Probing ϕ Mesons in Deuteron Break-up Reactions

Adam Freese

Florida International University

February 20, 2013

Adam Freese (FIU)

Hadron-Nucleon Scattering

- Hadron-nucleon interactions, such as heavy quarkonium scattering, can be difficult to experimentally probe.
- The reaction ${}^{2}H(\gamma, hp)n$ may prove a fruitful means of probing these interactions.
- The trick lies in analyzing the effects of final state interactions—deuteron electrodisintegration serves as an example.

Deuteron Electrodisintegration

- Deuteron electrodisintegration, i.e. ${}^{2}H(e, e'p)n$ was experimentally studied by Egiyan *et al.* (PRL 98, 262502), and subsequently by Boeglin *et al.* (PRL 107, 262501).
- Observing a fast proton $(p_p > 1 \text{ GeV})$ ensures that the proton was struck, and ensures the eikonal regime.
- For particular values of p_n , the differential cross-section is plotted against θ_{nq} .
- The results show valleys and peaks around $\theta_{nq} = 70^{\circ}$ depending on p_n .

Deuteron Break-up

Phi Production 0000000000

Egiyan et al. (PRL 98, 262502)

- Peak at $\theta_{nq} \approx 70^{\circ}$ for $p_n \in (400, 600)$ MeV.
- Valley at $\theta_{nq} \approx 70^{\circ}$ for $p_n \in (200, 300)$ MeV.
- Dashed, dash-dotted, and solid are respectively PWIA, PWIA+FSI, and PWIA+FSI+MEC+NΔ.
- Left and right columns are respectively $Q^2 \approx 2 \text{ GeV}^2$ and $Q^2 \approx 3 \text{ GeV}^2$.

Deuteron Break-up oo●o Phi Production 000000000

Boeglin *et al.* (PRL 107, 262501)

- Peak at $\theta_{nq} \approx 75^{\circ}$ for $p_n = 400, 500$ MeV.
- Valley for $p_n = 200, 300$ MeV.
- Purple line is theoretical prediction by Sargsian (PRC 82, 014612), black (dash-dotted) and green by Laget (PLB 609, 49) with and without MEC and NΔ, respectively.

•
$$Q^2 = 3.5 \text{ GeV}^2$$
.

Deuteron Break-up

Phi Production 000000000

Final State Interactions

- These results are due to final state interactions (FSI's).
- In Feynman diagram language, the most relevant reactions are

- The plane wave impulse approximation (PWIA) is just the product of the electron-proton scattering amplitude and the deuteron wave-function.
- PWIA is corrected by a scattering of the proton off the spectator neutron.
- I'll neglect further corrections (MEC, $N\Delta$, *etc.*).

Deuteron Break-up 0000 Phi Production

Hadron Production

- What if a hadron is produced in photodisintegration? (Real photons.)
- There would be three particles in the final state—another FSI.

• We will find a second rescattering peak.

ϕ Photoproduction

- As a particular example, look at $\phi(1020)$ as the hadron.
- ϕ photoproduction from the proton has been studied extensively, such as by Mibe *et al.* (PRL 95, 182001).
- The exact form of the ϕN scattering amplitude is unknown, but vector meson dominance (VMD) seems to reproduce coherent ϕ production from the deuteron—*cf.* Mibe *et al.* (PRC 76, 052202)—and will serve as a proof of principle.

Phi Production 000000000

Kinematics and Definitions

• Momentum transfer for photoproduction is defined thus:

$$l = p_{\gamma} - p_{\phi}$$
$$t = l^2$$

• Differential cross-section is plotted against θ_{nl} , illustrated by this graphic:

• The cross-section ratio is plotted instead of absolute cross-section.

$$R = \frac{\left(\frac{d^5\sigma}{dp_{\phi}d\Omega_{\phi}d\Omega_{\phi}}\right)}{\left(\frac{d^5\sigma_{\rm PWIA}}{dp_{\phi}d\Omega_{\phi}d\Omega_{p}}\right)}$$

Phi Production 000000000

VMD Model

There is a distinct peak for each FSI!

Phi Production 000000000

Other models

Mibe *et al.* (PRC 76, 052202) point out—two models fit the data:

• VMD with
$$\sigma_{\phi N} = 10$$
 mb

$$\circ \sigma_{\phi N} = 30 \text{ mb}, \text{ and } B = 10 \text{ GeV}^{-2}$$

The 30 mb model was inspired by a result of $\sigma_{\phi N} = 35^{+17}_{-11}$ mb in nuclear media, found at SPring-8 by Ishikawa *et al.* (PLB 608, 215)

Phi Production 0000000000

Alternative Model

 $\sigma_{\phi N} = 30 \text{ mb} \text{ and } B = 10 \text{ GeV}^{-2}$

Phi Production 0000000000

Alternative Model

There's a clear difference between the models.

Phi Production 0000000000

Double rescattering

• The treatment would not be complete without double rescattering:

Phi Production 0000000000

Double rescattering

• The treatment would not be complete without double rescattering:

• This suppresses the rescattering peaks and valleys in the 30 mb model.

Phi Production ○0000000●0

Double rescattering

• For VMD, the suppression is negligible.

• This is because the double scattering amplitude is proportional to $\sigma_{\phi N}$.

Deuteron Break-up 0000 Phi Production 000000000

Double rescattering

• There's still a clear difference between the models.

Deuteron Break-up 0000 Phi Production

Double rescattering

• There's still a clear difference between the models.

• Can the J-Lab data-mining group find evidence for this reaction and choose a preferred model?