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Neutrino oscillation experiments

T2K experiment
“Long baseline” L~ 295km Pv,—v,)=l- sin” 26y Sinz(
Peak neutrino beam energy ~0.6 GeV
Measure: v, appearance (05)

and v, disappearance (Am?;, 0,5)

Am:, L )
J

: : . [ Ami,L
P(v, —Vv,)=sin’26,;sin’ 6,, sz( 42 )

1 Infer oscillation parameters from

rate change and distortion of Ev

spectrum

" Measure v, rate* at L=0

" Measurev,, v, rate at
L~oscillation maximum
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oscillation maximum L/E (km/GeV) *In practice also measure

any v, background rates at L=0
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Simple view of neutrino interactions at T2K
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At E,,~0.6 GeV, most neutrino interactions are Charged Current Quasi Elastic (CCQE)
= Neutrino flavor determined from flavor of outgoing lepton
= |nfer neutrino properties from the muon (or electron) momentum and angle:
2
m2 — m'; — mi + Qm’nEM 2 body kinematics

EQE — P A the target
o = T ssumes the targe
2(m n Eu T Py COS (9#) nucleon is at rest
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Complication #1: unknown incident neutrino energy
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T2K’s neutrino flux is from O<E, <30 GeV
For each interaction, incident neutrino energy is unknown

= Near detector can constrain event rate in lepton kinematic bins, but relationship to
neutrino kinematics is model dependant
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Complication #2: nuclear targets
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Neutrino detectors need to be large and massive (o ~1038cm? ~101 mb)

= Water Cherenkov: proton is below Cherenkov threshold, only lepton information
= Near detectors can measure exiting particles, like p, m, but...
= Nuclear target

= Exiting nucleons experience “final state interactions”, e.g. pion absorption
leads to observable “CCQE-like” interaction, also proton rescattering

= Representation of nucleus also affects lepton kinematics
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Neutrino interaction models

Two “event generators” used: NEUT and GENIE

Generators often factorize the interactions

= CCQE (QE) is simulated separately from A resonance (CC1m)

= FSlis applied to all particles after the interaction has occurred

CCQE:
= Llewelyn-Smith formalism for neutrino-nucleon interaction
= single, quasi-free nucleon interaction

= Relativistic Fermi Gas (RFG) model: bound nucleon targets treated as
independent particles subject to binding energy and Fermi momentum

= Pauli blocking may be added as an empirical parameter
CClm:

= Rein-Seghal model for single pion production

Work ongoing to improve what is currently implemented
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How electron scattering data helps

Two “event generators” used: NEUT and GENIE

Generators often factorize the interactions

= CCQE (QE) is simulated separately from A resonance (CC1m)

= FSlis applied to all particles after the interaction has occurred

CCQE:

= Llewelyn-Smith formalism for neutrino-nucleon interaction
= Electron scattering is used to infer vector piece of cross section (CVC)

= Relativistic Fermi Gas (RFG) model: bound nucleon targets treated as
independent particles subject to binding energy and Fermi momentum

= Pauli blocking may be added as an empirical parameter
CClm:

= Rein-Seghal model for single pion production
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How electron scattering data helps

Electrons can be used on a variety of targets

= Determine nuclear potential (RFG, dotted) to alternate spectral functions (Benhar
et al, dashed) and Ankowski et al (solid) from electron scattering on carbon

700 MeV, 32°
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Electrons are at a known energy

How electron scattering data helps

= |Inclusive data can be used probe what processes contribute to the cross section
= Contribution to “dip” (w~500 MeV) region from meson exchange currents? (MEC)

e

quasi-elastic

1 1 1

inclusive cross section

0.0
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Lepton interacts can
interact on more than a
single nucleon

= Two body current multi-
nucleon knock-out

" “n-p, n-h”

Benhar, Day, Sick
Rev.Mod.Phys80(2008)189

Van Orden and Donnelly
Annals.Phys.131(1981)451

600 800 1000
electron energy loss w
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How electron scattering data helps

Electrons are at a known energy

= |Inclusive data can be used probe what processes contribute to the cross section

= Contribution to “dip” (w~500 MeV) region from meson exchange currents? (MEC)
Preliminary EO4—001, E = 4.629, © = 10.661

Relative _pross section

Q* = 0.68 (GeV/c)?
—| £ =0.98
Rt = 1,7

Total

QE

Inelastic

TE

QE transverse

QE Longitudinal

Neutrino experimentalists
consider empirical models,
like:

= Transverse component of

.,
-,
e

JLab (JUPITER) data

QE cross section is
enhanced (“TEM” model)
due to MEC

 ® Parameterization based
on electron scattering
results

A. Bodek, H. Budd, E. Christy, Eur. Phys. J. c71i

J Carlson, J. Jourdan, R. Schiavilla
K Mahn INT workshop
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How electron scattering data helps

Electrons are at a known energy

= |Inclusive data can be used probe what processes contribute to the cross section
= Contribution to “dip” (w~500 MeV) region from meson exchange currents? (MEC)

d*e/d0dE (nb/sr)*MeV™

AR R AR RS LR R R
- 0" 4 Neutrino experimentalists
- 5:.:—(-)?20 MeV 1 also consider “microscopic”
- 1 models, like:
= = Describes QE and A region
1 and also reproduces
1 neutrino data
1 = Predicts lepton
1 kinematics, but nucleon
, 1 multiplicity and kinematics
i are modeled separately
N S PR PP o N P DT P B
100 150 200 250 " (}?36)) 350 400 450

Gil, Nieves, Oset, Nucl.Phys.A 627 (1997/)
Nieves et al, Phys. Rev. C83 (2011) 045501
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Why do multinucleon processes matter?

O. Lalakulich, K. Gallmeister, U. Mosel

Phys. Rev. C86, 014614 (2012)
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model 11 4

MEC introduces a bias between
reconstructed variables and true E,

= Partially covered by current uncertainties
on CC1m identified as CCQE-like

= Preliminary implementation of Nieves’
model show a small bias in oscillation
parameters determined from v,

02 03 04 05 06 07 08 09 disappearance, likely no effect on v,
e appearance yet
sum -
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What else can electron data help with?

T2K near detectors measure neutrino interactions on a range of targets

Materials: carbon, water, brass, lead
Proton momentum from ~0.4-1.2 GeV/c, also investigating charge at vertex
Pion momentum from ~0.2-3 GeV/c

Predominantly forward (or backward) acceptance
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Constrain final state interaction models by comparing e data on diff’t targets:

What is the multiplicity of protons, neutrons out of QE (and MEC?) interactions?
What is the kinematics of protons, pion out of A resonance interactions?

2/20/13
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Electron scattering data has already had a large impact on neutrino
oscillation experiments

= Known beam energy, isolation of nuclear effects has informed neutrino
event generators

® Improved nuclear model

= Determination of vector form factors

Still more to be gleaned from electron scattering data
= Precision neutrino oscillation experiments need help isolating the effect of
final state interactions on the exiting particles from the interaction

= Further characterizes MEC interactions, validates QE, A models

= Complementary to measurements made at the near detector

K Mahn, INT workshop 4



To discuss with DM collaboration

What kind of data is available?
= What beam energies? Any comparable to T2K?
= What target data?
= Expect: D, C, Pb, Sn, Fe, Al, though for what energies?
= What final state information is available?
= Expect: p/pi/K/e PID, 8-144deg for charged particles
= Are there any CLAS limitations on multiplicity?

A few T2K collaborators have had fruitful collaborations within CLA
* Challenge (as usual) is often manpower

Is it possible (or sensible) to implement neutrino event generators’ eA as an
event generator in the CLAS simulation?

= GENIE has this functionality now; also has a basic CLAS setup
= Cross sections are the most broadly useful, but also useful to have
detector-specific information from generator to guide or focus effort



To discuss with DM collaboration

Logistics...
= Will there be a standardized format for data releases?
= How do we present data in many kinematic variables/dimensions?
= What tools/resources will be available to interested parties?
= Will there be a analysis core at JLab we should participate in?
= Understanding complicated acceptance, radiative corrections, and
details of simulation will be important to produce meaningful results
= Are there details on how the CLAS simulation is set up?
= How is the elastic scattering region is implemented? Nuclear target
elastic part may be very different from neutrino generators, and may
affect how MEC studies are interpreted.
= What will be the approval process for using this data with CLAS
collaboration?
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CCQE cross section

From G. Purdue, INSS 2012

. do M?G% cos? . 2 N S—u o o (s —u)’
v Cross Section: 102 = STE2 [A (Q )+ B (Q ) 2 +C (Q ) T A
e Early formalism by Llewellyn-Smith. * Q2is the 4&-momentum transfer (-q3).

. e sand uare Mandelstam variables.
* Vector and Axial-Vector Components.

e The lepton vertexis known; the
* Vector piece can be lifted from nucleon structure is parameterized
(“easier”) electron scattering data. with 2 vector (F,, F,) and 1 axial-vector
(Fa) form factors.
* We have to measure the Axial

biece. e Form factors are f(Q2?) and encoded

inA, B, and C.

C. H. Llewellyn Smith, Phys. Rept. 3 261 (1972).

R. Johnson, http: /www.physics.uc.edu/~johnson/Boone/cross _sections/free_nucleon/quasielastic.pdf
= Axial piece is parameterized as a dipole form factor with 1 free parameter, M,
= M, affects normalization and shape of Q? distribution

= Shape fits are sometimes done to minimize dependence on flux model
2/21/13 K Mahn, MEC intro



Measurements of CCQE cross section

Tuned MC '~
and data
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MiniBooNE

= Spherical Cherenkov detector
=*\Wide band beam Ev~0.8 GeV
= Select muon using decay
electron

= Reject CC1m by rejecting 2nd
decay electron

MiniBooNE experiment at ~1 GeV reports a higher value of M,, due to excess of
events at high Q? arXiv:1002.2680, Phys. Rev. D81, 092005 (2010)

= Persists after dedicated correction to CC1m background (dot dashed)

* Higher values of “M,(effective)” is also reported by other experiments on non
deuterium target material and represents the differential CCQE cross section well
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Current neutrino-nucleon cross sections

Nieves — Nulnt 2012 conference. Full model + MEC does as well as a higher

M, (effective) https://indico.fnal.gov/conferenceDisplay.py?confld=5361
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J. Nieves Friday morning, Nulnt2012 conference
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L. Alvarez-Ruso, Saturday morning, Nulnt2012 conference

B State of the art calculations describe better the data without QI:SI
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B Possible problems in:
B 7 production model on the nucleon
B medium modifications of amplitudes
W FSI
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L. Alvarez-Ruso, Saturday morning,

Nulnt2012 conference

B GENIE vs GIBUU NCr°
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B Largest discrepancies seem to be in the cross sections before FSI
B At the nucleon level, both compatible with ANL/BNL data!
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K. McFarland, Saturday morning, Nulnt2012 conference

D, : Disappointing Data? \{

Understanding

"

 |deally to resolve our pion
conundrum, we would go to
reliable nucleon level data
» Unfortunately, we don’t have it.

ANL
BNL (no aN cut) +—a—

o2k @ Hernandez -
f

1 1 1 | 1

0 -
M | ! 5 6O

« eNvs. eA data:4 our only hope for
exclusive states? (MINERVA is
proposing a D, target, but for DIS.)
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