Two Nucleon SRC and Inclusive Electron Scattering off Nuclei

Chiara Benedetta Mezzetti

Department of Chemistry and Industrial Chemistry, University of Pisa and INSTM, Firenze and INFN, Sezione di Perugia -ITALY-

Joint INT/Jlab Workshop 13-52W Nuclear Structure and Dynamics at Short Distances February, 11 – 15, 2013 Seattle, WA - USA -

OUTLINE

OUTLINE • Short Range Correlations and A(e,e')X cross section ratios

o A new approach to the treatment of inclusive cross section

- o Inclusive cross section ratios
- o Conclusions

Chiara Benedetta Mezzetti

SHORT RANGE CORRELATIONS AND A(E,E')X CROSS SECTION RATIOS

A CARTOON OF SRC IN NUCLEI

What is the percentage of correlated nucleons in nuclei?

SEMI-ESCLUSIVE SCATTERING OFF ¹²C(P,P'PN) AND ¹²C(E,E'PN)

Originally published in *Science* Express on 29 May 2008 *Science* 13 June 2008: Vol. 320. no. 5882, pp. 1476 - 1478 DOI: 10.1126/science.1156675

REPORTS

Probing Cold Dense Nuclear Matter

R. Subedi,¹ R. Shneor,² P. Monaghan,³ B. D. Anderson,¹ H. Benaoum,^{7,8} F. Benmokhtar,⁹ W. Boeglin,¹⁰ J.-P. Cher S. Frullani,¹³ F. Garibaldi,¹³ S. Gilad,³ R. Gilman,^{11,15} O. D. W. Higinbotham,^{11*} T. Holmstrom,¹⁷ H. Ibrahim,¹⁸ R. Ig L. J. Kaufman,^{9,21} A. Kelleher,¹⁷ A. Kolarkar,²² G. Kumba N. Liyanage,¹⁴ D. J. Margaziotis,⁴ P. Markowitz,¹⁰ S. Mar B. Moffit,¹⁷ C. F. Perdrisat,¹⁷ E. Piasetzky,² M. Potokar,²⁵ G. Rosner,²⁷ A. Saha,¹¹ B. Sawatzky,^{14,28} A. Shahinyan,² V. Sulkosky,¹⁷ G. M. Urciuoli,¹³ E. Voutier,²⁴ J. W. Watson S. Wood,¹¹ X.-C. Zheng,^{3,6,14} L. Zhu³¹

INI

These experiments provide quantitative information on 2NC only. <u>What about 3NC?</u>

CROSS SECTION RATIOS AT CLAS

DIFFERENT EXPERIMENTS WITH CONSISTENCE RESULTS **SLAC 1993 CLAS 2006** E02 - 019 (2012) Egiyan et al, Fomin et al, Frankfurt et al, PRL 108 (2012) 092502 PRC48(1993) 2451 PRL96 (2006) 082501 'He, "He) 3 $2/A \sigma^{Fe}(x,Q^2)/\sigma^D(x,Q^2)$ $(\sigma_A/A)/(\sigma_D/2)$ 6 Fe,³He) 0.8 1.2 1.4 1.6 1.8 1.2 1.4 1.6 1.8 х x

What is the meaning of $R_{2N} = (2\sigma_A)/(A\sigma_D)_?$

Is it the ratio of probabilities of 2NC in A and D? Is it the ratio of the momentum distributions of A and D? Is it an effect of FSI? Something else?

Α	R_{2N} (E02-019)	SLAC	CLAS	F_{CM}
³ He	$1.93 {\pm} 0.10$	$1.8 {\pm} 0.3$	1	$1.10{\pm}0.05$
⁴ He	$3.02 {\pm} 0.17$	$2.8 {\pm} 0.4$	$2.80 {\pm} 0.28$	$1.19{\pm}0.06$
Be	$3.37 {\pm} 0.17$	-	—	$1.16{\pm}0.05$
С	$4.00 {\pm} 0.24$	$4.2{\pm}0.5$	$3.50 {\pm} 0.35$	$1.19{\pm}0.06$
Cu(Fe)	$4.33 {\pm} 0.28$	(4.3 ± 0.8)	(3.90 ± 0.37)	$1.20 {\pm} 0.06$
Au	$4.26 {\pm} 0.29$	$4.0 {\pm} 0.6$	_	$1.21 {\pm} 0.06$
$\langle Q^2 \rangle$	$\sim 2.7 \text{ GeV}^2$	$\sim 1.2 \text{ GeV}^2$	$\sim 2 \text{ GeV}^2$	
x_{\min}	1.5		1.5	
α_{\min}	1.275	1.25	1.22 - 1.26	

A NEW APPROACH TO THE TREATMENT OF INCLUSIVE CROSS SECTIONS

<u>The 2NC scaling variable</u>

B^A(q,y_{cw})/F^A(q,y_{cw}) C. Ciofi degli Atti, ³He C.B. Mezzetti ο Phys. Rev. C79, 051392(R), (2009) $B^{A}(q, y_{CW}) \sqcup 0$ y_{cw} [MeV/c] <mark>h</mark>iara Benedetta Mezzett -400 -200 -600 $F^{A}(q, y_{CW}) \approx f^{A}(y_{CW})$ $-\frac{1}{2\pi y_{CW}}\frac{dF^{A}(q, y_{CW})}{dy_{CW}}, k = |y_{CW}|$ 13 $n^A(k)$

C. Ciofi degli 10⁻ 1.2 - 3.1 ⁵⁶Fe Atti, G.B. West, ∑Me √Me 10⁻² 10⁻³ PLB 458 (1999) 1.9 - 4.1 ¹²C 447: * 1.2 - 2.3 ⁴He 3/02/201 C. Ciofi degli ,[™]10⁻⁴, N^OS(b) Atti, C.B. $Q^2 (GeV^2)$ Mezzetti, Phys. $(at x_{B}=1)$ Rev. C79, 051392(R), 2.2 - 5.0 ²H (2009)200 -400 -200 -600 O y_{cw} [MeV/c] $F^{A}(q, y_{CW}) \square C^{A} f^{D}(y_{CW})$ Confirmation of the theoretically prediction $n^A(k) \square C^A n^D(k)$ 14 Deuteron scaling

What about 3N SRC?

The 3NC scaling variable

$$Y = y_3$$

$$v + M_A = \sqrt{\left(M_{A-1} + \langle E_{A-1}^*(y_3) \rangle_{3NC}\right)^2 + y_3^2} + \sqrt{m^2 + \left(y_3 + q\right)^2}$$

Minimum longitudinal momentum of a nucleon with removal energy $E = E_{min} + \langle E_{A-1}^{*}(k) \rangle_{3NC}$

INT,13/02/2015

<u>Scaling variables vs. x_{Bi}</u>

Our new inclusive cross section

INCLUSIVE CROSS SECTION RATIOS AND PLATEAUX

Chiara Benedetta Mezzetti

Distorted nucleon momentum

distributions

Alvioli, Ciofi, Kaptari, Mezzetti, Morita, Scopetta, PRC85 (2012) 021001

23

INT,13/02/2013

Chiara Benedetta Mezzetti

24

<u>2NC preliminary results</u>

 $\cos \theta_{qp_m} = 1$

INT,13/02/2013

Chiara Benedetta Mezzetti

25

Conclusions

The FSI in a nucleus A in the region of 1.5<x<2 seems to be confined within the 2N correlated pair.
This is clearly illustrated by the scaling function of the

➤This is clearly illustrated by the scaling function of the Deuteron which includes exactly the FSI and which shows the same behaviour of the scaling function of complex nuclei

>This is furthermore illustrated by the calculation of distorted momentum distributions which appear to be the rescaled deuteron distorted momentum distributions.

≻If FSI factorizes (not yet demonstrated) the plateuax ratios do not exhibit any FSI.