentum tails should yield constant ratio if seeing SRC

Short Range Correlations

For
$$
x \ge 1.3
$$
:
\n
$$
\sigma_A(x,Q^2) = \sum_{j=2}^A \frac{A}{j} a_j(A) \sigma_j(x,Q^2)
$$
\n
$$
= \frac{A}{2} a_2(A) \sigma_2(x,Q^2) + \frac{A}{3} a_3(A) \sigma_3(x,Q^2) + ...
$$

 σ_i \rightarrow cross section from a j-nucleon correlation

 $a_j(A) \approx$ probability of finding a nucleon in a j-nucleon correlation

Jefferson Lab

SRC evidence at SLAC

Ratio in plateau, proportional to the number of 2N SRCs

> a_2 (3He)=1.7±0.3 a_2 (4He)=3.3±0.5 a_2 ⁽¹²C)=5.0±0.5 a_2 (27Al)=5.3±0.6 a_2 (56Fe)=5.2±0.9

Jefferson Lab

SRC evidence at SLAC

Ratio in plateau, proportional to the number of 2N SRCs

> a_2 (3He)=1.7±0.3 a_2 (4He)=3.3±0.5 a_2 ⁽¹²C)=5.0±0.5 a_2 (27Al)=5.3±0.6 a_2 (5⁶Fe)=5.2±0.9

> > Saturation

Jefferson Lab

SRC evidence at JLab struck nucleon is larger than kF [26], but it is not clear what kinematics are required to sufficiently suppress 2N-SRC SLAC CHACALCE WE JA

Hall C contributions [5], and larger Q² values may be required to is constant \blacksquare correction factor FCM we apply the factor FCM we apply the factor FCM we apply the factor of the factor of the SLACE AND CLASS RESULTS IN THE CLASS RESULTS IN THE CONSTRUCTION OF BEEN UPDATED TO BE CONSISTENT WITH THE CONSTRUCTION OF THE CONSTRUCTION OF

 $\mathbf x$

Evidence of 2N-SRC at x>1.5 092502-4

Patricia Solvignon 8

and Q² such that the minimum initial momentum of the

ments of inclusive scattering from nuclei at \mathbf{x}

Hall B Hall C

Jefferson Lab

Jefferson Lab

Hall B Hall C

combined statistical and systematic uncertainties. For x > 2:2,

Rev. C 63, 044601 (2001).

Hall B \blacksquare Hall C

combined statistical and systematic uncertainties. For x > 2:2,

Rev. C 63, 044601 (2001).

Light-cone fraction: a_{2N}

 SRC model: 1N, 2N, 3N, …, contributions at $x \le 1, 2, 3, \ldots$

 Motion of SRCs: broaden the range of contribution

$$
\alpha_{2N} = 2 - \frac{q_{-} + 2m}{2m} \left(1 + \frac{\sqrt{W^{2} - 4m^{2}}}{W} \right)
$$

 α_{2N} is the light-cone variable for the interacting nucleon of the correlated nucleon pair.

Jefferson Lab

Light-cone fraction: α_{2N}

Figure from M. Sargsian

Isospin Symmetry of SRCs ?

Two-nucleon knock-out experiment

Simple SRC model assumes isospin independence

Isospin Symmetry of SRCs ?

Simple SRC model assumes isospin independence

Data show large asymmetry between np, pp pairs: Qualitative agreement with calculations; effect of tensor force

Huge violation of often assumed isospin symmetry

Isospin Symmetry Violation

PRL **98,** 132501 (2007) PHYSICAL REVIEW LETTERS week ending week ending

30 MARCH 2007

Tensor Forces and the Ground-State Structure of Nuclei

R. Schiavilla, 1,2 R. B. Wiringa, 3 Steven C. Pieper, 3 and J. Carlson⁴

 Jefferson Laboratory, Newport News, Virginia 23606, USA Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA Physics Division, Argonne National Laboratory, Argonne, Illinois 61801, USA Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA (Received 10 November 2006; published 27 March 2007)

effects, associated with small total and large relative

momentum and, in the case of *S*"*k; E*#, high-energy com-

Patricia Solvignon

ponents, which are produced by short-range and tensor

Two-Nucleon Knockout Experiments

Problem: 12C(e,e'p) data is dominated by FSI/MEC

FSI should conserve total pair momentum, isospin dependence MEC mainly act to amplify signal of existing SRCs Really want a *cleaner, quantitative* measure of isospin dependence

SRC Isospin from Inclusive Scattering

Inclusive ratio is 'isospin-blind' (sum of n and p)

Target **can be isospin sensitive**

 \rightarrow Compare ⁴⁰Ca to ⁴⁸Ca – JLab experiment E08-014

ran in Spring 2011

 \rightarrow Compare ³H to ³He – JLab experiment E12-11-112

scheduled to run in Spring 2015

or

Isospin study of SRC

Simple mean field estimates for 2N SRC

Isospin independent:

$$
\frac{\sigma_{48}/48}{\sigma_{40}/40} = \frac{(20\sigma_p + 28\sigma_n)/48}{(20\sigma_p + 20\sigma_n)/40} \longrightarrow 0.92
$$
\n
$$
\sigma_{48}/48 = \frac{(20*28)}{48} \times 1.17
$$

n-p (T=0) dominance:

$$
\frac{\sigma_{48}/48}{\sigma_{40}/40} = \frac{(20 * 28)/48}{(20 * 20)/40} = 1.17
$$

25% difference isospin indep. vs.pn-only (compare to 40% for 3He/3H)

For no extra $T=0$ pairs with $f_{7/2}$ neutron:

$$
\frac{\sigma_{48}/48}{\sigma_{40}/40} = \frac{\sigma_{40}/48}{\sigma_{40}/40} = 0.83
$$

Experiment E08-014

Spokespeople: P. Solvignon (JLab), J. Arrington (ANL), D. Day (UVa), D. Higinbotham (JLab) **Ph.D student**: Zhihong Ye (UVa)

Verify and define scaling regime for 3N-SRC: 3N-SRC over a range of density Test α_{3n} for x> 2

Isospin effects on SRCs:

48Ca vs. 40Ca

Study onset of scaling: ratios as a function of α_{2n} for 1 < x < 2

First precise data on 3He and 4He for x>2 to test FSI, and examine IMF distribution $(\rho_{A}(\alpha)$ needed for $q_{A}(x)$ convolution

(EMC, hard processes in A-A collisions, …)

Jefferson Lab

Experimental setup

2H, 3He, 4He cryo-target

12C, 40Ca, 48Ca

Empty Al cell for cryo-window subtraction

Carbon foils for optics

Gas Cerenkov + Calorimeter for PID

Beam energy: 3.356 GeV

E08-014 Analysis Status

Detectors --> performed very well, no issues

Spectrometer magnet --> RQ3 mismatch

Target --> large density fluctuation along the cell

Beam --> a short glitch of 3MeV at the beginning of the experiment

Cross section model --> have to deal with the vanishing of the 3He cross section at x close to 3.

Ratio --> special attention to be paid on the ratio from short to long targets

Target density non-uniformity

• **Problems:** The cooling system on the

targets. The effect become significant

Target density non-uniformity 0 LACE GOILOIE / ILOI R-HRS 15 L-HRS

constant

20

• **Problems:** The cooling system on the

targets. The effect become significant

Patricia Solvignon Top/Bottom left plots: ³He/⁴He. Top right plot: deuterium

slope

constant

Boiling study 30 lling
C **B**U **constant**

-0.06

10

Each x-bin corresponds to an average over the target length.

The density non-uniformity is mostly an issue for radiative corrections.

-0.08 -0.04 0 0.04 0.08

Top/Bottom left plots: ³He/⁴He. Top right plot: deuterium

E08-014 Analysis

Histograms are weighted by C
(OF pert from y scaling Linelastic pa Correcting for the boiling effect is not straightforward. $\frac{1}{2}$ $\frac{1}{2}$ Histograms are weighted by Cross Sections from XEMC model "Boiling function" is added in the Monte Carlo (QE part from y-scaling + inelastic part from F1F2IN09)

Jefferson Lab

Left HRS Right HRS

E08-014: Preliminary cross sections *P*⁰ = 2*.*995*GeV /c /Yield* **2 : Kin5.1 (HRS-L) MC YEX/Y : Kin5.1 (HRS-R) MC YEX/Y**

1.5

Figure 11: ³*He* Yield Ratio at 250,where Kin5.1 means *P*⁰ = 2*.*795*GeV /c*, and Kin5.2 means

Patricia Solvignon

Figure 12: ⁴*He* Cross Sections at 25⁰,where Kin5.1 means *P*⁰ = 2*.*795*GeV /c*, and Kin5.2 means

Jefferson Lab

4

Patricia Solvignon

kin 5.1

E08-014: Isospin dependence study

Jefferson Lab at 12 GeV

Jefferson Lab

electron beam

3 experimental halls

A B C

Hall A

D

Patricia Solvignon

Hall C

Hall B

Experiment E12-11-112

Precision measurement of the isospin dependence in the 2N and 3N short range correlation region Spokespeople

> P. Solvignon $|$ (co-spokesperson and contact), D. Higinbotham $|$ (co-spokesperson), D. Gaskell Thomas Jefferson National Accelerator Facility, Newport News, VA 23606

J. Arrington (co-spokesperson), D. F. Geesaman, K. Hafidi, R. Holt, P. Reimer Argonne National Laboratory, Argonne, IL 60439

D. B. Day (co-spokesperson), H. Baghdasaryan, N. Kalantarians University of Virginia, Charlottesville, VA, 22901

...

Experiment E12-11-112

Precision measurement of the isospin dependence in the 2N and 3N short range correlation region

Main physics goals

Isospin-dependence

- $\sqrt{\frac{F}{T}}$ Improved precision: extract R(T=1/T=0) to 3.8%
- ✓ FSI much smaller (inclusive) and expected to cancel in ratio

3N SRCs structure (momentum-sharing and isospin)

Improved A-dependence in light and heavy nuclei

 \checkmark Average of ³H, ³He --> A=3 "isoscalar" nucleus $\sqrt{\text{Determine}}$ isospin dependence --> improved correction for N>Z nuclei, extrapolation to nuclear matter

Absolute cross sections (and ratios) for 2H, 3H, 3He: test calculations of FSI for simple, well-understood nuclei

Isospin study from 3He/3H ratio

Simple mean field estimates for 2N-SRC

Isospin independent: n-p (T=0) dominance:

 $\sigma_{\frac{3}{2}H}$ /3 $\sigma_{\frac{3}{2}He}$ / 3 $\frac{1}{3}$ $(2pn + 1m)/3$ $(2pn + 1pp)/3$ =1.0

Inclusive cross section calculation from M. Sargsian using AV18/UIX

Jefferson Lab

M. Sargsian, private com.

34

3N-SRC Configurations

(a) yields $R(^{3}He/^{3}H) \approx 3.0$ if nucleon #3 is always the doubly-occurring nucleon (a) yields $R(^{3}He/^{3}H) \approx 0.3$ if nucleon #3 is always the singly-occurring nucleon (a) yields $R(^{3}He/^{3}H) \approx 1.4$ if configuration is isospin-dependent, as does (b)

R ≠ 1.4 implies isospin dependence AND non-symmetric momentum sharing

E12-11-112: Kinematic coverage

Beam current: 25 μA, unpolarized, Raster interlock Beam energy: 17.5 Days 4.4 GeV [main production]

Left HRS running (380 hours)

E12-11-112: Kinematic coverage

Beam current: 25 μA, unpolarized, Raster interlock Beam energy: 17.5 Days 4.4 GeV [main production] 1.5 days 2.2 GeV [checkout+QE]

Left HRS running (380 hours)

Left+Right HRS running (about 1 day)

Jefferson Lab

E12-11-112: Kinematic coverage

Beam current: 25 μA, unpolarized, Raster interlock Beam energy: 17.5 Days 4.4 GeV [main production] 1.5 days 2.2 GeV [checkout+QE]

> **Right HRS running ("parasitic") Existing 3H QE data** limited $Q^2 \leq 0.9$ GeV²

Left HRS running (380 hours)

Left+Right HRS running (about 1 day)

E12-11-112: Isospin study from 3He/3H

Quasielastic data QE data and Neutron Magnetic FF

 $\rm 3He/3H$ with $\rm 1.5\%$ uncertainty corresponds to $\rm 3\%$ on $\rm G_M$ ⁿ **11.** The $\frac{1}{2}$ $\frac{1}{2}$ **▶** Limited to Q^2 ≤ 1 GeV², where QE peak has minimal inelastic contribution ▶ This is the region with ~8% discrepancy between the Ankin, Kubon data and the CLAS ratio and the Hall A polarized ³He extraction. In PWIA, ³He/³H with 1.5% uncertainty corresponds to 3% on G_Mⁿ

Nuclear effects expected to be small, largely cancel in ratio Nuclear effects expected to be small, largely cancel in ratio

Tritium target: updated design

- Four identical cells: ¹H, ²H, ³He at 25 atm., 3H at 13 atm.
- Operate at room temperature
- Length: 25cm, Diameter: 1.25cm
- 18 mils walls and 10 mils entrance windows

design from D. Meekins (JLab)

E12-06-105: Quark distributions of SRC

Spokespeople: J. Arrington (ANL), D. Day (UVa), N. Fomin (LANL), P. Solvignon (JLab)

E12-06-105: Quark distributions of SRC

Inclusive scattering at $x > 1$ on several light and heavy nuclei:

Jefferson Lab

- $\sqrt{\overline{A}}$ -dependence of 2N and 3N-SRCs at moderate Q² values for large x
- $\sqrt{\frac{1}{1}}$ First studies of the size and importance of α -clusters in nuclei

✓ Distribution of superfast quarks in nuclei: high sensitivity to non-hadronic components (6-q bags)

E02-019, the red reflect that obtained in the CLAS ratio measurements. The blue symbols and line define the region accessible

E12-06-105: Quark distributions of SRC

Six-quark bag contribution = break down of the individual identities of the two nucleons:

- ➡ greater sharing of momentum between the quarks in the two nucleons
- on the short range correlations that provide the high-momentum part of the spectral function, and \rightarrow enhancement of the distribution of high-momentum quarks

6-quark bag calculation from P. Mulders and **Exercise** BLOVICE a region. A. Thomas, Phys. Rev. Lett. 52, 1199 (1984)

convolution of proton and

Note: for heavier nuclei, one needs a quantitative understanding of the distribution of high momentum nucleons to provide a reliable "baseline" calculation for the purely hadronic picture.

Jefferson Lab scaling at lower Q² indicates that deviations from the scaling limit should be relatively small even

Deuteron Tensor Structure Function

Spokespeople: K. Slifer (UNH), J.P. Chen (JLab), N. Kalatarians (HU), O. Rondon (UVa), P. Solvignon (JLab)

Need unpolarized electron beam and polarized target

b, Structure Function

slide from K. Slifer (UNH)

$$
b_1(x) = \frac{q^0(x) - q^1(x)}{2}
$$

- $q⁰$: Probability to scatter from a quark (any flavor) carrying momentum fraction x while the *Deuteron* is in state m=0
- q¹ : Probability to scatter from a quark (any flavor) carrying momentum fraction x while the *Deuteron* is in state |m| = 1

Nice mix of nuclear and quark physics

measured in DIS (so probing quarks), but depends solely on the deuteron spin state

Investigate nuclear effects at the level of partons!

b, Structure Function

Hoodbhoy, Jaffe and Manohar (1989)

slide from K. Slifer (UNH)

Even accounting for D-State admixture b_1 expected to be vanishingly small

Khan & Hoodbhoy, PRC 44, 1219 (1991) : $b_1 \approx O(10^{-4})$ Relativistic convolution model with binding

Umnikov, PLB 391, 177 (1997) : $b_1 \approx O(10^{-3})$ Relativistic convolution with Bethe-Salpeter formalism

slide from K. Slifer (UNH)

Spin-1 in B-field leads to 3 Zeeman sublevels

Summary

SRCs are an important component to nuclear structure:

 \sim 20% of nucleons in SRC Very few $(\sim 1\%)$ p-p, n-n pairs Limited room for other things: 3N, 4N SRCs, more exotic configurations (6q bag)

Inclusive scattering measurements from E08-014 and E12-11-112 will map out the 2Nand 3N-SRCs and produce a detailed study of their isospin dependence --> E12-11-112 is scheduled to run in February 2015

E12-06-105 will probe quark distribution in SRC = EMC effect in SRCs --> A part of the experiment is scheduled to run in 2016

Several other experiments at 12 GeV to look at SRC and EMC and their possible link.

Deuteron tensor structure function: investigation of nuclear effects at the quark level. Proposal to be re-submitted next PAC.

Jefferson Lab