

Recent Results from Exclusive Studies of Two-Nucleon SRCs Or Hen Tel-Aviv University

In Collaboration With:

- H. Hakobyan, W. Brooks (UTSM)
- L. B. Weinstein (ODU)
- S. Gilad (MIT)
- E. Piasetzky (TAU)

February 11 -22, 2013 Nuclear Structure and Dynamics at Short Distances

2N-SRC 101

2N-SRC are pairs of nucleons that:

- Are close together (overlap) in the nucleus
- Have high relative momentum and low c.m. momentum, where high and low is compared to the Fermi momentum (k_F) of the nucleus

Exclusive pp-SRC Studies

Measurement Concept:

- 1. Electron knockout of high momentum proton
- 2. Reconstruct the initial momentum of the knockout proton
- Look for the emission of a recoil proton with momentum that balance that of the struck proton

Previous Results – ¹²C

- Exclusive ¹²C(p,2pn) and ¹²C(e,e'pN) measurements probe the structure of the high momentum tail of the nuclear wave function
- Results show that for 300<P_{miss}<600 MeV/c all nucleons are part of 2N-SRC pairs

Data-Mining Analysis

(main) Analysis Goals

- 1. pp-SRC universality in large A nuclei
 - 1. Existence
 - 2. Characteristics (c.m. and relative momentum dist.)
 - 3. Probabilities
- 2. Extend $|P_{miss}|$ coverage transition to scalar force?
- 3. Nuclear Transparency FSI in SRC kinematics [O. Hen et al., arXiv: 1212.5343]
- 4. Quantum Numbers Extraction?

EG2 Experiment

- Run at 2004 in Hall-B of Jefferson Lab
- 5 GeV electron beam
 Deuterium+Solid targets simultaneously

<u>Data Collected for:</u> Deuterium + ¹²C/⁵⁶Fe/²⁰⁸Pb

²⁷AI

Target Setup: Deuterium + interchanging solid foils

(e,e'p) Event Selection

1. Kinematics - $x_B > 1.2$ - $|P_{miss}| > 300 \text{ MeV/c}$ → $Q^2 > 1.5 \text{ GeV/c}^2$

(e,e'p) Event Selection

1. Kinematics

- x_B > 1.2
 - |P_{miss}| > 300 MeV/c
 → Q² > 1.5 GeV/c²
 2. Leading Proton

 $- \theta_{pq} > 25^{\circ}$ - 0.62 < |P|/|q| < 0.96

(e,e'p) Event Selection

1. Kinematics

- $x_B > 1.2$ - $|P_{miss}| > 300 \text{ MeV/c}$ $\rightarrow Q^2 > 1.5 \text{ GeV/c}^2$

- 2. Leading Proton
 - $\theta_{pq} > 25^{\circ}$ 0.62 < |P|/|q| < 0.96
- 3. Missing Mass

- M_{miss} < m_N + m_{π}

x_B and Resonance Excitations

First Data-Mining Paper

Measurement of transparency ratios for protons from short-range correlated pairs

O. Hen,¹ H. Hakobyan,^{2,43} R. Shneor,¹ E. Piasetzky,¹ L.B. Weinstein,³ W.K. Brooks,^{2,39} S. May-Tal Beck,¹ S. Gilad,⁴ I. Korover,¹ A. Beck,¹ K.P. Adhikari,³ M. Aghasyan,²² M.J. Amaryan,³ S. Anefalos Pereira,²² J. R. Arrington,⁵ H. Baghdasaryan,^{41,3} J. Ball,¹¹ M. Battaglieri,²³ V. Batourine,^{39,28} I. Bedlinskiy,²⁶ A.S. Biselli,^{15,9} J. Bono,¹⁶ S. Boiarinov,³⁹ W.J. Briscoe,¹⁹ V.D. Burkert,³⁹ D.S. Carman,³⁹ A. Celentano,²³ S. Chandavar,³² P.L. Cole,^{20, 10, 39} M. Contalbrigo,²¹ V. Crede,¹⁷ A. D'Angelo,^{24, 35} N. Dashyan,⁴³ R. De Vita,²³ E. De Sanctis,²² A. Deur,³⁹ C. Djalali,³⁸ G.E. Dodge,³ D. Doughty,^{12,39} R. Dupre,²⁵ H. Egiyan,³⁹ A. El Alaoui,⁵ L. El Fassi,⁵ P. Eugenio,¹⁷ G. Fedotov,^{38,36} S. Fegan,^{40,*} J.A. Fleming,¹⁴ M.Y. Gabrielyan,¹⁶ N. Gevorgyan,⁴³ G.P. Gilfoyle,³⁴ K.L. Giovanetti,²⁷ F.X. Girod,³⁹ J.T. Goetz,³² W. Gohn,¹³ E. Golovatch,³⁶ R.W. Gothe,³⁸ K.A. Griffioen,⁴² L. Guo,^{16,39} K. Hafidi,⁵ N. Harrison,¹³ D. Heddle,^{12,39} K. Hicks,³² M. Holtrop,³⁰ C.E. Hyde,³ Y. Ilieva,^{38,19} D.G. Ireland,⁴⁰ B.S. Ishkhanov,^{36, 37} E.L. Isupov,³⁶ H.S. Jo,²⁵ K. Joo,¹³ D. Keller,⁴¹ M. Khandaker,³¹ P. Khetarpal,¹⁶ A. Kim,²⁸ F.J. Klein,¹⁰ S. Koirala,³ A. Kubarovsky,^{33,36} V. Kubarovsky,^{39,33} S.E. Kuhn,³ K. Livingston,⁴⁰ H.Y. Lu,⁹ I. J. D. MacGregor,⁴⁰ D. Martinez,²⁰ M. Mayer,³ B. McKinnon,⁴⁰ T. Mineeva,¹³ V. Mokeev,^{39,36} R.A. Montgomery,⁴⁰ H. Moutarde,¹¹ E. Munevar,³⁹ C. Munoz Camacho,²⁵ B. Mustapha,⁵ P. Nadel-Turonski,³⁹ R. Nasseripour,^{27,16} S. Niccolai,²⁵ G. Niculescu,²⁷ I. Niculescu,²⁷ M. Osipenko,²³ A.I. Ostrovidov,¹⁷ L.L. Pappalardo,²¹ R. Paremuzyan,^{43,†} K. Park,^{39,28} S. Park,¹⁷ E. Pasyuk,^{39,6} E. Phelps,³⁸ J.J. Phillips,⁴⁰ S. Pisano,²² N. Pivnyuk,⁴⁴ O. Pogorelko,²⁶ S. Pozdniakov,²⁶ J.W. Price,⁷ S. Procureur,¹¹ D. Protopopescu,⁴⁰ A.J.R. Puckett,³⁹ B.A. Raue,^{16,39} D. Rimal,¹⁶ M. Ripani,²³ B.G. Ritchie,⁶ G. Rosner,⁴⁰ P. Rossi,²² F. Sabatié,¹¹ M.S. Saini,¹⁷ D. Schott,¹⁹ R.A. Schumacher,⁹ H. Seraydaryan,³ Y.G. Sharabian,³⁹ G.D. Smith,⁴⁰ D.I. Sober,¹⁰ S.S. Stepanyan,²⁸ S. Stepanyan,³⁹ S. Strauch,^{38,19} M. Taiuti,^{18,*} W. Tang,³² C.E. Taylor,²⁰ Ye Tian,³⁸ S. Tkachenko,⁴¹ M. Ungaro,^{39,33} B. Vernarsky,⁹ A. Vlassov,⁴⁴ H. Voskanyan,⁴³ E. Voutier,²⁹ N.K. Walford,¹⁰ D.P. Watts,¹⁴ M.H. Wood,^{8,38} N. Zachariou,³⁸ L. Zana,³⁰ J. Zhang,³⁹ X. Zheng,^{5,‡} and I. Zonta^{24,§} (The CLAS Collaboration)

O. Hen et al., arXiv: 1212.5343

Nuclear Transparency

- Definition (1):
 - Nuclear transparency is the average probability that a struck proton escapes from the nucleus without interaction

Nuclear Transparency

- Definition (1):
 - Nuclear transparency is the average probability that a struck proton escapes from the nucleus without interaction
- Definition (2):

$$T(A) = \frac{\sigma_{exp}(e, e'p)}{\sigma_{PWIA}(e, e'p)}$$

 $= p' E'_p \sigma_1^{cc} S(p, E_s)$

With:

 σ_{PWIA}

 $d^6\sigma$ $\frac{dE'_{e}d\Omega_{e'}dE'_{p}d\Omega_{p'}}{dE'_{p}d\Omega_{p'}}$

Nuclear Transparency

- Definition (1):
 - Nuclear transparency is the average probability that a struck proton escapes from the nucleus without interaction
- Definition (2):

With:

 σ_{PWIA}

$$T(A) = \begin{bmatrix} \sigma_{exp}(e, e'p) & \text{Experiment} \\ \sigma_{PWIA}(e, e'p) & \text{Theory} \end{bmatrix}$$
$$= \frac{d^6\sigma}{dE'_e d\Omega_{e'} dE'_p d\Omega_{p'}} = p'E'_p \sigma_1^{cc} S(p, E_s)$$

SLAC Results: Mean-Field Protons

- SLAC extracted the transparency of protons from ¹²C, ⁵⁶Fe, and ¹⁹⁷Au.
- Focused on mean-field (low momentum) protons, where the spectral function is well known

 $-30 < E_{miss} < 100 \text{ MeV}$

 $-0 < p_{miss} < 250$ MeV/c for ¹²C and ⁵⁶Fe

 $-0 < p_{miss} < 210$ MeV/c for ¹⁹⁷Au

Q^2	$T_{ m C}$	$T_{\rm Fe}$	$T_{ m Au}$
$({\rm GeV/c})^2$			
1.04	$0.64{\pm}0.05$	$0.50 {\pm} 0.05$	$0.39 {\pm} 0.05$
3.06	$0.63 {\pm} 0.06$	$0.39 {\pm} 0.05$	$0.26 {\pm} 0.04$
5.00	$0.61 {\pm} 0.06$	$0.40 {\pm} 0.06$	$0.23 {\pm} 0.04$
6.77	$0.67 {\pm} 0.07$	$0.43 {\pm} 0.06$	$0.32 {\pm} 0.07$

T. G. O'Neill et al. Phys. Lett. B 87, 351 (1995)

World Data: Mean-Field

TEL AVIV UNIVERSITY

World Data: Mean-Field

TEL AUIU UNIVERSITY

SRC Renormalization

Discrepancy between data and calculation can be explained by an 'overcorrection' applied due to the contribution of SRC in the Mean-Field kinematics

D. Dutta et al., arXiv: 1121.2826 (2012) P. Lava et al., Phys. Lett. B. **595**, 117 (2004) L. L. Frankfurt et al., Phys. Lett. B. **503**, 73 (2001)

SRC Renormalization

Discrepancy between data and calculation can be explained by an 'overcorrection' applied due to the contribution of SRC in the Mean-Field kinematics

Our Approach – Focus on the Correlations!

D. Dutta et al., arXiv: 1121.2826 (2012) P. Lava et al., Phys. Lett. B. **595**, 117 (2004) L. L. Frankfurt et al., Phys. Lett. B. **503**, 73 (2001)

Transparency in SRC Dominated kinematics

- Large Q², x_B>1 region dominated by 2N-SRC pairs
- Spectral function scales according to the number of 2N-SRC pairs.

Transparency in SRC Dominated kinematics

- Large Q², x_B>1 region dominated by 2N-SRC pairs
- Spectral function scales according to the number of 2N-SRC pairs.

Transparency ratio of SRC protons in nuclei can be expressed as:

$$\frac{T(A_1)}{T(A_2)} = \frac{\sigma_{A_1(e,e'p)} / (\#np \cdot \sigma_{ep} + 2\#pp \cdot \sigma_{ep})_{A_1}}{\sigma_{A_2(e,e'p)} / (\#np \cdot \sigma_{ep} + 2\#pp \cdot \sigma_{ep})_{A_2}}$$

Number of np-SRC pairs

ep->ep off-shell cross section Number of pp-SRC pairs

Counting the Relative Number of 2N-SRC Pairs in Nuclei

 From inclusive (e,e') cross section ratios we know that:

$$\frac{a_2(A_1/d)}{a_2(A_2/d)} = \frac{(\#np \cdot (\sigma_{ep} + \sigma_{en}) + 2\#pp \cdot \sigma_{ep} + 2\#nn \cdot \sigma_{en})_{A_1}/A_1}{(\#np \cdot (\sigma_{ep} + \sigma_{en}) + 2\#pp \cdot \sigma_{ep} + 2\#nn \cdot \sigma_{en})_{A_2}/A_2}$$

$$\frac{T(A_1)}{T(A_2)} = \frac{\sigma_{A_1(e,e'p)}/(\#np \cdot \sigma_{ep} + 2\#pp \cdot \sigma_{ep})_{A_1}}{\sigma_{A_2(e,e'p)}/(\#np \cdot \sigma_{ep} + 2\#pp \cdot \sigma_{ep})_{A_2}}$$

Counting the Relative Number of 2N-SRC Pairs in Nuclei

Assuming np-SRC Dominance

$$\frac{a_2(A_1/d)}{a_2(A_2/d)} = \frac{(\#np \cdot (\sigma_{ep} + \sigma_{en}) + 2\#pp \cdot \sigma_{ep} + 2\#nn \cdot \sigma_{en})_{A_1}/A_1}{(\#np \cdot (\sigma_{ep} + \sigma_{en}) + 2\#pp \cdot \sigma_{ep} + 2\#nn \cdot \sigma_{en})_{A_2}/A_2}$$

$$\frac{T(A_1)}{T(A_2)} = \frac{\sigma_{A_1(e,e'p)}/(\#np \cdot \sigma_{ep} + 2\#pp \cdot \sigma_{ep})_{A_1}}{\sigma_{A_2(e,e'p)}/(\#np \cdot \sigma_{ep} + 2\#pp \cdot \sigma_{ep})_{A_2}}$$

Counting the Relative Number of 2N-SRC Pairs in Nuclei

Which Gives:

$$\frac{T(A_1)}{T(A_2)} = \frac{\sigma_{A_1(e,e'p)}/(A_1 \cdot a_2(A_1))}{\sigma_{A_2(e,e'p)}/(A_2 \cdot a_2(A_2))} = a_2(A_2/A_1) \cdot \frac{\sigma_{A_1(e,e'p)}/A_1}{\sigma_{A_2(e,e'p)}/A_2}$$

Theory Independent Observable!

Results I - | P | Dependence

TEL AVIV UNIVERSITY

Results I - | P | Dependence

Results II – A dependence

Assume $T(A)=A^{\alpha}$ $\alpha \approx -1/3$ Consistent with scattering from the nucleus surface

Next Step - NEUTRONS

Goal:

Study the A(e,e'n) and A(e,e'np) reactions in SRC kinematics [compare to the A(e,e'p) and A(e,e'pp) reactions]

Next Step - NEUTRONS

<u>Goal:</u>

Study the A(e,e'n) and A(e,e'np) reactions in SRC kinematics [compare to the A(e,e'p) and A(e,e'pp) reactions]

First steps in EG2 Neutrons analysis (Done[©]):

- Identify neutrons using exclusive $d(e,e'p\pi^+\pi^-n)$ events
- Determine path-length and momentum corrections
- Extract detection efficiency and momentum resolution

Neutron Detection Efficiency d(e,e'π⁺π⁻n) / d(e,e'π⁺π⁻)n

Neutron Detection Efficiency d(e,e'π⁺π⁻n) / d(e,e'π⁺π⁻)n

Momentum Resolution d(e,e'π⁺π⁻n)

(e,e'pp) Event Selection

- Select events with exactly two identified protons in the final state
- Apply electron kinematical cuts $-x_{R} > 1.2$
- Identify a leading proton:
 - $\theta_{pq} > 25^{\circ}, 0.62 < |P|/|q| < 0.96$ [No events with two leading protons]
- Apply all A(e,e'p) cuts on the leading proton
 - |P_{miss}| > 300 MeV/c
 - M_{miss} < m_N + m_{π}

(e,e'pp) Kinematics

(e,e'pp) Kinematics

(e,e'pp) Kinematics

⁵⁶Fe

TEL AVIU UNIVERSITY

Opening angle

excitation Energies

Kinematic Coverage and (Current) Observables

- Cross section ratios:
 - A(e,e'p)_{M.F.} / ¹²C(e,e'p)_{M.F.}
 - $-A(e,e'p)_{SRC} / {}^{12}C(e,e'p)_{SRC}$
 - $-A(e,e'pp)_{SRC} / {}^{12}C(e,e'pp)_{SRC}$
- pp-SRC characteristics:
 - Pairs opening angle
 - Center-of-mass momentum distribution
- pp-SRC probabilities

Kinematic Coverage and (Current) Observables

 Cross section ratios: $-A(e,e'p)_{MF} / {}^{12}C(e,e'p)_{MF}$ $-A(e,e'p)_{SRC} / {}^{12}C(e,e'p)_{SRC}$ $-A(e,e'pp)_{SRC} / {}^{12}C(e,e'pp)_{SRC}$ pp-SRC characteristics: Pairs opening angle Center-of-mass momentum distribution pp-SRC probabilities

See talk by E. Piasetzky for (e,e'p) results

 $|P_{miss}| \neq |P_{recoil}|$ [Due to c.m. motion of the pair]

Ground-State Picture of SRCs

 $|P_{miss}| \neq |P_{recoil}|$ [Due to c.m. motion of the pair]

Ground-State Picture of SRCs

 $|P_{miss}| \neq |P_{recoil}|$ [Due to c.m. motion of the pair]

It is more likely to find a high P_{miss} nucleon that comes from a *low* $P_{relative}$ and a $P_{c.m.}$ that points in its direction (i.e. case II)

Event-Mixing Acceptance Corrections

Event-Mixing Acceptance Corrections

TEL AVIV UNIVERSITY | P_{c.m.} | Reconstruction Resolution

Reconstruction Resolution P_{c.m.} TEL AVIV UNIVERSITY

σ_{res} ≅ 20 MeV/c

Correction of ≈ 3 MeV/c for $\sigma_{c.m.}$ ≈160 MeV/c

$$\sigma_{c.m.} = \sqrt{\sigma_{exp}^2 - \sigma_{res}^2} \implies$$

(weak) A-dependence of the c.m. momentum distribution

VERY week A dependence Indicate small contribution form FSI?

(weak) A-dependence of the c.m. momentum distribution

A-dependence of $\sigma_{A(e,e'pp)}$

 Very week A-dependence of the A(e,e'pp) cross section:

-2^{\prime} AI / 12 C = 1.9 ± 0.16	5
$-{}^{56}$ Fe / 12 C = 2.5 ± 0.14	21
$-^{208}$ Pb / 12 C = 4.4 ± 0.35	221

A-dependence of $\sigma_{A(e,e'pp)}$

- Very week A-dependence of the A(e,e'pp) cross section:
 - ${}^{27}\text{Al} / {}^{12}\text{C} = 1.9 \pm 0.16$ ${}^{56}\text{Fe} / {}^{12}\text{C} = 2.5 \pm 0.14$ ${}^{208}\text{Pb} / {}^{12}\text{C} = 4.4 \pm 0.35$
- Calculations by the GENT group show consistency with I=0 SRC pairs

Results and conclusions

• (e,e'p) and (e,e'n)

- First paper on SRC protons transparency ratios under review for publication in Physics Letters B
- Neutron analysis in progress
- (e,e'pp) pp-SRC universality
 - Extracted c.m. momentum distributions
 - width are 160~180 MeV/c for ¹²C ²⁰⁸Pb
 - A(e,e'pp) cross section increase slowly with A (208 Pb/ 12 C = 4.4)

[Consistent with I=0 calculation by the GENT group]

 Analysis of (e,e'pp)/(e,e'p) as a function of P_{miss} in progress

Thank You !

