Mass and Isospin Dependence of Short-Range Correlations

Maarten Vanhalst, Wim Cosyn, Jan Ryckebusch

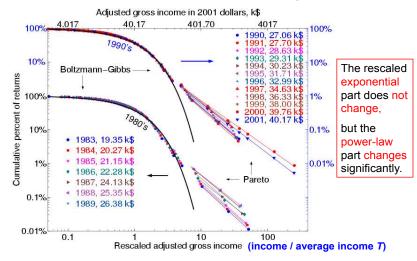
Department of Physics and Astronomy, Ghent University

Nuclear Structure and Dynamics at Short Distances (INT-13-52W)

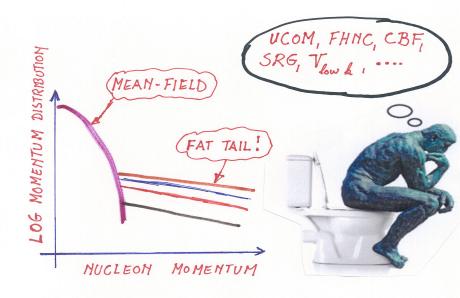
PRC84,031302(R); PRC86,044619; arXiv:1210.6175

FACILITEIT WETENSCHAPPEN

Income distribution in the USA, 1983-2001



Mass and isospin dependence of SRC



Introduction

STYLIZED FACTS OF NUCLEAR SRC?

- How can one quantify
 - the number of 2N pairs prone to SRC?
 - the mass and isospin dependence of 2N SRC?
 - the number of 3N triples prone to SRC?
- 2 How to connect this knowledge to electron-scattering observables?
 - Inclusive A(e, e') at $1.5 \lesssim x_B$ (2N)
 - Inclusive A(e, e') at $2.2 \lesssim x_B$ (3N)
 - The magnitude of the EMC effect
 - Exclusive A(e, e'pp)

Electron scattering and nuclear SRC (I)

- Lots of nuclear-structure activity in computing
 - One-body momentum distribution $n_1(k) k^2 dk$: probability of finding a nucleon with momentum in [k, k + dk]
 - **Two-body momentum distribution** n_2 (k_{12} , P_{12}) $k_{12}^2 dk_{12} P_{12}^2 dP_{12}$: combined probability of finding a pair with relative and c.m. momentum in [k_{12} , $k_{12} + dk_{12}$] and [P_{12} , $P_{12} + dP_{12}$]
- The mean-field ⁽⁰⁾ and correlated ⁽¹⁾ parts can be separated

$$n_1(k) = n_1^{(0)}(k) + n_1^{(1)}(k)$$

$$n_2(k_{12}, P_{12}) = n_2^{(0)}(k_{12}, P_{12}) + n_2^{(1)}(k_{12}, P_{12})$$

- In practice: perturbative (cluster, virial) expansions are required to compute the $n_1^{(1)}(k)$ and $n_2^{(1)}(k_{12}, P_{12})$ for A > 4
- \blacksquare Nucleon-nucleon short-range correlations are highly "local" which naturally truncates the expansions (2N \gg 3N)

Electron scattering and nuclear SRC (II)

- One-body and two-body momentum distributions are not directly observable and the obtained information on SRC is indirect.
- Need for an effective approximation scheme to link the electron-scattering data to SRC information!
- Unitary Correlation Operator Method (UCOM): correlations are dynamically generated by operating with $\widehat{\mathcal{G}}$ on IPM wave functions
- Realistic wave functions $|\overline{\Psi}\rangle$ after applying a many-body correlation operator to a Slater determinant $|\Psi\rangle$

$$\mid \overline{\Psi} \mid = \frac{1}{\sqrt{\langle \Psi \mid \widehat{\mathcal{G}}^{\dagger} \widehat{\mathcal{G}} \mid \Psi \mid}} \, \widehat{\mathcal{G}} \mid \Psi \mid .$$

■ The $\widehat{\mathcal{G}}$ reflects the full complexity of the NN force but is dominated by the central and tensor correlations

Electron scattering and nuclear SRC (III)

Dominant contributions to nuclear correlation operator

$$\widehat{\mathcal{G}} \approx \widehat{\mathcal{S}} \left[\prod_{i < j = 1}^{A} \left(1 - \frac{g_c(r_{ij})}{\hat{r}_{ij}} + \widehat{t}(i, j) \right) \right] \qquad \left(\widehat{t}(i, j) = \frac{f_{t\tau}(r_{ij})}{\hat{S}_{ij}} \widehat{\tau}_i \cdot \widehat{\tau}_j \right)$$

■ A one-body operator $\widehat{\Omega} = \sum_{i=1}^{A} \widehat{\Omega}^{[1]}(i)$ recieves SRC corrections (NPA 672 (2000) 285)

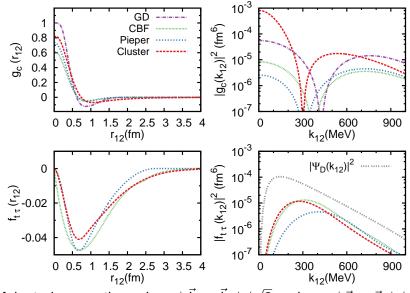
$$egin{aligned} \widehat{\Omega}^{\mathit{eff}} &= \widehat{\mathcal{G}}^{\dagger} \; \widehat{\Omega} \; \widehat{\mathcal{G}} pprox \widehat{\Omega} + \sum_{i < j = 1}^{A} \left(\left[\widehat{\Omega}^{[1]}(i) + \widehat{\Omega}^{[1]}(j) \right] \right. \\ & \times \left[-g_c(r_{ij}) + \widehat{t}(i,j) \right] + h.c. \right). \end{aligned}$$

Electron-nucleon coupling receives two-body, \dots contributions

Two-nucleon knockout A(e, e'NN) is the hallmark of SRC

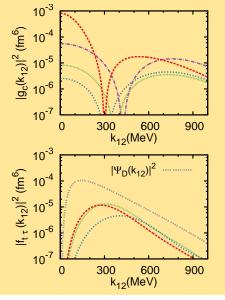
■ Many models for $g_c(r_{ij})$ and $f_{t\tau}(r_{ij})$

Electron scattering and nuclear SRC (IV)



Adopted conventions: $k_{12} = |\vec{k}_1 - \vec{k}_2|/\sqrt{2}$ and $r_{12} = |\vec{r}_1 - \vec{r}_2|/\sqrt{2}$

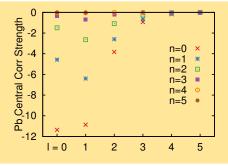
Electron scattering and nuclear SRC (V)

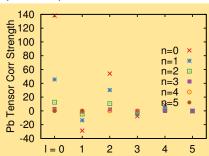


- very high relative pair momenta: central correlations
- moderate relative pair momenta: tensor correlations
- $|f_{t\tau}(k_{12})|^2 \sim |\Psi_D(k_{12})|^2$
- $|f_{t\tau}(k_{12})|^2$ is well constrained! (*D*-state deuteron wave function)
- the $g_C(k_{12})$ looks like the correlation function of a monoatomic classical liquid (reflects finite-size effects)
- the $g_c(k_{12})$ are ill constrained!

Correlated part of pn two-body momentum distribution

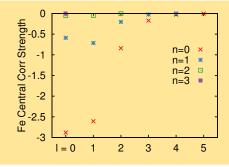
In two-nucleon cluster approximation: how much does each pair relative orbital configuration (nl) contribute to the correlated part of the two-body momentum distribution $n_2^{(1)}(k_{12},P_{12})$?

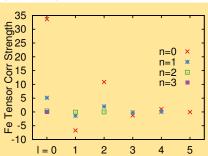




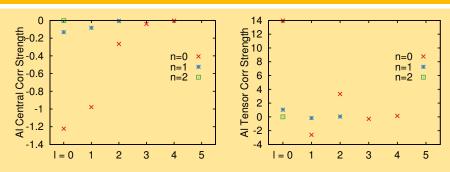
Correlated part of pn two-body momentum distribution

In two-nucleon cluster approximation: how much does each pair relative orbital configuration (nl) contribute to the correlated part of the two-body momentum distribution $n_2^{(1)}(k_{12},P_{12})$?





Correlated part of pn two-body momentum distribution



- integrated effect of the tensor correlations is larger by a factor of \approx 10 compared to central correlations
- effect of tensor correlations strongest for pn pairs with (n = 0, l = 0)!
- effect of central correlations strongest for pairs with (n = 0, l = 0)!

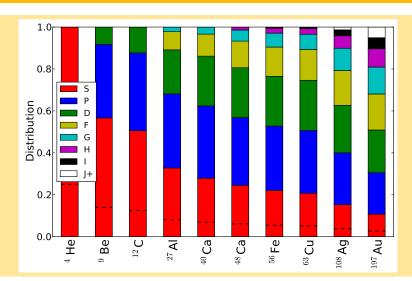
Quantifying 2N correlations (I)

- Suggestion: significance of 2N correlations in A(N, Z) is proportional to the number of relative S states
- Requires transformation from (\vec{r}_1, \vec{r}_2) to $\left(\vec{r}_{12} = \frac{\vec{r}_1 \vec{r}_2}{\sqrt{2}}, \vec{R}_{12} = \frac{\vec{r}_1 + \vec{r}_2}{\sqrt{2}}\right)$ which can be easily achieved in a HO basis $(\alpha_a = (n_a l_a j_a t_a))$

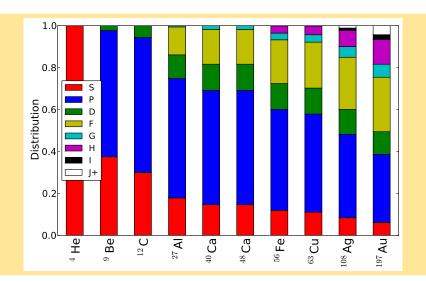
$$\begin{split} &|\alpha_{a}\alpha_{b};J_{R}M_{R}\rangle_{nas} = \sum_{LM_{L}}\sum_{nl}\sum_{N\Lambda}\sum_{SM_{S}}\sum_{TM_{T}}\frac{1}{\sqrt{2\left(1+\delta_{\alpha_{a}\alpha_{b}}\right)}}\\ &\times\left[1-(-1)^{l+S+T}\right]\\ &\times\mathcal{C}\left(\alpha_{a}\alpha_{b}J_{R}M_{R};(nlN\Lambda)LM_{L}SM_{S}TM_{T}\right)\\ &\times\left[\left[nl\left(\vec{r}_{12}\right),N\Lambda\left(\vec{R}_{12}\right)\right]LM_{L},\left(\frac{1}{2}\frac{1}{2}\right)SM_{S},\left(\frac{1}{2}\frac{1}{2}\right)TM_{T}\right\rangle\;, \end{split}$$

 $|nl(\vec{r}_{12})\rangle$ ($|N\Lambda(\vec{R}_{12})\rangle$) is the relative (c.m.) pair wave function

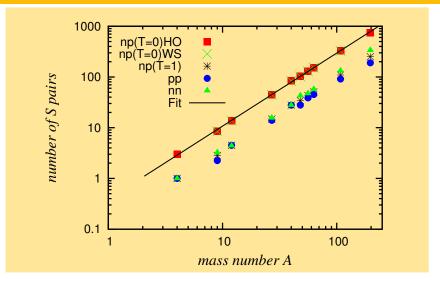
Relative orbital momentum (I_{12}) distribution for pn pairs



Relative orbital momentum I_{12} distribution for pp pairs

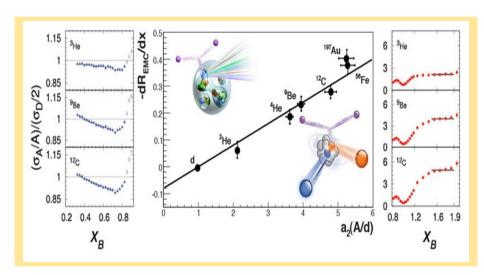


Number of pairs with $I_{12} = 0$ (SRC-prone pairs)



- Number of pairs prone to SRC: a robust power law $\sim A^{1.44\pm0.01}$.
- Strong isospin and spin dependence!
- Some asymmetry $N \neq Z$ effects!

Connection between stylized facts of SRC and observables?

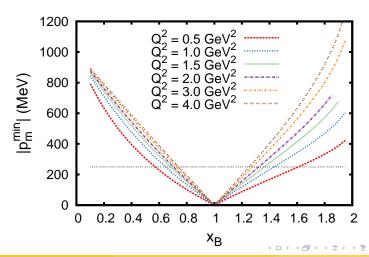


Connection between stylized facts of SRC and observables?

- Dispersion of "IPM" nucleons: low virtualities $v = p^{\mu}p_{\mu} M_N^2$ (p^{μ} is initial momentum of the "active" nucleon)
- SRC induce spatio-temporal fluctuations from mean-field quantities
- Dispersion of "SRC" nucleons is two-nucleon like and accesses a much wider range in virtualities v
- The fluctuations induced by SRC can be probed with reactions which select large virtualities
- In A(e, e') reactions one has $v \sim -p_m^2$ (missing momentum of the hit nucleon)
- Large virtualities in A(e, e') for $1.5 \le x_B$ and $0.3 < x_B < 0.7$ (EMC effect) and under those conditions the IPM part of the momentum distributions runs out of steam - small things (SRC) can become big!

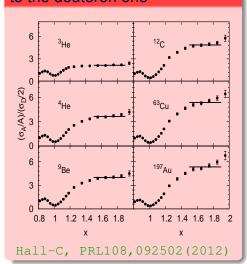
Virtuality of the hit nucleon in the deuteron

Relation between minimum missing momentum $|p_m^{min}|$ and (x_B, Q^2) in deuteron



A(e, e') for 1.5 $\lesssim x_B$ and 2N SRCs (I)

Scaling of the A(e, e') response to the deuteron one



Quantify scaling behavior:

$$a_{2}\left(A/D\right) \equiv \frac{2}{A} \frac{\sigma^{A}\left(x_{B}, Q^{2}\right)}{\sigma^{D}\left(x_{B}, Q^{2}\right)} \; ,$$

- Assume that signal is dominated by the pn correlations!
- Assume that $\sigma_{epn}(Q^2, x_B) \approx \sigma_{eD}(Q^2, x_B)$
- Very naive counting (all pn pairs contribute): $a_2 \sim A$
- Suggestion: $a_2(A/D) \sim \frac{2}{A} N_{pn(S=1)}(A, Z)$ (number of deuteron-like pn pairs)

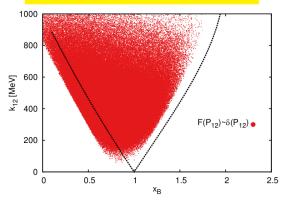
A(e, e') for 1.5 $\lesssim x_B$ and 2N SRCs (III)

Corrections to the ratio's of cross-section data which affect the extracted value of $a_2(A/D)$: unlike the deuteron

- A 2 fragment can be left with excitation energy
- Pairs have c.m. motion
- Final-state interactions on the ejected two nucleons (?)
- Contribution of the pp and nn correlations (small)

Talk of W. Cosyn (Feb.20)

Effect of A-2 excitation energy



MC simulations of breakup of 2N correlated pairs in 12 C for $\epsilon=5.766$ GeV and $\langle Q^2 \rangle$ =2.7 GeV²

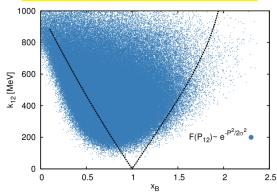
A(e, e') for 1.5 $\lesssim x_B$ and 2N SRCs (III)

Corrections to the ratio's of cross-section data which affect the extracted value of $a_2(A/D)$: unlike the deuteron

- A 2 fragment can be left with excitation energy
- Pairs have c.m. motion
- Final-state interactions on the ejected two nucleons (?)
- Contribution of the pp and nn correlations (small)

Talk of W. Cosyn (Feb.20)

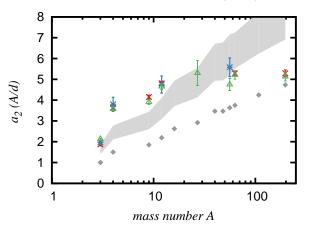
Effect of c.m. motion of pn pairs



MC simulations of breakup of 2N correlated pairs in 12 C for $\epsilon=5.766$ GeV and $\langle Q^2 \rangle$ =2.7 GeV²

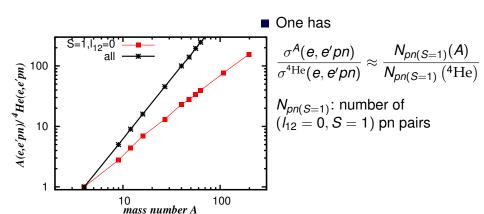
A(e, e') for 1.5 $\lesssim x_B$ and 2N SRCs (IV)

Corrections for c.m. motion have been applied to the computed values of $a_2(A/D)$

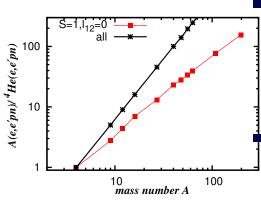


- C.m. corrections from a Monte-Carlo based on $A(e, e') \sim$ $\int d\vec{P}_{12}F^{pn}(P_{12})$
- Band is the estimated model uncertainty on the c.m. corrections!
- Role of FSI? (O. Benhar)

Mass dependence of the pn SRC



Mass dependence of the pn SRC



One has

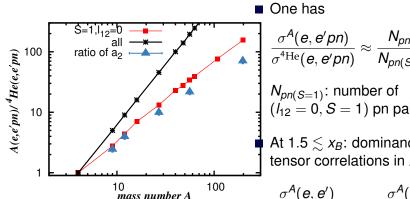
$$\frac{\sigma^{A}(e,e'pn)}{\sigma^{^{4}\mathrm{He}}(e,e'pn)} \approx \frac{N_{pn(S=1)}(A)}{N_{pn(S=1)}\left(^{4}\mathrm{He}\right)}$$

$$N_{pn(S=1)}$$
: number of $(I_{12}=0, S=1)$ pn pairs

At 1.5 $\lesssim x_B$: dominance of pn tensor correlations in A(e, e')

$$\begin{array}{ll} \frac{\sigma^{A}(\textbf{\textit{e}},\textbf{\textit{e}}')}{\sigma^{^{4}\text{He}}(\textbf{\textit{e}},\textbf{\textit{e}}')} & \approx & \frac{\sigma^{A}(\textbf{\textit{e}},\textbf{\textit{e}}'p\textit{\textit{n}})}{\sigma^{^{4}\text{He}}(\textbf{\textit{e}},\textbf{\textit{e}}'p\textit{\textit{n}})} \\ & \approx & \frac{\textbf{\textit{A}}\times\textbf{\textit{a}}_{2}\left(\textbf{\textit{A}}\right)}{\textbf{\textit{4}}\times\textbf{\textit{a}}_{2}\left(^{4}\text{He}\right)} \end{array}$$

Mass dependence of the pn SRC



MASS DEPENDENCE OF THE "CORRELATED" STRENGTH IS MUCH SOFTER THAN NZ!

$$rac{\sigma^{A}(e,e'pn)}{\sigma^{^{4}\mathrm{He}}(e,e'pn)} pprox rac{N_{pn(S=1)}(A)}{N_{pn(S=1)}} (^{4}\mathrm{He})$$

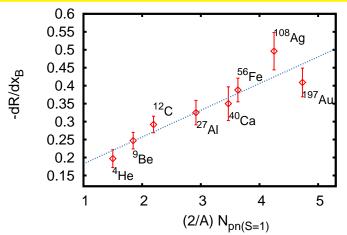
$$N_{pn(S=1)}$$
: number of $(I_{12}=0,S=1)$ pn pairs

At 1.5 $\leq x_B$: dominance of pn tensor correlations in A(e, e')

$$rac{\sigma^{A}(e,e')}{\sigma^{^{4}\mathrm{He}}(e,e')} \; pprox \; rac{\sigma^{A}(e,e'pn)}{\sigma^{^{4}\mathrm{He}}(e,e'pn)} \ pprox \; rac{A imes a_{2}\left(A
ight)}{4 imes a_{2}\left(^{4}\mathrm{He}
ight)}$$

Magnitude of the EMC effect and 2N SRCs

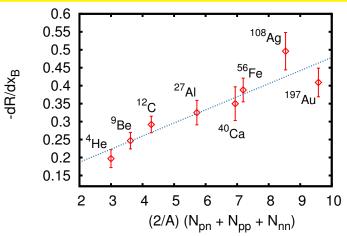
Magnitude of EMC effect ∼ number of SRC-prone pairs!



 $\frac{2}{A}N_{pn(S=1)}(A,Z)$: per nucleon number of SRC pn pairs (measure for the magnitude of the pn SRC in AZ)

Magnitude of the EMC effect and 2N SRCs

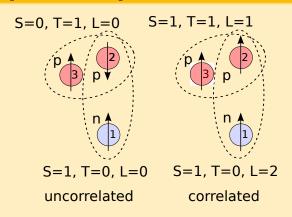
Magnitude of EMC effect \sim number of SRC-prone pairs!



 $\frac{2}{A}$ ($N_{pn(S=1)} + N_{pn(S=0)} + N_{nn} + N_{pp}$): per nucleon number of SRC NN pairs (measure for the magnitude of the NN SRC in ^{A}Z)

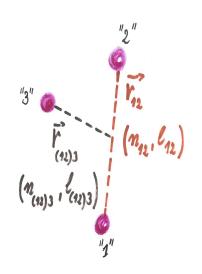
Quantifying 3N correlations? (I)

3N correlations induced by products of 2N correlation functions $\left(f_{t\tau}(r_{12})\widehat{S_{12}}\right)\left[f_{LS}(r_{23})\vec{L}_{23}\cdot\vec{S}_{23}\right]$



Feldmeier, Horiuchi, Neff, Suzuki: PRC84, 054003 (2011)

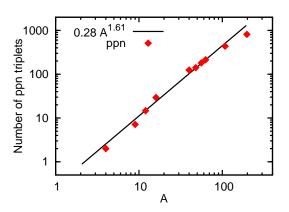
Quantifying 3N correlations? (II)



- seek for those wave-function components where all three nucleons are "close"
- requires transformation from $(\vec{r}_1, \vec{r}_2, \vec{r}_3)$ to $(\vec{r}_{12}, \vec{r}_{(12)3}, \vec{R}_{123})$ (Jacobi coordinates)

$$\begin{split} \vec{r}_{12} &= \frac{\vec{r}_1 - \vec{r}_2}{\sqrt{2}}, \ \vec{R}_{12} = \frac{\vec{r}_1 + \vec{r}_2}{\sqrt{2}} \\ \vec{r}_{(12)3} &= \frac{\vec{R}_{12} - \sqrt{2}\vec{r}_3}{\sqrt{3}}, \\ \vec{R}_{123} &= \frac{\sqrt{2}\vec{R}_{12} + \vec{r}_3}{\sqrt{3}}, \end{split}$$

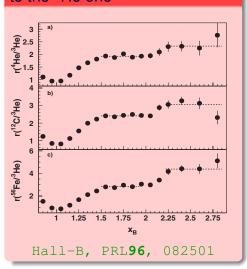
Mass dependence of number of ppn triples with $(I_{12} = 0, I_{(12)3} = 0)$



■ Number of ppn triples prone to SRC effects ($I_{12} = 0, I_{(12)3} = 0$): $N_{ppn}(A) = 0.28A^{1.61}$

A(e, e') for $2.2 \lesssim x_B$ and 3N SRCs

Scaling of the A(e, e') response to the ${}^{3}\text{He}$ one



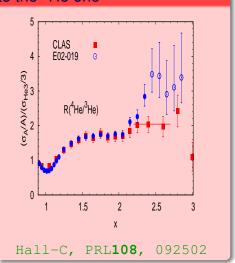
Quantify scaling behavior:

$$a_{3}\left(\emph{A}/^{3}\emph{He}
ight)\equivrac{3}{\emph{A}}rac{\sigma^{\emph{A}}\left(\emph{x}_{\emph{B}},\emph{Q}^{2}
ight)}{\sigma^{^{3}\emph{He}}\left(\emph{x}_{\emph{B}},\emph{Q}^{2}
ight)}\;,$$

- Assume that signal is dominated by the ppn correlations!
- Assume that $\sigma_{epn}(Q^2, x_B) \approx \sigma_{e^3He}(Q^2, x_B)$
- Very naive counting (all ppn triples contribute): $a_3 \sim A^2$
- Suggestion: $a_3(A/^3He) \sim \frac{3}{A}N_{ppn}(A)$ (number of ppn triples with $I_{12} = 0, I_{(12)3} = 0$)

A(e, e') for $2.2 \lesssim x_B$ and 3N SRCs

Scaling of the A(e, e') response to the ${}^{3}\text{He}$ one



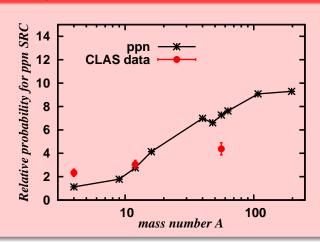
Quantify scaling behavior:

$$a_3 \left(A/^3 He \right) \equiv \frac{3}{A} \frac{\sigma^A \left(x_B, Q^2 \right)}{\sigma^{^3 He} \left(x_B, Q^2 \right)} \; ,$$

- Assume that signal is dominated by the ppn correlations!
- Assume that $\sigma_{epn}(Q^2, x_B) \approx \sigma_{e^3He}(Q^2, x_B)$
- Very naive counting (all ppn triples contribute): $a_3 \sim A^2$
- Suggestion: $a_3(A/^3He) \sim \frac{3}{A}N_{ppn}(A)$ (number of ppn triples with $l_{12} = 0, l_{(12)3} = 0$)

A(e, e') for 2.2 $\lesssim x_B$ and 3N SRCs (II)

 $a_3(A)^3He)$ as a measure of the per-nucleon probability of ppn SRC relative to 3He (calculations are NOT corrected for c.m. motion, FSI, . . .)



Exclusive A(e, e'pp) reactions

The fact that SRC-prone proton-proton pairs are mostly in a state with relative orbital momentum $I_{12} = 0$ has important consequences for the EXCLUSIVE A(e, e'pp) cross sections (PLB 383,1 ('96))!!

1 The A(e, e'pp) cross sections factorizes according to

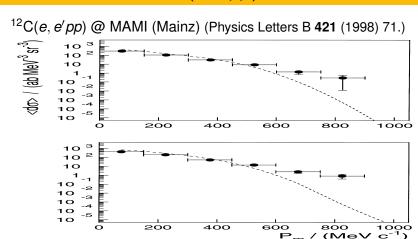
$$\begin{split} &\frac{d^8\sigma}{d\epsilon'd\Omega_{\epsilon'}d\Omega_1d\Omega_2dT_{p_2}}(e,e'pp) = E_1p_1E_2p_2f_{rec}^{-1}\\ &\times \sigma_{eN_1N_2}\left(k_+,k_-,q\right) F_{h_1,h_2}\left(P\right) \end{split}$$

 $F_{h_1,h_2}(P)$: probability to find a diproton with c.m. momentum P and relative orbital momentum $I_{12}=0$!

The A dependence of the A(e, e'pp) cross sections is soft (much softer than predicted by naive Z(Z-1) counting)

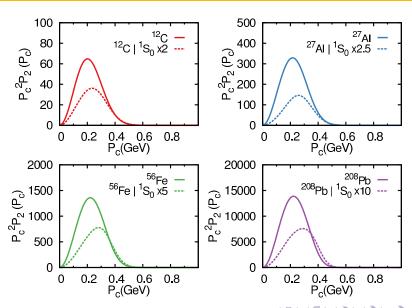
$$\frac{A(e,e'pp)}{^{12}C(e,e'pp)} \approx \frac{N_{pp}(A)}{N_{pp}(^{12}C)} \times \left(\frac{T_A(e,e'p)}{T_{^{12}C}(e,e'p)}\right)^{1-2}$$

Factorization of the A(e, e'pp) cross sections

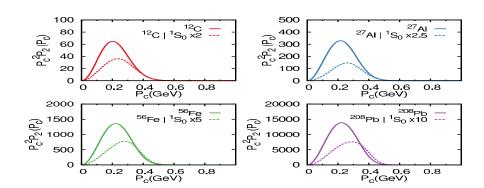


For $P\lesssim 0.5$ GeV c.m. motion of correlated pairs in ^{12}C is mean-field like $\left(\exp\frac{-P^2}{2\sigma_{c.m}^2}\right)!$ Data prove factorization in terms of F(P) (relative $J_{12}=0!$).

The pp c.m. momentum distribution



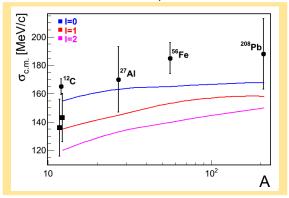
The pp c.m. momentum distribution



- The c.m. momentum distributions carry information about the quantum numbers of the pairs
- The A(e, e'pp) cross sections do not scale with A^2 but rather with $A^{x (x<1.44)}$ (FSI corrections!)

C.m. motion of correlated pp pairs

DATA IS PRELIMINARY! (COURTESY OF O. HEN AND E. PIASETZKY)

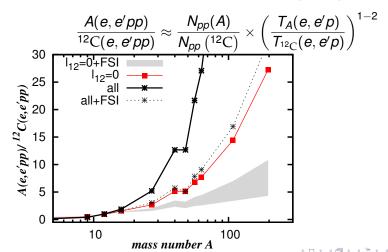


- analysis of exclusive A(e, e'pp) for ¹²C, ²⁷Al, ⁵⁶Fe. ²⁰⁸Pb
- distribution of events against P is fairly Gaussian
- σ_{c.m.}: Gaussian widths from a fit to measured c.m. distributions
- theory lines: Gaussian fits to computed c.m. distributions for l = 0, 1, 2

More on the A(e, e'pp) results from CLAS Data Mining: O. Hen (Expt), M. Vanhalst (MC simulations) (Wed, Feb. 20)

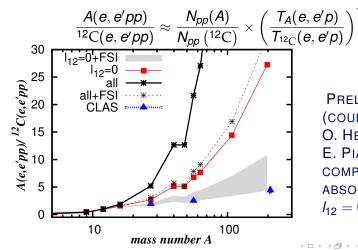
Mass dependence of the A(e, e'pp) cross sections

PREDICTION: A dependence of A(e, e'pp) c.s. is soft (much softer than predicted by naive Z(Z-1) counting)



Mass dependence of the A(e, e'pp) cross sections

PREDICTION: A dependence of A(e, e'pp) c.s. is soft (much softer than predicted by naive Z(Z-1) counting)



Preliminary data (Courtesy of O. Hen and E. Piasetzky) Compatible with Absorption on $I_{12}=0$ pairs!

CONCLUSIONS (I)

Stylized features of nuclear SRC: The mass dependence of the magnitude of the 2N and 3N correlations can be captured by some approximate principles

- The number of SRC-prone pairs in a nucleus A(N, Z) is proportional with the number of pairs in a relative S state $(I_{12} = 0)!$ (2N pairs are prone to correlations when they are "close")
- The number of SRC-prone pairs follows a robust power law for pp,pn,nn: $Constant \times A^{1.44\pm0.01}$
- Technique can be extended to count the number of SRC-prone nucleon triples in a nucleus
 - (3N triples are prone to correlations when they are "close")

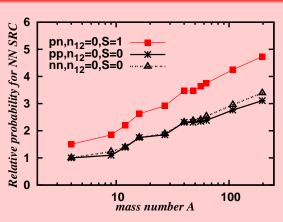
CONCLUSIONS (II)

Experimental evidence for this stylized features of nuclear SRC?

- Inclusive A(e, e') at $1.5 \lesssim x_B$ (2N): The a_2 (A/D) can be predicted and these predictions are not inconsistent with trends and magnitude of the data (corrections for c.m. motion, FSI)
- Inclusive A(e, e') at $2.2 \lesssim x_B$ (3N): Fair prediction for the a_3 ($A/^3$ He)
- The magnitude of the EMC effect: The ^{-dR}_{EMC} is proportional with the predicted number of SRC-prone pairs!
- **Exclusive** A(e, e'pp):
 - 1 scaling behavior of c.s. ($\sim F(P)$): CONFIRMED!
 - very soft mass dependence of c.s.: CONFIRMED!

Universality of SRC (I)

 $a_2(A/D) = \frac{2}{A}N_{pn(S=1)}$ as a measure of the per-nucleon probability of pn SRC relative to the deuteron



Universality of SRC: $n_2^{(1)}(k_{12}\gg,P_{12}\approx 0)\approx N_{pn(S=1)}n^{(D)}(k_{12})F^{pn}(P_{12})$

