Unlocking what underlies the common nuclear dependence of EMC effect and Short Range Correlations

Nadia Fomin

Los Alamos National Laboratory

INT workshop on nuclear structure and dynamics

February 11th, 2013

The inclusive reaction

High momentum nucleons - Short Range Correlations

Cannot extract momentum distributions directly from inclusive data for A>2

High momentum nucleons - Short Range Correlations

$$\frac{d\sigma^{QE}}{d\Omega dE'} \propto \int d\vec{k} \int dE \sigma_{ei} S_i(k, E) \delta(Arg)$$
$$Arg = v + M_A - \sqrt{M^2 + p^2} - \sqrt{M_{A-1}^{*2} + k^2}$$

$$F(y,\mathbf{q}) = \frac{d^2\sigma}{d\Omega d\upsilon} \frac{1}{(Z\overline{\sigma}_p + N\overline{\sigma}_n)} \frac{\mathbf{q}}{\sqrt{M^2 + (y+q)^2}}$$
$$= 2\pi \int_{|y|}^{\infty} n(k)kdk \qquad \text{Ok for A=2}$$

High momentum nucleons - Short Range Correlations

Short Range Correlations

- To experimentally probe SRCs, must be in the high-momentum region (x>1)
- To measure the relative probability of finding a correlation, ratios of heavy to light nuclei are taken
- In the high momentum region, FSIs are thought to be confined to the SRCs and therefore, cancel in the cross section ratios
 - L. L. Frankfurt and M. I. Strikman, Phys. Rept. 76, 215(1981).
 - J. Arrington, D. Higinbotham, G. Rosner, and M. Sargsian (2011), arXiv:1104.1196
 - L. L. Frankfurt, M. I. Strikman, D. B. Day, and M. Sargsian, Phys. Rev. C 48, 2451 (1993).
 - L. L. Frankfurt and M. I. Strikman, Phys. Rept. 160, 235 (1988).
 - C. C. degli Atti and S. Simula, Phys. Lett. B 325, 276 (1994).
 - C. C. degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996).

 $\frac{O_A}{-} = a_2(A)$

1.4<x<2 => 2 nucleon correlation

2.4<x<3 => 3 nucleon correlation

Previous measurements

No observation of scaling for $Q^2 < 1.4 \text{ GeV}^2$

1.4<x<2 => 2 nucleon correlation

2.4<x<3 => 3 nucleon correlation

Kinematic cutoff is A-dependent

- For heavy nuclei, the minimum momentum changes \rightarrow heavier recoil system requires less kinetic energy to balance the momentum of the struck nucleon
- Larger fermi momenta for $A>2 \rightarrow MF$ contribution persists for longer

E02-019: 2N correlations in A/D ratios

Fomin et al, PRL **108** (2012) Jlab E02-019

Q² dependence features

NP dominance

R. Subedi et al., Science 320, 1476 (2008)

R. Shneor et al., PRL 99, 072501 (2007)

NP dominance

$(a_2 = \sigma_A / \sigma_D)!$ = Relative #of SRCs

FROM Quasielastic Scattering at x>1 to DIS at x<1

Where an unexpected connection is made

Discovery of the EMC effect

 Goal was a measurement of the lepton-nucleon cross section at high Q²

• To achieve statistical precision in a reasonable amount of time, an iron target was used, on the assumption that

$$\frac{\sigma_A / A}{\sigma_D / 2} \approx 1$$

meaning

$$F_2^{A}(x) = ZF_2^{p}(x) + NF_2^{n}(x)$$

The EMC effect

$$F_{2}^{A}(x) \neq ZF_{2}^{p}(x) + NF_{2}^{n}(x)$$

Nuclear dependence of the structure functions discovered 30 years ago by the European Muon Collaboration (EMC effect)

Nucleon structure functions are modified by the nuclear medium

Measurements before 2004

- <u>NMC</u> extraction of F_2^n/F_2^p
- <u>BCDMS</u> $50 < Q^2 < 200 (GeV^2)$
- <u>HERMES</u> first measurement on ³He
- <u>SLAC E139</u> most precise large x data
 - Q² independent
 - Universal shape
 - Magnitude approximately scales with density

Nuclear Dependence of the EMC effect

Nuclear Dependence of the EMC effect

Precision results on light nuclei from JLab E03-103

• **C/D** and ⁴**He/D** ratios – no isoscalar correction necessary

• Consistent with SLAC results, but much higher precision at high x

PhD theses: J. Seely, A. Daniel

SRCs and EMC effect share the same nuclear dependence.

 a_2 – relative measure of SRCs dR_{EMC}/dx – slope of the A/D cross section ratio in the 0.35<x<0.7 region

Common Density (or A) dependence → linear correlation makes sense

Enter ⁹Be

- Correlation between EMC effect and SRC data can no longer be explained by common density- or Ascaling
- However, the trends for both sets of data mirror each other as a function of A, or density

Both driven by a similar underlying cause? Separation Energy

Separation energies were calculated from spectral functions, including MF and correlations S.A. Kulagin and R. Petti, Nucl. Phys. A 176, 126 (2006)

Both driven by a similar underlying cause? Separation Energy

For SRCs, a linear relationship with $\langle \epsilon \rangle$ is less suggestive

S.A. Kulagin and R. Petti, Nucl. Phys. A 176, 126 (2006)

Both driven by a similar underlying cause? A ^{-1/3}

Apply exact NM calculations to finite nuclei via LDA

- (A. Antonov and I. Petkov, Nuovo Cimento A 94, 68 (1986)
- (I. Sick and D. Day, Phys. Lett B 274, 16 (1992))
- For A>12, the nuclear density distribution has a common shape; constant in the nuclear interior (bulk)

\rightarrow Scale with A

- Nuclear surface contributions grow as A^{2/3} (R²)
- σ per nucleon would be constant with small deviations that go with A^{-1/3}

Both driven by a similar underlying cause? A ^{-1/3}

Apply exact NM calculations to finite nuclei via LDA

- (A. Antonov and I. Petkov, Nuovo Cimento A 94, 68 (1986)
- (I. Sick and D. Day, Phys. Lett B 274, 16 (1992))
- For A>12, the nuclear density distribution has a common shape; constant in the nuclear interior (bulk)
 → Scale with A
- Nuclear surface contributions grow as A^{2/3} (R²)
- σ per nucleon would be constant with small deviations that go with A^{-1/3}

- All the usual (historical) suspects don't adequately describe the trends seen in both sets of data
- Perhaps, SRCs are an indirect (or not so indirect) measure of what drives medium modification

Two Hypotheses

- 1. Both quantities reflect *virtuality* of the nucleons (*L. Weinstein et al, PRL* 106:052301,2011)
 - **a**₂ measures the relative high momentum tail good for testing virtuality
 - dR_{EMC}/dx relevant quantity
- 2. EMC effect is driven by "local density"
 - SRCs are sensitive to high density configurations, but MUST remove the center of mass motion smearing to get R_{2N}
 - measure of correlated pairs relative to the deuteron
 - EMC effect samples **all** the nucleons, whereas R_{2N} is only sensitive to np pairs, a subset of all possible NN configurations

- If we're going to use SRCs as a measure of local density, must scale \textit{R}_{2N} by $\rm N_{total}/\rm N_{iso}.$

Now that we have the relevant quantities, we can test the two hypotheses

Two hypotheses

- 1. Both quantities reflect *virtuality* of the nucleons (*L. Weinstein et al, PRL 106:052301,2011*)
 - a₂ is a measure of high momentum nucleons relative to the deuteron

Two hypotheses

- 2. A measure of "*local density*" *R*_{2N}
 - measure of correlated pairs relative to the deuteron
 - Only sensitive to np pairs, scale by N_{total}/N_{iso} .

- 1. Both quantities reflect *virtuality* of the nucleons (*L. Weinstein et al, PRL 106:052301,2011*)
 - a₂ is a measure of high momentum nucleons relative to the deuteron

Hypothesis	Fit type	χ^2_{ν}	EMC(D)	IMC(D)
High Virtuality	2-param No constraints	0.91	-0.0587±0.037	0.1040±0.012
High Virtuality	1-param	1.17	-	0.0856±0.004
High Virtuality	2-param D-constraint	1.14	-0.0041±0.010	0.0869±0.005
Local Density	2-param No constraints	0.68 (0.83)	-0.0168±0.035	0.0537±0.007
Local Density	1-param	0.61 (0.73)	-	0.0505±0.003
Local Density	2-param D-constraint	0.61 (0.73)	-0.0013 ±0.010	0.0508±0.003

Each hypothesis is tested with 3 types of fits:

- 1) 2-parameter linear fit, no deuteron constraint
- 2) 1-parameter fit, strict deuteron constraint
- 3) 2–parameter fit, deuteron constraint, partial accounting for correlated errors within a given experiment

Hypothesis	Fit type	χ^2_{v}	EMC(D)	IMC(D)
High Virtuality	2-param No constraints	0.91	-0.0587±0.037	0.1040±0.012
High Virtuality	1-param	1.17	—	0.0856±0.004
High Virtuality	2-param D-constraint	1.14	-0.0041±0.010	0.0869±0.005
Local Density	2-param No constraints	0.68 (0.83)	-0.0168±0.035	0.0537±0.007
Local Density	1-param	0.61 (0.73)	—	0.0505±0.003
Local Density	2-param D-constraint	0.61 (0.73)	-0.0013 ±0.010	0.0508±0.003

Hypothesis	Fit type	χ^2_{v}	EMC(D)	IMC(D)
High Virtuality	2-param No constraints	0.91	-0.0587±0.037	0.1040±0.012
High Virtuality	1-param	1.17	-	0.0856±0.004
High Virtuality	2-param D-constraint	1.14	-0.0041±0.010	0.0869±0.005
Local Density	2-param No constraints	0.68 (0.88)	-0.0168±0.031	0.0537±0.007
Local Density	1-param	0.61 (0.73)	-	0.0505±0.003
Local Density	2-param D-constraint	0.61 (0.73)	-0.0013 ±0.010	0.0508±0.003

$$\frac{dR_{IMC}}{dx}\Big|_{D} = \frac{dR_{EMC}}{dx}\Big|_{a_{2}} = 0 - \left|\frac{dR_{EMC}}{dx}\right|_{D}$$

IMC effect \rightarrow in-medium correction effect, the ratio of the DIS cross section per nucleon bound in a nucleus relative to the free (unbound) pn pair cross section

L. Weinstein et al, PRL 106:052301,2011

Hypothesis	Fit type	χ^2_{v}	EMC(D)	IMC(D)
High Virtuality	2-param No constraints	0.91	-0.0587±0.037	0.1040±0.012
High Virtuality	1-param	1.17	-	0.0856±0.004
High Virtuality	2-param D-constraint	1.14	-0.0041±0.010	0.0869±0.005
Local Density	2-param No constraints	0.68 (0.83)	-0.0168±0.035	0.0537±0.007
Local Density	1-param	0.61 (0.73)	-	0.0505±0.003
Local Donaity	<u> Onaram</u>	0 61 (0 72)		0 0500+0 002
0.5 $U^2 = 0.91$ $M^2 = 0.91$ M = 0.1040 + 0.0000000 + 0.00000000000000000000	raint -/- 0.0125 /- 0.0375 ⁹ Be 12 ⁹ Be 12 ⁴ He (a)	C 27AI XP/OWBHD	0.3 LD: No Constraint $\chi^2_{v} = 0.68$ m = 0.0537 +/- 0.007 b = -0.0168 +/- 0.0346 0.2 4He 0.1 3He	0 56Fe ¹⁹⁷ Au 0 9Be ²⁷ Al 9Be
-0.1 -1 0 1	2 3	4 5	0.1 L	4 6 8
a ₂ -1 '2N'*tota/'*iso"				tar iso

Hypothesis	Fit type	χ^2_{v}	EMC(D)	IMC(D)
High Virtuality	2-param No constraints	0.91	-0.0587±0.037	0.1040±0.012
High Virtuality	1-param	1.17	-	0.0856±0.004
High Virtuality	2-param D-constraint	1.14	-0.0041±0.010	0.0869±0.005
Local Density	2-param No constraints	0.68 (0.83)	-0.0168±0.035	0.0537±0.007
Local Density	1-param	0.61 (0.73)	-	0.0505±0.003
Local Density	2-param	0.61 (0.73)	-0.0013 ±0.010	0.0508±0.003
$\begin{array}{c} 0.5 \\ 0.4 \\ \hline \chi^2_{v} = 1.17 \\ m = 0.0856 + \\ \hline \chi^0_{WH} \\ 0.2 \\ \hline 0.1 \\ 0 \\ -0.1 \\ \hline \end{array}$	onstraint /- 0.0039 ⁹ Be ⁹ Be ¹² C ⁴ He (a)		D.5 LD: Strict D Constraint $\chi^2_{v} = 0.61$ m = 0.0505 +/- 0.0025 D.3 D.2 4 He 0 3 He 0 0.1	⁵⁶ Fe ¹⁹⁷ Au ²⁷ Al ⁹ Be ^(b)
-1 0 1	2 3 4 a ₂ -1	5	0 2 4 R _{2N} N _{total}	6 8 /N _{iso} -1

New Data are helping and more data will help even further

Summary

• New results suggest a local density dependence of the EMC effect as well as SRCs

• These hints and suggestions need to be further investigated with new experiments, focusing on light targets

- E12-06-105 (x>1) approved at Jlab
- E12-10-008 (EMC effect) approved at Jlab

Two hypotheses

$$R_{2N} = a_2 / \frac{n_D^{CONV}(k)}{n_D(k)}$$

Short Range Correlations – 3N

Egiyan et al, PRL 96, 2006

E02-019 Ratios

CLAS: 1.6

E02-019: 2.7

- Excellent agreement for x≤2
- Very different approaches to 3N plateau, later onset of scaling for E02-019
- Very similar behavior for heavier targets

Isoscalar Correction if Z≠P

$$Cor_{iso} = \frac{(Z\sigma_p + N\sigma_n)/A}{(\sigma_p + \sigma_n)/2}$$

• No free neutron target \rightarrow extraction of $F_2^{\ n}/F_2^{\ p}$ is modeldependent

• For E03-103, F_2^n/F_2^p for bound nucleons was used

Rescaling of the Deuteron

FSI in A>2 are identical to those in the deuteron, and match calculations

Ciofi degli Atti, Mezzetti, PRC79

Overestimate of cross sections

