Experimental Overview of Past and Future Studies of the *EMC Effect*

Dave Gaskell - JLab February 14, 2013

INT Workshop on Nuclear Structure and Dynamics at Short Distance

Outline

- Measurements of σ_{A}/σ_{D}
	- Early measurements
	- *x*, *Q2*, nuclear dependence, universality
- JLab results and implications
	- EMC effect and local density
	- EMC-SRC connection
	- Flavor dependence
	- $-$ Nuclear dependence of $R = \sigma I/\sigma_T$
- Summary

Quarks in the Nucleus

Typical nuclear binding energies \rightarrow MeV while DIS scales \rightarrow GeV

Naïve expectation:

$$
F_2^A(x) = ZF_2^P(x) + (A - Z)F_2^P(x)
$$

More sophisticated approach includes effects from Fermi motion

$$
F_2^A(x) = \sum_i \int_x^{M_A/m_N} dy f_i(y) F_2^N(x/y)
$$

Quark distributions in nuclei were not expected to be significantly different (below x=0.6)

$$
F_2^{Fe}/\left(ZF_2^p+(A-Z)F_2^n\right)
$$

Bodek and Ritchie PRD 23, 1070 (1981)

First Measurement of the EMC Effect

- First published measurement of nuclear dependence of F_2 by the European Muon Collaboration in 1983
- Observed 2 mysterious effects
	- Significant enhancement at small *x* \rightarrow Nuclear Pions! (see my thesis)
	- Depletion at large $x \rightarrow$ the "EMC Effect"
- Enhancement at *x<0.1* later went away

Aubert et al, Phys. Lett. B123, 275 (1983)

First Measurement of the EMC Effect

- First published measurement of nuclear dependence of $F₂$ by the European Muon Collaboration in 1983
- Observed 2 mysterious effects
	- Significant enhancement at small *x* \rightarrow Nuclear Pions! (see my thesis)
	- Depletion at large $x \rightarrow$ the "EMC Effect"
- Enhancement at *x<0.1* later went away

Aubert et al, Nucl. Phys. B293, 740 (1987)

Confirmation of the Effect

SLAC re-analysis of old solid target data used for measurements of cryotarget wall backgrounds

Effect for *x>0.3* confirmed \rightarrow No large excess at very low *x*

 b edalization b BBL 50, 4.404. (4000) such BBL 54, 50.4. (4000) *Bodek et al, PRL 50, 1431 (1983) and PRL 51, 534 (1983)*

Subsequent Measurements

A program of dedicated measurements quickly followed

The resulting data is remarkably consistent over a large range of beam energies and species

EMC Effect Measurements

Geesaman, Saito, and Thomas, Ann. Rev. Nucl. Sci. 45, 337 (1995) – updated by Gaskell

Nuclear dependence of structure functions

Experimentally, we measure cross sections (and the ratios of cross sections)

$$
\frac{d\sigma}{d\Omega dE'} = \frac{4\alpha^2 (E')^2}{Q^4 v} \bigg[F_2(v, Q^2) \cos^2 \frac{\theta}{2} + \frac{2}{M v} F_1(v, Q^2) \sin^2 \frac{\theta}{2} \bigg] \qquad F_2(x) = \sum_i e_i^2 x q_i(x)
$$

$$
R = \frac{\sigma_L}{\sigma_T} = \frac{F_2}{2xF_1} \left(1 + 4 \frac{M^2 x^2}{Q^2} \right) - 1
$$
 In the limit $R_A = R_D$

$$
G_A / \sigma_D = F_2^A / F_2^D
$$

Experiments almost always display cross section ratios, $\sigma_{\rm A}/\sigma_{\rm D}$

 \rightarrow Often these ratios are labeled or called F_2^A/F_2^D

 \rightarrow Sometimes there is an additional uncertainty estimated to account for the $\sigma \rightarrow F_2$ translation. Sometimes there is not.

Isoscalar Corrections

In the case of nuclei where $N \neq Z$, need to remove the "trivial" change in nuclear cross section due to $\sigma_n \neq \sigma_p$ \rightarrow Different experiments often use slightly different parameterizations/estimates for this correction

Properties of the EMC Effect

x **Dependence**

Jefferson Lab

x **Dependence**

Properties of the EMC Effect

Global properties of the EMC effect

1. Universal x-dependence 2. Little *Q2* dependence*

Q² Dependence of the EMC Effect function of x and indicates quantitatively that there is no the slope obtained combining our data with that of

 $T_{\rm F}$ systematic errors were calculated as follows. The assumption was made that as follows. The assumption was made that $T_{\rm F}$

(*) Q2 Dependence of Sn/C *NMC Collaboration/Nuclear Physics B 481 (1996) 23-39* 35

NMC measured non-zero *Q2* dependence in Sn/C ratio at low small x

 \rightarrow This result is in some tension with other NMC C/D and HERMES Kr/D results

Fig. 4. Structure function ratios *FSnllff2* as a function of Q2 in different x bins. The error bars give the statistical uncertainty. The solid lines represent the result of fits of the function *FSn/lff2 = a + b* In Q2 in each *Arneodo et al, Nucl. Phys. B 481, 23 (1996)*

Properties of the EMC Effect

Global properties of the EMC effect

- 1. Universal x-dependence
- 2. Little *Q2* dependence
- *3*. EMC effect increases with *A*
- *Anti-shadowing region shows little nuclear dependence*

*A***-Dependence of EMC Effect**

 11100.4 $1.111.7$ 1.71 NMC: *Arneodo et al, Nucl. Phys. B 481, 3 (1996)*

\mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} is the rms electron ele $\mathbf s$ of HMC Hitect $\mathbf s$ **A-Dependence of EMC Effect**

 $\langle \mathbf{z}^2 \rangle$ -DMC ologiton sosttoring radius \sim -target errors. The overall uncertainty due to \sim *<r*²>=RMS electron scattering radius $\mathcal{L}_{\mathcal{L}}$

 $\tau_{\rm eff}$ to-target errors. The overall uncertainty due to the deuterium due to the deuterium due to the deuterium due to SLAC E139: *Gomez et al, PRD 49, 4348 (1992)* parametrized in terms of average nuclear density by $\mathcal{P}(X)$

EMC Effect Measurements at Large x

SLAC E139 provided the most SLAC E139 extensive and precise data set for *x>0.2*

Measured σ_A/σ_D for A=4 to 197 \rightarrow ⁴He, ⁹Be, C, ²⁷Al, ⁴⁰Ca, ⁵⁶Fe, 108Ag, and 197Au \rightarrow Best determination of the \overline{A} dependence

→ Verified that the *x* dependence was roughly constant

Building on the SLAC data

- \rightarrow Higher precision data for ⁴He
- \rightarrow Addition of ³He
- → Precision data at large x

JLab E03103

E03103 in Hall C at Jefferson Lab ran Fall 2004

- \rightarrow Measured EMC ratios for light nuclei (³He, ⁴He, Be, and C)
- \rightarrow Results consistent with previous world data
- \rightarrow Examined nuclear dependence a la E139

New definition of "size" of the EMC effect \rightarrow Slope of line fit from x=0.35 to 0.7

Definition assumes shape of the EMC effect is universal for nuclei

Data *not inconsistent* with this assumption

 \rightarrow Normalization errors mean we can only confirm this at 1-1.5% level

JLab E03103 Results

E03103 measured σ_{A}/σ_{D} for 3 He, 4 He, Be, C

 \rightarrow ³He, ⁴He, C, EMC effect scales well with density

Scaled nuclear density *= (A-1)/A <*ρ*>* \rightarrow remove contribution from struck nucleon

*<*ρ*>* from ab initio few-body calculations

 [S.C. Pieper and R.B. Wiringa, Ann. Rev. Nucl. Part. Sci 51, 53 (2001)]

JLab E03103 Results

E03103 measured σ_{A}/σ_{D} for 3 He, 4 He, Be, C

 \rightarrow ³He, ⁴He, C, EMC effect scales well with density \rightarrow Be does not fit the trend

Scaled nuclear density *= (A-1)/A <*ρ*>* \rightarrow remove contribution from struck nucleon

*<*ρ*>* from ab initio few-body calculations

 [S.C. Pieper and R.B. Wiringa, Ann. Rev. Nucl. Part. Sci 51, 53 (2001)]

EMC Effect and Local Nuclear Density

⁹Be has low average density \rightarrow Large component of structure is *2α+n*

 \rightarrow Most nucleons in tight, *α*-like configurations

EMC effect driven by *local* rather than *average* nuclear density

Jefferson Lab

"Local density" is appealing in that it makes sense intuitively – can we make this more quantitative?

EMC Effect and Short Range Correlations

Jefferson Lab

Weinstein et al observed linear correlation between size of EMC effect and Short Range Correlation "plateau"

 \rightarrow Observing Short Range Correlations requires measurements at *x>1* \rightarrow Reaction dynamics very different – DIS vs. QE scattering, why the same nuclear dependence?

Nuclear Dependence of EMC and SRCs

nucleons

 R_{2N} ~ number of nucleons "close" together

Arrington et al, PRC 86, 065204 (2012)

Detailed study of nuclear dependence of EMC effect and SRCs (see N. Fomin's talk from Monday) does not favor either picture

Can we distinguish between these two pictures via some new observable? Flavor dependence of the EMC effect

Flavor dependence and SRCs

S.C. Pieper and R.B. Wiringa, Ann. Rev. Nucl. Part. Sci 51, 53 (2001)

High momentum nucleons from SRCs emerge from tensor part of *NN* interaction – *np* pairs dominate

 \rightarrow Probability to find 2 nucleons "close" together nearly the same for *np, nn, pp*

 $P_{pp} = P_{nn} \approx 0.8 P_{np}$ For r_{12} < 1.7 fm:

If EMC effect due to *high virtuality*, flavor dependence of EMC effect emerges naturally

→ If EMC effect from *local density*, *np/pp/nn* pairs all contribute (roughly) equally

Flavor dependence and SRCs

 $u_A = \frac{Z\tilde{u}_p + N\tilde{d}_p}{4}$

A

 $d_A = \frac{Z \tilde{d}_p + N \tilde{u}_p}{4}$

A

High momentum nucleons in the nucleus come primarily from *np* pairs

 \rightarrow The relative probability to find a high momentum proton is larger than for neutron for *N>Z* nuclei

Under the assumption the EMC effect comes from "high virtuality" (high momentum nucleons), effect driven by protons (u-quark dominates) \rightarrow similar flavor dependence is seen in some "mean-field" approaches

M. Sargsian, arXiv:1209.2477 [nucl-th] and arXiv:1210.3280 [nucl-th]

Flavor Dependence of the EMC Effect

Cloët, Bentz, and Thomas, PRL 102, 252301 (2009)

Isovector-vector mean field (ρ) causes u (d) quark to feel additional vector attraction (repulsion) in *N≠Z* nuclei

Experimentally, this flavor dependence has not been observed directly

EMC Flavor Dependence: Pion Drell-Yan

Pion-induced Drell-Yan sensitive to potential flavor dependence, but existing data lack precision

Dutta, Peng, Cloët, DG, PRC 83, 042201 (2011)

Pion Drell-Yan at COMPASS

Semi-Inclusive DIS

Semi-Inclusive DIS

SIDIS - Interpretability

Jefferson Lab

$$
R_h^A(z,\nu) = \frac{\left(\frac{1}{\sigma_e} \frac{d\sigma}{dz d\nu}\right)_A}{\left(\frac{1}{\sigma_e} \frac{d\sigma}{dz d\nu}\right)_D}
$$

Hadronization is modified in the nuclear medium → Probability for quark *f* to form hadron *h* changes → Depends on A, hadron kinematics

Complicates interpretation of SIDIS measurements of flavor dependence if effect different for π^+ and π^-

 \rightarrow This can be checked with measurements at *x=0.3* (no EMC effect)

Parity Violating DIS

Measuring Flavor Dependence with PVDIS

Experimentally – simpler to measure super-ratio \rightarrow Certain systematics are reduced (beam polarization) \rightarrow Less sensitivity to absolute value of weak vector couplings

Note that even the "no flavor dependence" calculation not identically 1.0 \rightarrow Must compare experimental result to the "naïve" estimate \rightarrow Naïve estimate has some dependence on nucleon PDFs \rightarrow May be non-negligible contribution to uncertainty

PVDIS at JLab

SOLID experiment at JLab (P. Souder, spokesperson) – use PVDIS to look for physics beyond Standard Model, *d/u* at large *x* \rightarrow awarded 169 days for H and D running \rightarrow no time for solid target running (flavor dependent EMC) requested yet

Flavor Dependence with inclusive DIS

Several alternatives for accessing flavor dependence of EMC effect

 \rightarrow Pion DY @ COMPASS: sufficient statistical precision at large x? \rightarrow SIDIS @ JLab: hadron attenuation and factorization concerns → PVDIS @ JLab: SOLID experiment requires significant \$, long time scale

Would like something "easy" that can be done on a short time scale

Inclusive DIS on nucleus with same *A* and ^ρ but different ratio *N/Z*

Flavor dependence from 40Ca and 48Ca

Jefferson Lab

E12-06-118: The MARATHON experiment

 \rightarrow "Free" n/p (d/u) ratios extracted using "known" corrections to difference in EMC effect in 3He/3H; additional flavor dependence could impact extraction

E12-10-008 and E12-06-105

Hall C experiments will provide more inclusive data E12-06-105 *x>1* E12-10-008 *EMC Effect*

Will provide additional data on light and mediumheavy targets \rightarrow ²H, ³He, ⁴He \rightarrow ⁶Li, ⁷Li, Be, ¹⁰B, ¹¹B, C \rightarrow Al, ⁴⁰Ca, ⁴⁸Ca, Cu

First running in Hall C after completion of 12 GeV Upgrade will include a few days for EMC/ $x>1$ measurements on ¹⁰B, ¹¹B, and Al (parasitic)

E12-11-107: In-Medium Structure Functions

Measure structure function of high momentum nucleon in deuterium by tagging the spectator \rightarrow Final state interactions cancelled by taking double ratios

 \rightarrow Requires new, large acceptance proton/neutron detector at back angles

Light to Heavy Nuclei

- New JLab data, new method of characterizing "size" of EMC effect gave insight into nuclear dependence of EMC effect.
	- Same dependence observed for A/D ratios at x>1
	- Correlation between EMC effect and SRCs
	- Local density vs. high virtuality \rightarrow flavor dependence?
- Some interesting effects have also been observed for heavy targets

JLab E03103 – Heavy Targets

E03-103 also measured EMC ratios for Cu and Au – analysis at the relatively low 6 GeV beam energy complicated by *Coulomb Corrections*

Electrons scattering from nuclei can be accelerated/decelerated in the Coulomb field of the nucleus

 \rightarrow This effect is NOT part of the hadronic structure of the nucleus we wish to study \rightarrow Important to remove/correct for apparent changes in the cross section due to Coulomb effects

In a very simple picture – Coulomb field induces a change in kinematics in the reaction E_e

$$
E_e \to E_e + V_0
$$

\n
$$
E_e' \to E_e' - V_0
$$

\n
$$
V_0 = 3\alpha(Z - 1)/2R
$$

Electrostatic potential energy at center of nucleus

Coulomb Corrections in QE Processes

Importance of Coulomb Corrections in quasi-elastic processes well known

Gueye et al., PRC60, 044308 (1999)

Distorted Wave Born Approximation calculations are possible – but difficult to apply to experimental cross sections

→Instead use *E*ffective *M*omentum *A*pproximation (*EMA*) tuned to agree with DWBA calculations

$$
\text{EMA:} \qquad E_e \to E_e + V_0 \qquad E_e' \to E_e' - V_0 \quad \text{with "focusing factor" } F^2 = (1 - V_0 / E)
$$
\n
$$
V_0 \to (4/5) V_0, \ V_0 = 3\alpha (Z - 1)/2R \qquad \qquad V_0 = 10 \text{ MeV for Cu, 20 MeV for Au}
$$

[Aste et al, Eur.Phys.J.A26:167-178,2005, Europhys.Lett.67:753-759,2004]

E03103: EMC Effect in Gold

No Coulomb Corrections applied

E03103: EMC Effect in Gold

with Coulomb Corrections (both data sets)

RA-RD

E03103 shows good agreement with E139 data for smaller *A* \rightarrow agreement not as good for heavier targets. Why?

$$
\frac{d\sigma}{d\Omega dE'} = \frac{4\alpha^2 (E')^2}{Q^4 v} \bigg[F_2(v, Q^2) \cos^2 \frac{\theta}{2} + \frac{2}{Mv} F_1(v, Q^2) \sin^2 \frac{\theta}{2} \bigg]
$$

$$
F_2(x) = \sum_i e_i^2 x q_i(x) \qquad \Longleftarrow \qquad \text{Quark distribution functions}
$$

d^σ *d*Ω*dE*' $= \Gamma \Big[\sigma_{\tau}(v, Q^2) + \varepsilon \sigma_{L}(v, Q^2) \Big]$ *F₁* $\alpha \sigma_{T}$ *F₂* linear combination of σ_{T} and σ_{L}

> Measurements of EMC effect often assume $\sigma_{A}/\sigma_{D} = F_{2}^{A}/F_{2}^{D}$ \rightarrow this is true if $R = \sigma$ _{*L*} σ ^{*T*} is the same for A and D

E139 data mostly at large ε – JLab data at small $\varepsilon \to i\bar{f} R A \neq R D$, this might explain the difference

 \rightarrow Motivated us to re-examine earlier experiments that measured nuclear dependence of *R*

SLAC E140: R_A **-** R_D

E140 measured ε dependence of cross section ratios $\sigma_{\text{A}}/\sigma_{\text{D}}$ for

x=0.2, 0.35, 0.5 Q2 = 1.0, 1.5, 2.5, 5.0 GeV2 Iron and Gold targets

 $R_A - R_D$ consistent with zero within errors

[E140 Phys. Rev. D 49 5641 (1993)]

No Coulomb corrections were applied

Large
$$
\varepsilon
$$
 data: $E_e \sim 6.15 \text{ GeV}$ $E_e' \sim 3.6.8 \text{ GeV}$
Low ε data: $E_e \sim 3.7.10 \text{ GeV}$ $E_e' \sim 1.2.6 \text{ GeV}$

*RA-RD***: E140 Re-analysis**

Re-analyzed E140 data using Effective Momentum Approximation for published "Born"-level cross sections

 \rightarrow Total consistency requires application to radiative corrections model as well

<u>ኖ</u>
ደ R_{A} - R_{D} = -2E-4 +/- 0.02 0 -0.1 Dasu et al 0.4 0.5 0.6 0.7 0.8 0.9 $0.2 \quad 0.3$ Ω $R_A - R_D = -0.03 + -0.02$ 0.1 0 -0.1 Dasu et al - with CC 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 X

Including Coulomb Corrections yields result 1.5 σ from zero when averaged over *x*

RA-RD **at** *x=0.5*

Interesting result from E140 reanalysis motivated more detailed study \rightarrow *x=0.5*, $Q^2 = 5$ GeV²

 \rightarrow Include E139 Fe data \rightarrow Include JLab data Cu, *Q2=4-4.4* GeV2

Normalization uncertainties between experiments treated as extra point-to-point errors

No Coulomb Corrections \rightarrow combined analysis still yields $R_A-R_D \sim 0$

No Coulomb Corrections

RA-RD **at** *x=0.5*

Interesting result from E140 reanalysis motivated more detailed study \rightarrow *x=0.5*, $Q^2 = 5$ GeV²

 \rightarrow Include E139 Fe data \rightarrow Include JLab data Cu, *Q2=4-4.4* GeV2

Normalization uncertainties between experiments treated as extra point-to-point errors

with Coulomb Corrections

Application of Coulomb Corrections \rightarrow R_A-R_D 2 σ from zero

JLab Hall C E02-109/E04-001/E06-009

- \rightarrow Precision extraction of separated structure functions on D, AI, C, Fe/Cu
- \rightarrow Search for nuclear effects in F_L, R
- \rightarrow Neutron and p-n moment extractions (compare to lattice calculations)

 \rightarrow Allow study of quark-hadron duality for neutron, nuclei separated structure functions

*F*₂, *F*₁, *R* on Deuterium and heavier targets Jefferson Lab

World Data on R_A/R_D

SLAC E140*: PRD 49, 5641 (1994)* R_{A} - R_{D} for Fe, Au Only true Rosenbluth separated data

NMC: *Phys. Lett. B 294, 120 (1992)* R_{Ca} - R_{C} *Nucl. Phys. B 481, 23 (1996)* R_{Sn} - R_C Multiple beam energies, R_A-R_C extracted using *Q2* dep. fit at fixed *x*

HERMES:

Phys Lett. B 567, 339 (2003) R_A/R_D for Kr, N, ³He Fit ε dependence at fixed x for single beam energy (changing *Q2*)

Other Hints of non-zero R_A **-** R_B

 -0.2 -0.01

0.01 0.1 1

x

Consequences of $R_A-R_D > 0$

$$
\frac{\sigma_A}{\sigma_D} = \frac{F_1^A(x)}{F_1^D(x)} \left[1 + \frac{\epsilon (R_A - R_D)}{1 + \epsilon R_D} \right]
$$

 F_1 ratio purely transverse

Anti-shadowing disappears for F_1 ratio, remains for F_2

Anti-shadowing from longitudinal photons?

More discussion in Thia Keppel's talk next week

V. Guzey et al, PRC 86 045201 (2012)

A **Dependence of Anti-quark Distributions**

- Drell-Yan process sensitive to anti-quark distributions in the target
- E772 measured no *A* dependence over limited *x* range, with limited precision
- E906 will measure up to *x=0.4*

D.M. Alde et al., PRL64: 2479 (1990)

A **Dependence of Anti-quark Distributions**

- Drell-Yan process sensitive to anti-quark distributions in the target
- E772 measured no *A* dependence over limited *x* range, with limited precision
- E906 will measure up to *x=0.4*

E906 underway …

Nuclear Dependence of *R*

- Conventional wisdom was that there was little or no difference between R in heavy nuclei and free nucleon
- Recent JLab data suggests R_A - R_D < 0 at large x
	- Alternatively, Coulomb Corrections are not under control
	- Better calculations and/or experimental tests needed
- Re-examination of high energy NMC data suggests $R_A R_B > 0$
	- How can this be consistent with JLab + SLAC data?
	- *Q2* dependent? Problems with either data set?
- More data is needed a systematic study over large range of *Q2* and *x*

Summary

- The EMC effect has been with us for 30 years and motivated intense experimental (and theoretical) study
- Amazingly, it seems there is still much to learn
	- What is the link between SRCs and the EMC effect?
	- Does the EMC effect depend on quark flavor?
	- $-$ Does $\sigma_A/\sigma_D = F_2^A/F_2^D$ for all x and Q^2
- Many of these questions will be addressed at JLab after the 12 GeV upgrade
- Issues I did not discuss
	- Polarized EMC effect
	- Low x measurements \rightarrow EIC
	- Several other processes that aim to quantify the modification of nucleons in the nucleus

