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Introduction

STYLIZED FACTS OF NUCLEAR SRC?

1 How can one quantify
the number of 2N pairs prone to SRC?
the mass and isospin dependence of 2N
SRC?
the number of 3N triples prone to SRC?

2 How to connect this knowledge to
electron-scattering observables?

Inclusive A(e,e′) at 1.5 . xB (2N)
Inclusive A(e,e′) at 2.2 . xB (3N)
The magnitude of the EMC effect
Exclusive A(e,e′pp)
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Electron scattering and nuclear SRC (I)

Lots of nuclear-structure activity in computing

1 One-body momentum distribution n1 (k) k2dk : probability of
finding a nucleon with momentum in [k , k + dk ]

2 Two-body momentum distribution n2 (k12,P12) k2
12dk12P2

12dP12:
combined probability of finding a pair with relative and c.m.
momentum in [k12, k12 + dk12] and [P12,P12 + dP12]

The mean-field (0) and correlated (1) parts can be separated

n1 (k) = n(0)
1 (k) + n(1)

1 (k)

n2 (k12,P12) = n(0)
2 (k12,P12) + n(1)

2 (k12,P12)

In practice: perturbative (cluster, virial) expansions are required to
compute the n(1)

1 (k) and n(1)
2 (k12,P12) for A > 4

Nucleon-nucleon short-range correlations are highly “local” which
naturally truncates the expansions (2N� 3N)



Electron scattering and nuclear SRC (II)

One-body and two-body momentum distributions are not directly
observable and the obtained information on SRC is indirect.
Need for an effective approximation scheme to link the
electron-scattering data to SRC information!
Unitary Correlation Operator Method (UCOM): correlations are
dynamically generated by operating with Ĝ on IPM wave functions
Realistic wave functions | Ψ〉 after applying a many-body
correlation operator to a Slater determinant | Ψ〉

| Ψ 〉 =
1√

〈 Ψ | Ĝ†Ĝ | Ψ 〉
Ĝ | Ψ 〉 .

The Ĝ reflects the full complexity of the NN force but is dominated
by the central and tensor correlations



Electron scattering and nuclear SRC (III)

Dominant contributions to nuclear correlation operator

Ĝ ≈ Ŝ

 A∏
i<j=1

(
1− gc

(
rij
)

+ t̂(i , j)
) (̂

t(i , j) = ftτ
(
rij
)
Ŝij~τi · ~τj

)

A one-body operator Ω̂ =
∑A

i=1 Ω̂[1](i) recieves SRC corrections
(NPA 672 (2000) 285)

Ω̂eff = Ĝ† Ω̂ Ĝ ≈ Ω̂ +
A∑

i<j=1

([
Ω̂[1](i) + Ω̂[1](j)

]
×
[
−gc(rij) + t̂ (i , j)

]
+ h.c.

)
.

Electron-nucleon coupling receives two-body, . . . contributions

Two-nucleon knockout A(e,e′NN) is the hallmark of SRC
Many models for gc

(
rij
)

and ftτ
(
rij
)



Electron scattering and nuclear SRC (IV)
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Electron scattering and nuclear SRC (V)
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very high relative pair
momenta: central correlations
moderate relative pair
momenta: tensor correlations
|ftτ (k12)|2 ∼ |ΨD(k12)|2

|ftτ (k12)|2 is well constrained!
(D-state deuteron wave
function)
the gC (k12) looks like the
correlation function of a
monoatomic classical liquid
(reflects finite-size effects)
the gc (k12) are ill constrained!

Jan Ryckebusch (Ghent University) Mass and isospin dependence of SRC INT SRC Workshop 2013 9 / 37



Correlated part of pn two-body momentum distribution

In two-nucleon cluster approximation: how much does each pair
relative orbital configuration (nl) contribute to the correlated part of the
two-body momentum distribution n(1)

2 (k12,P12) ?

17
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FIG. 5: Result overlap integrals (103) and (106) for NP pairs in three different nuclei.
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Correlated part of pn two-body momentum distribution

In two-nucleon cluster approximation: how much does each pair
relative orbital configuration (nl) contribute to the correlated part of the
two-body momentum distribution n(1)

2 (k12,P12) ?
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Correlated part of pn two-body momentum distribution 17
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FIG. 5: Result overlap integrals (103) and (106) for NP pairs in three different nuclei.

integrated effect of the tensor correlations is larger by a factor of
≈ 10 compared to central correlations
effect of tensor correlations strongest for pn pairs with
(n = 0, l = 0)!
effect of central correlations strongest for pairs with
(n = 0, l = 0)!

Jan Ryckebusch (Ghent University) Mass and isospin dependence of SRC INT SRC Workshop 2013 10 / 37



Quantifying 2N correlations (I)

Suggestion: significance of 2N correlations in A(N,Z ) is
proportional to the number of relative S states

Requires transformation from (~r1,~r2) to
(
~r12 =

~r1−~r2√
2
, ~R12 =

~r1+~r2√
2

)
which can be easily achieved in a HO basis (αa = (nalajata))

|αaαb; JRMR〉nas =
∑
LML

∑
nl

∑
NΛ

∑
SMS

∑
TMT

1√
2 (1 + δαaαb )

×
[
1− (−1)l+S+T

]
× C (αaαbJRMR; (nlNΛ)LMLSMSTMT )

×
∣∣∣∣[nl

(
~r12
)
,NΛ

(
~R12

)]
LML,

(
1
2

1
2

)
SMS,

(
1
2

1
2

)
TMT

〉
,

∣∣nl
(
~r12
)〉

(
∣∣∣NΛ

(
~R12

)〉
) is the relative (c.m.) pair wave function
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Relative orbital momentum (l12) distribution for pn
pairs
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Relative orbital momentum l12 distribution for pp pairs
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Number of pairs with l12 = 0 (SRC-prone pairs)
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Number of pairs prone to SRC: a robust power law ∼ A1.44±0.01.
Strong isospin and spin dependence!
Some asymmetry N 6= Z effects!



Connection between stylized facts of SRC and
observables?
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Connection between stylized facts of SRC and
observables?

Dispersion of “IPM” nucleons: low virtualities v = pµpµ −M2
N (pµ

is initial momentum of the “active” nucleon)
SRC induce spatio-temporal fluctuations from mean-field
quantities
Dispersion of “SRC” nucleons is two-nucleon like and accesses a
much wider range in virtualities v
The fluctuations induced by SRC can be probed with reactions
which select large virtualities
In A(e,e′) reactions one has v ∼ −p2

m (missing momentum of the
hit nucleon)
Large virtualities in A(e,e′) for 1.5 . xB and 0.3 ≤ xB ≤ 0.7 (EMC
effect) and under those conditions the IPM part of the momentum
distributions runs out of steam - small things (SRC) can become
big!
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Virtuality of the hit nucleon in the deuteron

Relation between minimum missing momentum
∣∣pmin

m
∣∣ and

(
xB,Q2) in

deuteron
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A(e,e′) for 1.5 . xB and 2N SRCs (I)

Scaling of the A(e,e′) response
to the deuteron one

3

at large x, where scattering from nucleons below the
Fermi momentum is forbidden. If these high-momentum
components are related to two-nucleon correlations (2N-
SRCs), then they should yield the same high-momentum
tail whether in a heavy nucleus or a deuteron.

The first detailed study of SRCs in inclusive scattering
combined data from several measurements at SLAC [12],
so the cross sections had to be interpolated to identical
kinematics to form the ratios. A plateau was seen in the
ratio (σA/A)/(σD/2) that was roughly A-independent for
A ≥ 12, but smaller for 3He and 4He. Ratios from Hall B
at JLab showed similar plateaus [13, 14] and mapped out
the Q2 dependence at lowQ2, seeing a clear breakdown of
the picture for Q2 < 1.4 GeV2. However, these measure-
ments did not include deuterium; only A/3He ratios were
available. Finally, JLab Hall C data at 4 GeV [15, 16]
measured scattering from nuclei and deuterium at larger
Q2 values than the previous measurements, but the deu-
terium cross sections had limited x coverage. Thus, while
there is significant evidence for the presence of SRCs
in inclusive scattering, clean and precise ratio measure-
ments for a range of nuclei are lacking.
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FIG. 2: Per-nucleon cross section ratios vs x at θ=18◦.

Figure 2 shows the A/D cross section ratios for the
E02-019 data at a scattering angle of 18◦. For x > 1.5,
the data show the expected near-constant behavior, al-
though the point at x = 1.95 is always high because the
2H cross section approaches zero as x → MD/Mp ≈ 2.
This was not observed before, as the previous SLAC ra-
tios had much wider x bins and larger statistical uncer-
tainties, while the CLAS took ratios to 3He.

Table I shows the ratio in the plateau region for a range
of nuclei at all Q2 values where there was sufficient large-
x data. We apply a cut in x to isolate the plateau region,
although the onset of scaling in x varies somewhat with
Q2. The start of the plateau corresponds to a fixed value
of the light-cone momentum fraction of the struck nu-
cleon, αi [1, 12]. However, αi requires knowledge of the

initial energy and momentum of the struck nucleon, and
so is not directly measured in inclusive scattering. Thus,
the plateau region is typically examined as a function of
x or α2n, which corresponds to αi under the approxi-
mation that the photon is absorbed by a single nucleon
from a pair of nucleons with zero net momentum [12]. We
take the A/D ratio for xmin < x < 1.9, such that xmin

corresponds to a fixed value of α2n. The upper limit is
included to avoid the deuteron kinematic threshold.

TABLE I: r(A,D) = (2/A)σA/σD in the 2N correlation re-
gion (xmin < x < 1.9). We choose a conservative value of
xmin = 1.5 at 18◦, which corresponds to α2n = 1.275. We use
this value to determine the xmin cuts for the other angles.
The last column is the ratio at 18◦ after the subtraction of
the estimated inelastic contribution (with a systematic uncer-
tainty of 100% of the subtraction).

A θ=18◦ θ=22◦ θ=26◦ Inel.sub
3He 2.14±0.04 2.28±0.06 2.33±0.10 2.13±0.04
4He 3.66±0.07 3.94±0.09 3.89±0.13 3.60±0.10
Be 4.00±0.08 4.21±0.09 4.28±0.14 3.91±0.12
C 4.88±0.10 5.28±0.12 5.14±0.17 4.75±0.16
Cu 5.37±0.11 5.79±0.13 5.71±0.19 5.21±0.20
Au 5.34±0.11 5.70±0.14 5.76±0.20 5.16±0.22
〈Q2〉 2.7 GeV2 3.8 GeV2 4.8 GeV2

xmin 1.5 1.45 1.4

At these high Q2 values, there is some inelastic contri-
bution to the cross section, even at these large x values.
Our cross section models predicts that this is approxi-
mately a 1–3% contribution at 18◦, but can be 5–10% at
the larger angles. This provides a qualitative explanation
for the systematic 5–7% difference between the lowest Q2

data set and the higher Q2 values. Thus, we use only the
18◦ data, corrected for our estimated inelastic contribu-
tion, in extracting the contribution of SRCs.
The typical assumption for this kinematic regime is

that the FSIs in the high-x region come only from rescat-
tering between the nucleons in the initial-state correla-
tion, and so the FSIs cancel out in taking the ratios [1–
3, 12]. However, it has been argued that while the ratios
are a signature of SRCs, they cannot be used to provide
a quantitative measurement since different targets may
have different FSIs [17]. With the higher Q2 reach of
these data, we see little Q2 dependence, which appears
to be consistent with inelastic contributions, supporting
the assumption of cancellation of FSIs in the ratios. Up-
dated calculations for both deuterium and heavier nuclei
are underway to further examine the question of FSI con-
tributions to the ratios [18].
Assuming the high-momentum contribution comes en-

tirely from quasielastic scattering from a nucleon in an
n–p SRC at rest, the cross section ratio σA/σD yields
the number of nucleons in high-relative momentum pairs
relative to the deuteron and r(A,D) represents the rela-
tive probability for a nucleon in nucleus A to be in such

Hall-C, PRL108,092502(2012)

Quantify scaling behavior:

a2 (A/D) ≡ 2
A
σA (xB,Q2)
σD
(
xB,Q2

) ,
Assume that signal is
dominated by the pn
correlations!
Assume that
σepn(Q2, xB) ≈ σeD(Q2, xB)

Very naive counting (all pn
pairs contribute): a2 ∼ A
Suggestion:
a2(A/D) ∼ 2

ANpn(S=1)(A,Z )
(number of deuteron-like pn
pairs)
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A(e,e′) for 1.5 . xB and 2N SRCs (III)
Corrections to the ratio’s of
cross-section data which
affect the extracted value of
a2(A/D): unlike the
deuteron

A− 2 fragment can be
left with excitation
energy
Pairs have c.m. motion
Final-state interactions
on the ejected two
nucleons (?)
Contribution of the pp
and nn correlations
(small)

Talk of W. Cosyn (Feb.20)

Effect of A− 2 excitation energy

MC simulations of breakup of 2N
correlated pairs in 12C for ε = 5.766 GeV

and
〈
Q2〉=2.7 GeV2
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A− 2 fragment can be
left with excitation
energy
Pairs have c.m. motion
Final-state interactions
on the ejected two
nucleons (?)
Contribution of the pp
and nn correlations
(small)

Talk of W. Cosyn (Feb.20)

Effect of c.m. motion of pn pairs

MC simulations of breakup of 2N
correlated pairs in 12C for ε = 5.766 GeV

and
〈
Q2〉=2.7 GeV2
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A(e,e′) for 1.5 . xB and 2N SRCs (IV)

Corrections for c.m. motion have been applied to
the computed values of a2(A/D)
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Band is the
estimated model
uncertainty on
the c.m.
corrections!
Role of FSI?
(O. Benhar)
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Mass dependence of the pn SRC
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Mass dependence of the pn SRC
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Mass dependence of the pn SRC
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Magnitude of the EMC effect and 2N SRCs

Magnitude of EMC effect ∼ number of SRC-prone pairs!
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ANpn(S=1)(A,Z ): per nucleon number of SRC pn pairs (measure for
the magnitude of the pn SRC in AZ )
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Magnitude of the EMC effect and 2N SRCs

Magnitude of EMC effect ∼ number of SRC-prone pairs!
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Quantifying 3N correlations? (I)

3N correlations induced by products of 2N correlation functions(
ftτ (r12)Ŝ12

) [
fLS(r23)~L23 · ~S23

]
9

3 3
p

p

n

S=1, T=0, L=0

S=0, T=1, L=0

p
p

n

S=1, T=0, L=2

S=1, T=1, L=1

uncorrelated correlated

11

2 22

FIG. 12. (Color online). Illustration of three-body correlations in-
duced by tensor correlations. In the uncorrelated wave function (left)
the two nucleons 1 and 2 are in anS=1, MS=0 pair with L=0. The
tensor force leads to an admixture of anL=2 component and an align-
ment of the spins of nucleons 1 and 2 flipping the spin of nucleon 2
(right). This affects the interaction between nucleon 2 and nucleon 3.
In the uncorrelated wave function the protons 2 and 3 form anS=0,
T=1, L=0 pair. After the spin-flip of nucleon 2 this becomes anS=1,
T=1, L=1 pair.
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FIG. 13. (Color online). Two-body densities in momentum space for
4He in theS=0, T=1 andS=1, T=1 channels and the sum of both
densities.

that the two-body densities in theS=1,T=0 channel are much
larger than in theS=0,T=1 channel in this momentum region.

As already mentioned this effect can not be understood in
terms of two-body correlations. It also explains why effective
interactions that are obtained by unitary transformationsin
two-body approximation, likeVlow−k [35], the similarity renor-
malization group (SRG) [36] or the unitary correlation opera-
tor method (UCOM) [37–39], provide more binding than the
bare interaction when used in exact calculations. In two-body
approximation the interaction is transformed independently in
all spin-isospin channels. It is therefore possible to obtain the
full contribution of the tensor force in theS=1, T=0 chan-
nel without having to pay the price of the three-body corre-
lations. With increasing range of the tensor correlations (in
the UCOM approach) or a lower cut-off (in theVlow−k or SRG
approaches) the effective interaction will induce smaller three-
body correlations. Smaller three-body correlations meansthat
less nucleon pairs are moved from theS=0, T=1 to theS=1,
T=1 channel. As in the odd channel the potential is less at-

tractive and the kinetic energy is much larger, the three-body
correlations provide a repulsive contribution to the energy.

In the early seventies it has already been realized that a term
in the effective interaction called antisymmetric spin-orbit
(ALS)-force that connectsS=0 with S=1 states and changes
the relative angular momentum by∆L=1, like (l1 − l2) · (σ1 −
σ2), is able to improve spectra and transition rates insd-shell
model calculations [40]. But as such a term is not conserving
translational and Galilei invariance it is not allowed in the free
nucleon-nucleon interaction and can only be obtained by inte-
grating many-body forces over additional particle degreesof
freedom.

We want to stress the point that in our discussion no gen-
uine three-body forces are considered. The three-body cor-
relations are induced by the two-body tensor force. When
genuine three-body forces are included we of course expect
additional or modified three-body correlations.

F. Comparison with UCOM

The universality of short-range correlations is not only in-
teresting in itself but also confirms the basic assumptions that
underlie methods to derive effective low-momentum interac-
tions like UCOM,Vlow−k and SRG. We will discuss here the
UCOM approach as it provides the most direct connection to
the short-range correlations in the nucleus.

The basic idea of the UCOM approach is to imprint the
short-range central and tensor correlations into the nuclear
many-body wave functions explicitly by means of unitary cor-
relation operatorĈ. Starting from an uncorrelated trial state
|Φ〉 the correlated state

|Ψ〉 = Ĉ |Φ〉 (12)

then features the short-range central and tensor correlations.
Long-range correlations still have to be incorporated explic-
itly in the trial state|Φ〉.

To explain the action of the correlation operators we discuss
first how the relative motion of two nucleons is affected by the
correlation operators. For that we use basis states

|φ(LS)JM; T MT〉 , (13)

where the relative orbital angular momentumL is coupled
with the spinS of the two nucleons to total angular momen-
tum J,M. The isospin is coupled toT,MT . The radial part of
the relative wave function is given byφ(r).

In the S=0 channels only the central correlation operator
acts and the correlated relative wave function is given, using
the correlation functionR−(r), as

ψS JT
L (r) = 〈r(LS)JT| Ĉr |φ(LS)JT〉

=
R−(r)

r

√
R′−(r) φ(R−(r)) ,

(14)

whereas in theS=1 channels both central and tensor corre-
lation operators act and we obtain the correlated radial wave

Feldmeier,Horiuchi,Neff,Suzuki: PRC84,054003 (2011)
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Quantifying 3N correlations? (II)

seek for those wave-function
components where all three nucleons
are “close”
requires transformation from(
~r1,~r2,~r3

)
to
(
~r12,~r(12)3, ~R123

)
(Jacobi

coordinates)

~r12 =
~r1 −~r2√

2
, ~R12 =

~r1 +~r2√
2

~r(12)3 =
~R12 −

√
2~r3√

3
,

~R123 =

√
2~R12 +~r3√

3
,
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Mass dependence of number of ppn triples with(
l12 = 0, l(12)3 = 0

)
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Number of ppn triples prone to SRC effects (l12 = 0, l(12)3 = 0) :
Nppn(A) = 0.28A1.61
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A(e,e′) for 2.2 . xB and 3N SRCs

Scaling of the A(e,e′) response
to the 3He one

would demonstrate the presence of 3-nucleon (3N) SRC

and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the

NN SRC may change the value of a2 (by up to 20% for
56Fe) but not the scaling at xB < 2. For 3N SRC there are

no estimates of the effects of c.m. motion. (ii) Final state

interactions (FSI) are dominated by the interaction of the

struck nucleon with the other nucleons in the SRC [7,8].

Hence the FSI can modify �j, while such modification of

aj�A� are small since the pp, pn, and nn cross sections at

Q2 > 1 GeV2 are similar in magnitudes.

In our previous work [6] we showed that the ratios

R�A; 3He� � 3�A�Q
2;xB�

A�3He
�Q2;xB�

scale for 1:5< xB < 2 and 1:4<

Q2 < 2:6 GeV
2, confirming findings in Ref. [7]. Here we

repeat our previous measurement with higher statistics

which allows us to estimate the absolute per-nucleon prob-

abilities of NN SRC.

We also search for the even more elusive 3N SRC,

correlations which originate from both short-range NN

interactions and three-nucleon forces, using the ratio

R�A; 3He� at 2< xB � 3.

Two sets of measurements were performed at the

Thomas Jefferson National Accelerator Facility in 1999

and 2002. The 1999 measurements used 4.461 GeV elec-

trons incident on liquid 3
He, 4He and solid 12

C targets. The

2002 measurements used 4.471 GeVelectrons incident on a

solid 56Fe target and 4.703 GeV electrons incident on a

liquid 3He target.

Scattered electrons were detected in the CLAS spec-

trometer [9]. The lead-scintillator electromagnetic calo-

rimeter provided the electron trigger and was used to

identify electrons in the analysis. Vertex cuts were used

to eliminate the target walls. The estimated remaining

contribution from the two Al 15 �m target cell windows

is less than 0.1%. Software fiducial cuts were used to

exclude regions of nonuniform detector response. Kine-

matic corrections were applied to compensate for drift

chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM, to

determine the electron acceptance correction factors, tak-

ing into account ‘‘bad’’ or ‘‘dead’’ hardware channels in

various components of CLAS. The measured acceptance-

corrected, normalized inclusive electron yields on 3He,
4He, 12C, and 56Fe at 1< xB < 2 agree with Sargsian’s

radiated cross sections [10] that were tuned on SLAC data

[11] and describe reasonably well the Jefferson Lab Hall C

[12] data.

We constructed the ratios of inclusive cross sections as a

function of Q2 and xB, with corrections for the CLAS

acceptance and for the elementary electron-nucleon cross

sections:

r�A; 3He� �
A�2�ep 	 �en�

3�Z�ep 	 N�en�

3Y�A�

AY�3He�
RA
rad
; (2)

where Z and N are the number of protons and neutrons in

nucleus A, �eN is the electron-nucleon cross section, Y is

the normalized yield in a given (Q2; xB) bin, and RA
rad

is the

ratio of the radiative correction factors for 3He and nucleus

A [see Ref. [8] ]. In our Q2 range, the elementary cross

section correction factor
A�2�ep	�en�

3�Z�ep	N�en�
is 1:14
 0:02 for C

and 4
He and 1:18
 0:02 for 56

Fe. Note that the 3
He yield

in Eq. (2) is also corrected for the beam energy difference

by the difference in the Mott cross sections. The corrected
3He cross sections at the two energies agree within � 3:5%

[8].

We calculated the radiative correction factors for the

reaction A�e; e0� at xB < 2 using Sargsian’s upgraded

code of Ref. [13] and the formalism of Mo and Tsai [14].

These factors change 10%–15% with xB for 1< xB < 2.

However, their ratios, RA
rad

, for 3
He to the other nuclei are

almost constant (within 2%–3%) for xB > 1:4. We applied

RA
rad

in Eq. (2) event by event for 0:8< xB < 2. Since there

are no theoretical cross section calculations at xB > 2, we

applied the value of RA
rad

averaged over 1:4< xB < 2 to the

entire 2< xB < 3 range. Since the xB dependence of RA
rad

for 4
He and 12

C are very small, this should not affect the

ratio r of Eq. (2). For 56Fe, due to the observed small slope

of RA
rad

with xB, r�A; 3He� can increase up to 4% at xB �

2:55. This was included in the systematic errors.

Figure 1 shows the resulting ratios integrated over 1:4<

Q2 < 2:6 GeV
2. These cross section ratios (a) scale ini-

tially for 1:5< xB < 2, which indicates that NN SRCs
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FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) 4He,

(b) 12
C, and (c) 56

Fe to 3
He as a function of xB for Q2 >

1:4 GeV2. The horizontal dashed lines indicate the NN (1:5<

xB < 2) and 3N (xB > 2:25) scaling regions.

PRL 96, 082501 (2006)
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Quantify scaling behavior:

a3

(
A/3He

)
≡ 3

A
σA (xB,Q2)
σ3He

(
xB,Q2

) ,
Assume that signal is
dominated by the ppn
correlations!
Assume that
σepn(Q2, xB) ≈ σe3He(Q2, xB)
Very naive counting (all ppn
triples contribute): a3 ∼ A2

Suggestion:
a3(A/3He) ∼ 3

ANppn(A)
(number of ppn triples with
l12 = 0, l(12)3 = 0)



A(e,e′) for 2.2 . xB and 3N SRCs

Scaling of the A(e,e′) response
to the 3He one

4

a configuration. To extract the relative contribution of
2N-SRCs, we use the inelastic-subtracted ratios and ap-
ply a correction for the smearing effect of the center-
of-mass motion of the 2N-SRC pairs. The momentum
distribution of a nucleon in the 2N-SRC will be a con-
volution of the relative distribution and the CM motion
of the pair, as discussed (and extracted for Carbon) in
Ref. [19]. This smearing of the distribution enhances the
high-momentum tails in heavy nuclei, estimated to yield
a 20% enhancement for Fe [20]. Thus, for iron we remove
this 20% enhancement to the ratio, scale this correction
to the other nuclei based on an estimate of the pair mo-
tion as a function of A. We apply an uncertainty equal
to 30% of this correction (50% for 3He). In addition to
enhancing the high-momentum tails, this effect can also
yield some distortion in the shape at the largest x values.
This may explain the small x dependence in the ratios in
Fig. 2, which is larger for heavy nuclei.

TABLE II: Extracted value of R2N (A). The results from
SLAC [12] and CLAS [14] have been updated to be consis-
tent with the new extraction except for the lack of Coulomb
correction or inelastic subtraction (see text for details).

A R2N (E02-019) SLAC CLAS CM corr
3He 1.93±0.10 1.8±0.3 – 1.10±0.05
4He 3.02±0.17 2.8±0.4 2.80±0.28 1.19±0.06
Be 3.37±0.17 – – 1.16±0.05
C 4.00±0.24 4.2±0.5 3.50±0.35 1.19±0.06

Cu(Fe) 4.33±0.28 (4.3±0.8) (3.90±0.37) 1.20±0.06
Au 4.26±0.29 4.0±0.6 – 1.21±0.06
〈Q2〉 ∼2.7 GeV2 ∼1.2 GeV2 ∼2 GeV2

xmin 1.5 – 1.5
αmin 1.275 1.25 1.22–1.26

After correcting the measured ratios for the inelas-
tic contribution and the enhancement of the high-
momentum tails due to motion of the pair, we obtain
R2N , given in Tab. II, which represents the probabilty of
a nucleon in nucleus A to be in a high relative momentum
pair compared to a nucleon in the deuteron. It also shows
updated extractions from previous data after applying
C.M. motion corrections and removing the “isoscalar”
correction factors applied in the previous works. This
correction was based on the assumption that the high-
momentum tails would have greater neutron contribu-
tions for N>Z nuclei. However, the dominance of isos-
inglet pairs [19, 21, 22] implies that the high-momentum
tail will have equal proton and neutron contributions.
After making consistent extractions from all of the ex-
periments, we find a systematic difference between our
data and the CLAS results. While the CLAS data are
closer to our Q2 value than the SLAC data, their cut
on x > 1.5 corresponds to lower minimum value α2n.
If α2n is not high enough to fully isolate 2N-SRCs, one
expects the extracted ratio to be smaller. Our results
have smaller uncertainties and a more conservative αmin

cut, providing a cleaner extraction of the SRC contribu-
tions. Note that the previous experiments do not include
any corrections (or uncertainties) associated with inelas-
tic contributions or Coulomb distortion. The latter is
estimated to be up to 6% for the Fe data of Ref. [14],
and similar or larger for the lower Q2 SLAC data [12].

Previous extractions of the strength of 2N-SRCs found
a slow increase of R2N with A in light nuclei, with little
apparent A dependence for A>12. The additional correc-
tions applied in our extraction of 2N-SRC contributions
do not modify these basic conclusions, but these correc-
tions, along with the improved precision in our extrac-
tion yields a more detailed picture of the A dependence.
In a mean-field model, one would expect the probability
for two nucleons to be close enough together to form an
SRC to be proportional to the average density of the nu-
cleus [2]. However, while the density of 9Be is well below
that of 4He or 12C, and very similar to that of 3He, the
relative contribution from SRCs in 9Be is much closer to
that in 4He or 12C, suggesting that the simple expecta-
tion that SRCs will scale with density is insufficient. This
is very much like the recently observed A dependence of
the EMC effect [23], which also observed that 9Be be-
haved more like denser nuclei due to the significant clus-
ter structure in 9Be. It seems clear that cluster structure
should be extremely important in examining the short-
range structure and contribution of SRCs in nuclei, but
it has not been observed before, as previously-measured
nuclei did not have sufficient clustering to yield a devia-
tion from a simple scaling with density [14].
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FIG. 3: (Color online) The 4He/3He ratios from CLAS and
E02-019. Errors shown are the combined statistical and sys-
tematic uncertainties. The error bars shown for x ≥ 2.4 (hol-
low points) represent the central 68% confidence level region.

For A/3He ratios above x = 2, one expects the two-
nucleon contributions to become small so that 3N-SRCs
should eventually dominate. This region was examined in
the CLAS analysis [14], but the statistics did not allow
for an examination of the onset of scaling at high Q2.
They assumed that Q2 = 1.4 GeV2 would be sufficient
to cleanly isolate 3N-SRCs, but it is not clear that this is

Hall-C, PRL108, 092502

Quantify scaling behavior:

a3

(
A/3He

)
≡ 3

A
σA (xB,Q2)
σ3He

(
xB,Q2

) ,
Assume that signal is
dominated by the ppn
correlations!
Assume that
σepn(Q2, xB) ≈ σe3He(Q2, xB)
Very naive counting (all ppn
triples contribute): a3 ∼ A2

Suggestion:
a3(A/3He) ∼ 3

ANppn(A)
(number of ppn triples with
l12 = 0, l(12)3 = 0)



A(e,e′) for 2.2 . xB and 3N SRCs (II)

a3(A/3He) as a measure of the per-nucleon probability of ppn
SRC relative to 3He (calculations are NOT corrected for c.m.
motion, FSI, . . .)
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Exclusive A(e,e′pp) reactions

The fact that SRC-prone proton-proton pairs are mostly in a state with
relative orbital momentum l12 = 0 has important consequences for the
EXCLUSIVE A(e,e′pp) cross sections (PLB 383,1 (’96))!!

1 The A(e,e′pp) cross sections factorizes according to

d8σ

dε′dΩε′dΩ1dΩ2dTp2

(e,e′pp) = E1p1E2p2f−1
rec

×σeN1N2 (k+, k−,q)Fh1,h2 (P)

Fh1,h2 (P): probability to find a diproton with c.m. momentum P
and relative orbital momentum l12 = 0!

2 The A dependence of the A(e,e′pp) cross sections is soft
(much softer than predicted by naive Z (Z − 1) counting)

A(e,e′pp)
12C(e,e′pp)

≈ Npp(A)

Npp
(

12C
) × ( TA(e,e′p)

T12C(e,e′p)

)1−2

Jan Ryckebusch (Ghent University) Mass and isospin dependence of SRC INT SRC Workshop 2013 29 / 37



Factorization of the A(e,e′pp) cross sections

12C(e,e′pp) @ MAMI (Mainz) (Physics Letters B 421 (1998) 71.)

For P . 0.5 GeV c.m. motion of correlated pairs

in 12C is mean-field like
(

exp −P2

2σ2
c.m

)
! Data prove

factorization in terms of F (P) (relative l12 = 0!).
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The pp c.m. momentum distribution
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The pp c.m. momentum distribution

The c.m. momentum distributions carry information about
the quantum numbers of the pairs
The A(e,e′pp) cross sections do not scale with A2 but
rather with Ax (x<1.44) (FSI corrections!)
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C.m. motion of correlated pp pairs

DATA IS PRELIMINARY! (COURTESY OF O.
HEN AND E. PIASETZKY)

analysis of exclusive
A(e,e′pp) for 12C, 27Al,
56Fe, 208Pb
distribution of events
against P is fairly
Gaussian
σc.m.: Gaussian widths
from a fit to measured
c.m. distributions
theory lines: Gaussian
fits to computed c.m.
distributions for
l = 0,1,2

More on the A(e,e′pp) results from CLAS Data Mining: O. Hen (Expt),
M. Vanhalst (MC simulations) (Wed, Feb. 20)
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Mass dependence of the A(e,e′pp) cross sections

PREDICTION: A dependence of A(e,e′pp) c.s. is soft
(much softer than predicted by naive Z (Z − 1) counting)

A(e,e′pp)
12C(e,e′pp)

≈ Npp(A)

Npp
(

12C
) × ( TA(e,e′p)

T12C(e,e′p)

)1−2
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Mass dependence of the A(e,e′pp) cross sections

PREDICTION: A dependence of A(e,e′pp) c.s. is soft
(much softer than predicted by naive Z (Z − 1) counting)

A(e,e′pp)
12C(e,e′pp)

≈ Npp(A)
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CONCLUSIONS (I)

Stylized features of nuclear SRC: The mass
dependence of the magnitude of the 2N and 3N
correlations can be captured by some approximate
principles

The number of SRC-prone pairs in a nucleus A(N,Z ) is
proportional with the number of pairs in a relative S state (l12 = 0)!
(2N pairs are prone to correlations when they are “close”)

The number of SRC-prone pairs follows a robust power law for
pp,pn,nn: Constant × A1.44±0.01

Technique can be extended to count the number of SRC-prone
nucleon triples in a nucleus
(3N triples are prone to correlations when they are “close”)
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CONCLUSIONS (II)

Experimental evidence for this stylized features of nuclear SRC?
Inclusive A(e,e′) at 1.5 . xB (2N):
The a2 (A/D) can be predicted and these predictions are not
inconsistent with trends and magnitude of the data (corrections for
c.m. motion, FSI)
Inclusive A(e,e′) at 2.2 . xB (3N):
Fair prediction for the a3

(
A/3He

)
The magnitude of the EMC effect:
The −dREMC

dxB
is proportional with the predicted number of

SRC-prone pairs!
Exclusive A(e,e′pp):

1 scaling behavior of c.s. (∼ F (P)): CONFIRMED!
2 very soft mass dependence of c.s.: CONFIRMED!
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Universality of SRC (I)

a2(A/D) = 2
ANpn(S=1) as a measure of the per-nucleon probability

of pn SRC relative to the deuteron
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