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How to determine the size of the
Interaction region in electro-
production from the dependence
on the photon virtuality.



Photons are useful probes of strong dynamics

at any Q?
Scattering from pointlike The ¢? dependence reflects the
sources at LT in the Bj limit effective size of the interaction region

6(q* — o) x 1/g°

Deep Inelastic Scattering

l ~ L o, |

Drell-Yan
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Example: Deuteron photodisintegration

The 90° break-up cross section at

P ¢°=0 agrees with dimensional
y* scaling for E, > | GeV.
q VAVAVAVAVA
Does this mean that only compact
; configurations of the deuteron,

with R < 0.2 fm, contribute to this
process?

Fr 40 (yd ~pn) / kb GeV "

CM
20 ¢ dt If so, expect no g*>-dependence
: o Jefferson for g> < 1 GeV~>.
1.5 : 0 A SLAC
o X Ref. 16 .
a This can be formulated more
0.5 | ¢ o0 precisely through a Fourier
0.0 Bl e L transform to coordinate space.
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Relativistic effects on photon resolution

From DIS, recall that resolution of photon with ¢> = — O~ is different in the
longitudinal and transverse directions:

1 1 1
ATHN—Z— ATJ_N—

QQ 2mup, @

Hence we can accurately measure only the transverse size (impact parameter b):

./ (62{72;)12 e "% (p(p1) n(p2)|J*(q)|D(p))

e g 1s frame dependent: Is there a preferred frame?
e p1tp2 = p+q depends on ¢g: What is pi(q), p2(q) ?
e Does the result depend on p ?
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Recall: Nucleon Form Factors

Using Lorentz and gauge invariance, the
scattering amplitude 1s expressed in terms
of the Dirac /1 and Pauli F» form factors,
which depend on O? = — ¢

ANy = o+ 3¢, NJH0)|p — ¢, \)

=u(p+ 54, \) [ F1(Q7 )" + F2(Q2)%0Wq"] u(p — 54, \)

The photon scatters from quarks, which are ultrarelativistic.

e How can we measure the quark postions with resolution Ab ~ 1/0, when
the photon 1itself 1s not moving faster than the quarks?
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Boosting to the Infinite Momentum Frame

The photon probes a hadron at an instant of x'= 7+z, not at an instant in ¢

The Light Front = Infinite Momentum Frame

pPL
$Eh

Quark motion in the transverse direction slows down in the IMF: v | =

A hadron state of momentum P* = P+ P° defined at given x* = x" + x°
can be expanded in terms its quark and gluon Fock states as

‘P—i_ PJ_, =0 = Z H[/ ay f;:3}16ﬂ'35(1 — ZCEZ) 5(2)(2 kz)

n,A; 1=1

XU (T, Kiy Ni) s i PT 2Py + ki, i)

where the LF wave functions 1,.(x;, k;,A\;) are independent of the hadron
momentum P, P, .

Note: The partons carry fractions x; of the hadron momentum P,

like in non-relativistic physics with m; /M— x;.
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Inclusive Deep Inelastic Scattering (DIS)

In the DIS cross section the photon vertices of
the amplitude and amplitude™ are separated by a
light-like distance z: z*, z1 — 0; z~ ~ 1/(2mxa)).

The parton distributions can be expressed in
terms of LF wave functions:

fan (T Z H / dﬁ%igk 16736(1 — in)(s@)(z k;)
n, ;,k 1=1 ) )
><5(a7 — $k)|¢n(.’lﬁz, ki, )\z)|2

Notes: — The parton distribution is defined in the Bj limit (O? — )

— The above expression 1s approximate, since rescattering of
the struck parton (described by the Wilson line) 1s neglected.
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The Generalized Parton Distributions: GPD's

The GPD’s are non-forward matrix elements of the PDF operator:

1 — _imxr —
o [ drme™ T AP 4 SAG(= )y T WG, =5 la(Gr) P = 5 A) =, 0
= Lu(PﬂL TA) |H(z, &ty + E(z, ¢ t)icﬁLV& w(P — 1A)
2P+ Y Y Y Y 2m 9

The GPD amplitudes can be accessed experimentally through the Deeply
Virtual Compton Scattering cross section at leading twist: O — oo,

DVCS: eN—>e'—|—y—|—N

Through A, , the GPD’s contain

information about the parton
distributions in transverse space.
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Impact parameter distributions via the GPD's

Extrapolating the GPD to ¢ = 0 and Fourier transforming 1t wrt. ¢,

Soper (1977)
d? . dz— . _ Burkardt (2000)
fap(@,8) = / (27:)126%(1.1)/ 8_7T€sz+z ” Diehl (2002)

X <P+7 ;Q7)\‘q(0+ _lz O_]_)”Y q(0+7 %Z_,OJ_)’P+,—%Q,)\>

the GPD can be expressed in terms of X X
LF wi’s with the struck quark N N
at transverse position b + 1 o
(still ignoring the Wilson line): (P",—341) 6PD (x,8=0,q1) (P7,34.)
fq/N z,b) Z H[/d:vz/47rd2b] ( sz);csz(szb(L
n,\;,ki=1 1 ?

“Center of

x  02(b—by)d(x — xp) [ (2, b;, \;)[? momentum”

; at the origin
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Relation of GPD's to Form Factors

When GPD’s are integrated over x the GPD reduces to a form factor, since

/_ O; dz exp(izPtz/2) o 5(2 ) ZSO

ensures that the photon vertices coalesce.
The GPD’s vanish for | x | > 1, hence the relations reduce to

1
/ deH(x,&,t) = F{'(t)  Dirac

—1

1
/ deF(x, & t) = FJ(t)  Pauli

—1

10

This gives constraints on GPD models and a great experimental simplification:

Form factors are easy to measure (compared to GPD’s!).
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Impact parameter picture of GPD's inherited by FF's

Fourier transforms of form factors give
charge densities 1n impact parameter space:

q

oo(b) / 9 0 10bQ) F(QY A=q

— e H/dxz/47rd2b I—sz —5(2) ZQJZ

n, zak

x 03 (b — by) [P (i, bi, Ai)
No more Wilson line: Fock expansion 1s “exact”

No more “leading twist”: Resolution in b ~ 1/gmax
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Using measured form factors, find the

b, Lfm]

empirical quark
transverse densities
In heutron

pa", pr" [1]fm?]

Miller (2007)
Carlson and Vanderhaeghen (2008)

-15 -1 -o.sbo os 1 15 U™
X

data : Bradford, Bodek, Budd, Arrington (2006)
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Generalization to transition Form Factors

In the case of transition form factors, the density 1s no longer positive definite
but the charge distribution 1s still interesting:

“It is found that the transition from the proton to its first radially excited state is dominated

by up quarks in a central region of around 0.5 fm and by down quarks in an outer band
which extends up to about 1 fm.”

Tiator and Vanderhaeghen (2009)

Y'N — P11(1440)
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Generalization to any y* transition  PHandS. Kurki
arXiv:1101.4810

e //2 e
1

M(EN = U f) = —e*a(l')yu(l) - /d4w6_iq'x<f|J“(w)lN(p)>

q2

Need to identify J current contribution for

LF Fock expansion: E.g.: /=~ = oo at fixed ¢ N N
J*(z) = eqq(@)rta(@) = 244} (2)q () q+ (¥) = % v~ 7" q(x)

Lo dk* . " 4y —ilata Eot \ ilktzo
as0%0,@) = [ B0 bkt @ (ke T i @ ()]

where the LF spinors satisfy: ui(kJr7 MNup (BT, 0) = kT,

Fourier transform to impact parameter: [p™,p) = 4w / d’bePbpt b)
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Expand into LF Fock states:

pt,b) = H/ d; 47rd2b 1—in)52(b—2xibi)

n 1=1

s

x Py (x5,b; — b) | | b (zipt, b:)d"()a'()|0)

5 0 bl T OIN G b)) = 7550%(by = ba) Ay (=ba

A (b) = ﬁ Z[ﬁ /01 dz; /47rd2b7;]5(1 =Y w)E (Y wiby)

< f (i b)) (20, bi) Y exd® (by — b)

k
1s diagonal 1n Fock states » 1n frames where ¢g" =0 (= no pair production)
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FT of v* matrix element in momentum space

In the frame: p = (p+,p_a——Q)
q = (O+7q_7q)
pr = (p",p” +q 7,39

we have

[ et el OING) = Arw (b

where Asn(b) 1s given by the previous overlap of Fock amplitudes, which
are universal features of N and f.

The b-distribution may be studied as a function of the final state £, providing
information about the transverse size of the contributing Fock states.

When f consists of several hadrons their relative momenta must be
consistent with the LF Fock expansion at all py=¢g +p
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Example: f = m (p1) N(p2)
In order to conform with the Lorentz covariance of LF states, at any pr :

NoT ) = [ [ ¥ e RN (e2)

where W (x, k) is a freely chosen function of the relative variables x, k :

pizxp}r P, =2py + k
p;:(l—x)p}% p2:(1—x)pf—k;

With x, k being independent of py, this defines the pion and nucleon
momenta p1, p> at all photon momenta gq.

The |*N(p}.p;; ¥7)) state has an LF Fock expansion of standard form, in
terms of the pion and nucleon Fock amplitudes.
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Tllustration (1): y*+ u — W+ vy

1
The QED matrix element AY] , = 2 (1P, M)V (P2, M) [T (0)[e(p, A = 3))

expressed 1n terms of the relative variables x, k 1s:

- | B e_ -k B e_-(k—(1—ux)q)
A alg,k) = 26\/E[(l —z)?m?+ k> (1—2z)?m?+ (k—(1- l’)Q)QI

where ey - k = —\et?*|k|/v/2. The Fourier transform gives:

i me

e K<mb>exp( f_’;)]

In the first term the y* interacts with the initial muon, which by definition is at
b = 0. The second term reflects the distribution of the final muon in transverse
space.

e_-k

(1—z)2m?2 + k” () -

AT (b, k) = 26\/3_3[

This expression agrees exactly with the wave function overlap formula.
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Illustration (2): y*+ u = w+vy

. k-b,
Choosing ~ W(2' k) = (2’ — z)\/2(1 — ) exp(—z )

1l —=x

corresponds to fixing the impact parameter b, " of the final muon. Then

ALy (b by) = /z(l -z ¢+ L, (@,b),) [—5<2>(b) + 6@ (b - b;)]

which again conforms with the general overlap expression of LF Fock
state wave functions.
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Fourier transform of the cross section

The y*+N — f amplitudes have dynamical phases (resonances,...).
=> Calculating their Fourier transforms requires a partial wave analysis.

However, one can Fourier transform the measured cross section itself.

Then the b-distribution reflects the difference between the impact parameters
of the photon vertex in the amplitude and its complex conjugate:

d*q  _iqp
(2m)2°

For |f) = [m(p1)N(p2)), parametrized with the relative variables x and k,

1 2

2F<f(pf)\ﬁ(0)|N(p)>

_ / b, s (by) A%y (b, — b)

d’q _..p 4 do({N — {'nN)
SfN(b;x’k):/(zTye U T By dr 2k

B o 1
 4m3 (1 — x)

/deq Agn (bg; x, k) Afy(bg — bz, k)
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Illustration (3): o(Y*+ w = w + v)

For the QED example considered above the Fourier transform of the cross
section can be done analytically:

k*/2 k| cos(¢y, — ¢r) im exp (—ii2)
: 42 (2) _
St (b;x, k) = 4e :z;{ T opme k2]25 (b) (1 2)2m2 1 k2 27 — K (mb)
xp ( — i &L
+ 417T - 121(— ;;“) | Ko(mb) — Smb Kl(mb)”

The 3 terms correspond to 2, 1 and 0 of the y* interactions occurring on the
initial muon.

The imaginary part arises from an angular correlation between b and k .
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Remarks 22

In y*N — 7N, expect the b-distribution to narrow with the relative
transverse momentum k& between the 7 and the .

Eey, g? (yd ~pn) / kb GeV"

o(yD — pn) o« E? at large 50

angles, suggesting compact :
states. A measurement of the ¢°- :
dependence would allow a direct 1.0 }
measurement of the transverse :

® Jefferson
0,A SLAC
X Ref. 16

1.5 F
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VN — KA E.(GeV)

In heavy quark production: VN — DA,

the b-distribution should narrow with the quark mass if the photon couples
directly to the heavy quarks.

One may compare the b-distribution in ordinary and diffractive events.
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Summary (1)

Intuitively, the ¢ -dependence of a virtual photon interaction gives information
about the charge distribution in space.

The target 1s 1lluminated “instantaneously” only when the charge carriers are
non-relativistic. This is the case 1n electron microscopy.

Quarks move 1nside hadrons with = velocity of light.
The photon phase 1s constant at fixed Light-Front time x™ =7+ z

In the IMF = LF formulation, transverse quark velocities are non-relativistic

2-dim. FT’s of form factors describe charge densities in transverse space

Unlike pdf’s, no “leading twist” limit 1s implied.

The resolution in impact parameter 1s expected to be Ab ~ 1/0ax

Paul Hoyer Seattle 12 February 2013



24

Summary (2)

The formulation can be generalized to transition form factors y*N — N*
and to any (multi-hadron) final (and initial) state: y*A — f

FT of the cross section 6(y*N — f) gives the distribution in the transverse
distance b between the photon vertex in T(y*N — f) and [T(y*N — f)|*
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