INT Workshop INT-13-52W February 11 - 22, 2013

JOINT INT/JLAB WORKSHOP ON

Probing Protons in Asymmetric Nuclei

at SHORT DISTAN

E GIVI CE

VOVII.

Eli Piasetzky Tel Aviv University, ISRAEL

Triple – coincidence measurements:

JLab

(4-5 GeV electron)

EVA/BNL

(6-10 GeV/c protons)

Triple Coincident ¹²C(p,ppn), ¹²C(e,e'pp), ¹²C(e,e'pn)

More than ~90% of all nucleons with momentum ≥ 300 MeV / c belong to 2N-SRC.

Probability for a nucleon with momentum 300-600 MeV / c to belong to np-SRC is ~18 times larger than to belong to pp-SRC.

TEL AUIV UNIVERSITY

At 300-600 MeV/c there is an excess strength in the np momentum distribution due to the strong correlations induced by the tensor NN potential.

C.m. motion of correlated pp pairs

DATA IS PRELIMINARY! (COURTESY OF O. HEN AND E. PIASETZKY)

- analysis of exclusive
 A(e, e'pp) for ¹²C, ²⁷Al,
 ⁵⁶Fe, ²⁰⁸Pb
- distribution of events against P is fairly Gaussian
- σ_{c.m.}: Gaussian widths from a fit to measured c.m. distributions
- theory lines: Gaussian fits to computed c.m. distributions for l = 0, 1, 2

More on the A(e, e'pp) results from CLAS Data Mining: O. Hen (Expt), M. Vanhalst (MC simulations) (Wed, Feb. 20)

Mass dependence of the A(e, e'pp) cross sections

How to check this hypothesis experimentally ?

Problem: One body momentum distributions are not observables.

1) Define proxy which is :

Reflect well the difference between proton and neutron momentum distributions .

Can be well determined experimentally

2) Compare the experimental observable to calculation.

(e, e' p) SRC event selection

- x_B > 1.2
- $300 < |P_{miss}| < 600 \text{ MeV/c}$
- Θ_{pq} < 25°
- 0.62 < |P|/|q| < 0.96
- $M_{miss} < 1.1 \text{ GeV/c}^2$

No acceptance correction is required in the supper ratio of A / C

Compare the experimental observable to calculations

$$n_{p}(k) = \begin{cases} \eta \cdot n_{MF}(k) & k \leq k_{0} \\ \frac{a2(A) \cdot n_{d}(k)}{2 \cdot Z_{A}} & k \geq k_{0} \end{cases}$$

$$n_{n}(k) = \begin{cases} \eta \cdot n_{MF}(k) & k \leq k_{0} \\ \frac{a2(A) \cdot n_{d}(k)}{2 \cdot N_{A}} & k \geq k_{0} \end{cases}$$

 η is determined by requesting:

 $\int_0^\infty n(k)k^2dk = 1$

Consider 3 models for $n^{M.F.}(k)$:

- **Ciofi and Simula**
- Wood-Saxon
- Serot-Walecka

Consider 2 values

300 MeV/c

consequences: isospin dependence of the EMC effect

SRC

A proton will contribute more than a neutron.

3

5

 $a_2(A/d$

Isovector EMC effect explains the NuTeV anomaly

I. C. Cloët,^{1, *} W. Bentz,² and A. W. Thomas³

PRL 106, 052301 (2011), also PRC 85 047301 (2012)

Isovector EMC effect explains the NuTeV anomaly

I. C. Cloët,^{1,*} W. Bentz,² and A. W. Thomas³

$$R_{PW} = \frac{\sigma_{NC}^{\nu A} - \sigma_{NC}^{\rho A}}{\sigma_{CC}^{\nu A} - \sigma_{CC}^{\rho A}},\tag{1}$$

where A represents the target, NC indicates weak neutral current and CC weak charged current interaction.

 $R_{PW} \xrightarrow{N=Z} \frac{1}{2} - \sin^2 \Theta_W.$

NuTev collaboration extracted fro iron:

 $\sin^2 \Theta_W = 0.2277 \pm 0.0013 (\text{stat.}) \pm 0.0009 (\text{syst.}).$

Which is 3 σ different from the word average.

Work above claimed that an isospin-dependent EMC effect, larger for u-quark than for d-quark can solve this discrepancy.

consequences: isospin dependence of the EMC effect

VERSITY

- Average kinetic energy calculated using GFMC wave functions is much larger than previous calculations and\or (e,e'p) measurements.
- Not bad, but since the average separation energy is just proportional to the average nucleon virtuality.

consequences: implication for neutron stars

•At the core of neutron stars, most accepted models assume :

~95% neutrons, ~5% protons and ~5% electrons (β -stability).

•Neglecting the np-SRC interactions, one can assume three separate Fermi gases (n p and e).

At T=0
$$k_{Fermi}^{n} = k_{Fermi}^{p} + k_{Fermi}^{e} \qquad k_{Fermi}^{p} = k_{Fermi}^{e} = \left(\frac{N_{p}}{N_{n}}\right)^{1/3} k_{Fermi}^{n}$$

For
$$\rho = 5\rho_{0}$$
, $k_{Fermi}^{n} \approx 500$ MeV/c, $k_{Fermi}^{p} = k_{Fermi}^{e} \approx 250$ MeV/c
Pauli blocking prevent
direct n decay
 $n \rightarrow p + e + \overline{v}_{e}$
 k_{Fermi}^{n} k_{Fermi}^{p} k_{Fermi}^{e}
What happen at T≠0 with a strong SR np interaction ?
Connecting Neutron Star Observations to Nuclear Forces
Andrew Steiner

consequences: Asymmetric ultracold Fermi gas mixtures in traps

Allow "quantum simulation" of asymmetric nuclei and neutron stars With a control over the asymmetry level ,and the interaction strength.

> What are the properties of a spin polarized unitary Fermi gas? Aurel Bulgac

I thanks the organizers for a great workshop at a wonderful location

