

QCD, Nuclei, and the EMC effect

William Detmold

Massachusetts Institute of Technology

INT workshop on *Nuclear Structure and Dynamics at Short Distances*, Feb 12th 2013

- Nuclei and light-cone physics are *both* challenging in lattice QCD
- Demonstrating such an iconic effect from QCD would be a major achievement
- Can it be done?

Nuclei

Quantum chromodynamics

- Lattice QCD: quarks and gluons
	- Formulate problem as functional integral over gluonic degrees of freedom on R4
	- Discretise and compactify system
	- Integrate via importance sampling (average over important gluon cfgs)
	- Undo the harm done in previous steps
- Major computational challenge ...

QCD: meson/baryon spectrum

QCD matrix elements DESY 13-017 DESY 13-017 \blacksquare \sim LT

$[1302.2233]$

February 2013

Nucleon axial charge and pion decay constant

from two-flavor lattice QCD

R. Horsley¹, Y. Nakamura², A. Nobile³, P.E.L. Rakow⁴,

G. Schierholz⁵ and J.M. Zanotti⁶

The axial charge of the nucleon g_A and the pion decay constant f_π are computed in two-flavor lattice QCD. The simulations are carried out on lattices of various volumes and lattice spacings. Results are reported for pion masses as low as $m_{\pi} = 130 \,\text{MeV}$. The volume dependence of g_A and f_{π} can be understood quantitatively in terms of lattice ChPT. At the physical pion mass we find $g_A = 1.24(4)$ and $f_\pi = 89 \pm 1.1 \pm 1.8$ MeV, using $r_0 = 0.50(1)$ fm to set the scale, in good agreement with experiment. As a by-product we obtain the low-energy constant $\bar{l}_4 = 4.2(1)$.

QCD Spectroscopy

• Measure correlator $(x =$ object with q# of hadron)

$$
C_2(t) = \sum_{\mathbf{x}} \langle 0 | \chi(\mathbf{x}, t) \overline{\chi}(\mathbf{0}, 0) | 0 \rangle
$$

• Unitarity: $\sum_{n} |n\rangle\langle n| = 1$

$$
=\sum_{\mathbf{x}}\sum_{n}\langle 0|\chi(\mathbf{x},t)|n\rangle\langle n|\overline{\chi}(\mathbf{0},0)|0\rangle
$$

• Hamiltonian evolution

$$
= \sum_{\mathbf{x}} \sum_{n} e^{-E_n t} e^{i \mathbf{p}_n \cdot \mathbf{x}} \langle 0 | \chi(\mathbf{0}, 0) | n \rangle \langle n | \overline{\chi}(\mathbf{0}, 0) | 0 \rangle
$$

• Long times only ground state survives

$$
\stackrel{t\to\infty}{\longrightarrow} e^{-E_0(\mathbf{0})t} |\langle \mathbf{0}; 0 | \overline{\chi}(\mathbf{x_0}, t) | 0 \rangle|^2 = Z e^{-E_0(\mathbf{0})t}
$$

Effective mass

- Construct $M(t) = \ln \left[C_2(t) / C_2(t+1) \right] \stackrel{t \to \infty}{\longrightarrow} M$
	- Plateau corresponds to energy of ground state

• Fancier techniques able to resolve multiple eigenstates

Nuclei: an (exponentially hard)2 problem

- Nuclear spectroscopy? $\langle 0|T q_1(t) \ldots q_{624}(t) \overline{q}_1(0) \ldots \overline{q}_{624}(0)|0\rangle$ \Rightarrow $t \rightarrow \infty$ \Rightarrow $\# \exp(-M_{Pb}t)$
- Complexity: number of Wick contractions $= (A+Z)!(2A-Z)!$ $a_i^{\dagger}(t_1) a_i^{\dagger}(t_1) a_j(t_1) a_i(t_1) a_i^{\dagger}(t_2) a_j(t_2) a_j(t_2) a_i(t_2)$
- Dynamical range of scales (numerical precision)
- Small energy splittings
- Importance sampling: statistical noise exponentially increases with A

The trouble with baryons

- Importance sampling of QCD functional integrals ➤ correlators determined stochastically
	- Proton $\text{signal} \sim \langle C \rangle \sim \exp[-M_N t]$
		- Variance determined by $\sigma^2(C) = \langle CC^\dagger \rangle - |\langle C \rangle|^2$ noise \sim $\overline{}$ $\langle CC^{\dagger} \rangle \sim \exp[-3/2M_{\pi}t]$

$$
\frac{\text{signal}}{\text{noise}} \sim \exp\left[-(M_N - 3/2m_\pi)t\right]
$$

For nucleus A:

$$
\frac{\text{signal}}{\text{noise}} \sim \exp\left[-A(M_N - 3/2m_\pi)t\right]
$$

N **C**? trouble with baryons

High statistics study using anisotropic lattices (fine temporal resolution)

Golden window of time-slices where signal/noise const

Interpolator choice can be used to suppress noise

Multi-baryon systems

- Scattering/bound systems
	- Focus on (strong interaction) bound states
- Dibaryons : H, deuteron, ΞΞ
- ³H, ⁴He and hypernuclei: ⁴He_Λ, ⁴He_{ΛΛ},...
- Correlators for significantly larger A
- Caveat: at unphysical quark masses and no electroweak interactions

- H dibaryon, di-neutron and deuteron
- More exotic channels also considered (E E and $\Omega\Omega$)
- Clearly more work needed at lighter masses

Many baryon systems

- Many baryon correlator construction is messy and expensive
	- Techniques learnt in many-pion studies [WD & M. Savage; WD,, K Orginos, Z. Shi]
	- New tricks [T. Doi & M. Endres.; WD, K Orginos]
- Enables study of few (and many) baryon systems
- NPLQCD collaboration study
	- Unphysical SU(3) symmetric world @ msphys
	- Multiple big volumes, single lattice spacing

Nuclei (A=3,4)

Nuclei (A=3,4)

Empirically investigate volume dependence

FIG. 17: The bound-state energy levels in the *J*⇡ = 0+ 4

• Need to ask if this is a 2+1 or 3+1 or 2+2 etc scattering state

 $\frac{H}{\sqrt{2\pi}}$

 $\frac{1}{\sqrt{2}}$

⇤⇤H and *nn*⇤⇤) sector. The

Nuclei (A=2,3,4)

Nuclei (A=4,...)

Quark-quark determinant based contraction method

WD, Kostas Orginos,1207.1452

Phase shifts

Light-cone

Partonic structure in R4

- Lattice QCD necessarily in Euclidean space
- DIS probes light-cone distributions $q_H(x)$
- OPE to the rescue Mellin moments of PDFs defined by forward matrix elements of local operators

$$
\langle x^n \rangle_H = \int_{-1}^1 dx \, x^n q_H(x)
$$

 $\langle H|\overline{\psi}\gamma^{\{\mu_0}D^{\mu_1}\dots D^{\mu_n\}}|H\rangle = p^{\{\mu_0\dots\}}\langle x^n\rangle_H$

- Local matrix elements can be determined from Euclidean calculations
- NB: renormalisation scale dependent

Partonic structure in LQCD

• PDF moments intensively studied in QCD using 3-pt functions

$$
C_2(t, \mathbf{p}) = \sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \langle 0 | \chi_H(0) \chi_H^{\dagger}(\mathbf{x}, t) | 0 \rangle
$$

$$
C_3(t, \mathbf{p}) = \sum_{\mathbf{y}, \mathbf{x}} e^{i\mathbf{p} \cdot \mathbf{x}} \langle 0 | \chi_H(0) \mathcal{O}(\mathbf{y}, \tau) \chi_H^{\dagger}(\mathbf{x}, t) | 0 \rangle
$$

$$
\underbrace{\bigotimes_{i} \bigotimes_{j} \
$$

 $\overline{}$

$$
R = \frac{C_3(t, \mathbf{p})}{C_2(t, \mathbf{p})} \stackrel{t \to \infty}{\longrightarrow} \langle H|\mathcal{O}|H \rangle
$$

- Most studies for nucleon, but also pion, rho, ...
- So far limited to low moments by reduced lattice symmetry
- Some ideas for how to go further

The problem at high xBj

• LQCD necessarily formulated on a discrete geometry, typically 4d hypercube: $O(4) \rightarrow H(4)$

 $H(4) = \{(a, \pi) | a \in \mathbb{Z}_2^4, \pi \in S_4\}$

- Operators classified by $H(4)$ quantum numbers
	- Finite number of irreducible representations
- Operator mixing:

 $\mathcal{O}^{cont}_i = Z_i \mathcal{O}^{lat}_i + \sum Z_{ij} \mathcal{O}^{lat}_j$

Sum over all operators with right quantum numbers

- Allows (forces) mixing with operators of lower dimension *j*
	- Coefficients scale with inverse powers of lattice cutoff Taking the continuum limit is difficult

Nice example

- Continuum operator $\mathcal{O}_{\mu\nu} = \overline{q} \gamma_{\{\mu}D_{\nu\}} q$ belongs to $\left(\frac{1}{2},\frac{1}{2}\right)$ 2 $\big) \otimes \big(\frac{1}{2}, \frac{1}{2}$ 2 $\big) = (0,0) \oplus [(1,0) \oplus (0,1)] \oplus (1,1)$
- Hypercubic decomposition

 $\mathbf{4}_1 \otimes \mathbf{4}_1 = \mathbf{1}_1 \oplus \mathbf{3}_1 \oplus \mathbf{6}_1 \oplus \mathbf{6}_3$

Lattice operators (symmetric traceless):

$$
\mathcal{O}_{14} + \mathcal{O}_{41}, \qquad \mathcal{O}_{44} - \frac{1}{3} \left(\mathcal{O}_{11} + \mathcal{O}_{22} + \mathcal{O}_{33} \right)
$$

- Have same continuum limit $(6₃$ requires $p\neq 0$)
- No operators of lower dimension (\circledcirc)

Not-so-nice example

• Continuum operator $\mathcal{O}_{\{\mu\nu\rho\}} = \overline{q} \gamma_{\{\mu} D_{\nu} D_{\rho\}} q$ lives in

 $\left(\frac{1}{2},\frac{1}{2}\right)$ 2 $\big) \otimes \big(\frac{1}{2}, \frac{1}{2}$ 2 $\big) \otimes \big(\frac{1}{2}, \frac{1}{2}$ 2 $= 4 \cdot \left(\frac{1}{2}, \frac{1}{2}\right)$ 2 $\big) \oplus 2 \cdot \big(\frac{3}{2},\frac{1}{2}\big)$ 2 $\big) \oplus 2 \cdot \big(\frac{1}{2}, \frac{3}{2}$ 2 $\big) \oplus \big(\frac{3}{2}, \frac{3}{2}$ 2 $\overline{ }$

• Hypercubic decomposition

 $4_1 \otimes 4_1 \otimes 4_1 = 4 \cdot 4_1 \oplus 4_2 \oplus 4_4 \oplus 3 \cdot 8_1 \oplus 2 \cdot 8_2$

Lattice operators:

 \mathcal{O}_{111} , $\mathcal{O}_{\{123\}}$, $\mathcal{O}_{\{441\}} - \frac{1}{2}(\mathcal{O}_{\{221\}} + \mathcal{O}_{\{331\}})$

- Same continuum limit but \mathcal{O}_{111} mixes with $\overline{q}\gamma_1q \in \mathbf{4_1}$ and the coefficient absorbs the missing dimensions (\odot)
	- Always the case for all $n > 4$ operators

Euclidean Compton tensor

[WD, CJD Lin, Phys.Rev. D73 (2006) 014501]

- Directly study Euclidean space Compton tensor and extract moments via OPE
- Use fictitious heavy quark to connect currents
	- Mass suppresses higher twists
	- Integrated out in OPE, gives usual PDF moments
- Needs very fine lattice spacing: $a^{-1} > 5$ GeV

 $\Lambda_{\rm QCD} \ll |Q|, m_{\Psi} \ll a^{-1}$

Lorentz symmetry restoration

[Z Davoudi & M Savage, Phys.Rev. D86 (2012) 054505]

- Physically: a lattice spacing of 100 GeV⁻¹ should not stop study of PDF moments at a scale of 2 GeV
- Higher moments: more sophisticated operators small compared to the resolution scale (large multiplicities of irreps)
- Demonstrated to work at oneloop in QCD
- Also requires fine lattice spacing

EMC effect

Many pions – a precursor to nuclei

- Pions as a testing ground
	- Systems of up to $I_z = 72$:
	- Similar many-body problems, but constant noise
	- Contractions satisfy recursion [WD & M Savage; Z Shi & WD]
- Systems interesting in their own right
	- Use to extract 2 & 3 body interactions
	- Canonical approach to QCD with an effective isospin chemical potential
	- Explore pion BEC and crossover to BCS

Many meson correlator

• Now an $n \pi^+$ correlator $(m_u=m_d)$

$$
C^{(n)}(t) = \left\langle 0 \left| \left[\sum_{\mathbf{x}} \overline{d} \gamma_5 u(\mathbf{x}, t) \overline{u} \gamma_5 d(\mathbf{0}, 0) \right]^n \right| 0 \right\rangle
$$

$$
t \underbrace{\lim_{m \to 0} \sum_{m=0}^{\lfloor \frac{n}{2} \rfloor} A_{m,m} a_{m}}_{m=0} + t_{m,m} + t_{n-m} + t_{
$$

Many meson correlator

• Now an $n \pi^+$ correlator $(m_u=m_d)$

$$
C^{(n)}(t) = \left\langle 0 \left| \left[\sum_{\mathbf{x}} \overline{d} \gamma_5 u(\mathbf{x}, t) \overline{u} \gamma_5 d(\mathbf{0}, 0) \right]^n \right| 0 \right\rangle
$$

$$
t \stackrel{\text{large}}{\longrightarrow} \sum_{m=0}^{\lfloor \frac{n}{2} \rfloor} A_{n,m} e^{-(E_m + E_{n-m})T/2} \cosh\left((E_m - E_{n-m})(t - T/2)\right)
$$

• $n!^2$ Wick contractions: $(12!)^2 \sim 10^{17}$

$$
C_3(t) = \text{tr} \left[\Pi\right]^3 - 3 \text{ tr} \left[\Pi\right] \text{tr} \left[\Pi^2\right] + 2 \text{ tr} \left[\Pi^3\right]
$$

$$
\Pi = \sum_{\mathbf{x}} \gamma_5 S(\mathbf{x}, t; 0) \gamma_5 S^{\dagger}(\mathbf{x}, t; 0)
$$

Maximal isospin: only a single quark propagator

n-meson energies

- Correlators: $log[C_n(t)]$
	- Finite T effects very important
- DWF on MILC gauge configurations
	- m_{π} ~ 291, 318, 352, 358, 491 MeV
	- $L=2.5$ fm, a=0.12 fm
	- also $L=3.5$ fm and $a=0.09$ fm

Many meson 3-point correlator

• $n \pi^+$ 3-point correlator

$$
C_3^{(n)}(t;\tau) = \left\langle 0 \left| \left[\sum_{\mathbf{x}} \overline{d} \gamma_5 u(\mathbf{x},t) \overline{u} \gamma_5 d(\mathbf{0},0) \right]^n \sum_{\mathbf{y}} \mathcal{O}(\mathbf{y},\tau) \right| 0 \right\rangle
$$

$$
\stackrel{t\gg\tau\gg0}{\longrightarrow}A\ e^{-E_nt}\langle n\pi|{\cal O}|n\pi\rangle+\ldots
$$

Excitations and thermal effects

Many meson 3-point correlator

• $n \pi^+$ 3-point correlator

$$
C_3^{(n)}(t;\tau) = \left\langle 0 \left| \left[\sum_{\mathbf{x}} \overline{d} \gamma_5 u(\mathbf{x},t) \overline{u} \gamma_5 d(\mathbf{0},0) \right]^n \sum_{\mathbf{y}} \mathcal{O}(\mathbf{y},\tau) \right| 0 \right\rangle
$$

$$
t \gg \tau \gg 0 \quad A \quad e^{-E_n t} \langle n\pi | \mathcal{O} | n\pi \rangle + \dots
$$

Excitations and thermal effects

• Contractions performed by treating the struck meson as a separate species Colour/Dirac structure of operator

$$
\Pi = \sum_{\mathbf{x}} \gamma_5 S(\mathbf{x}, t; 0) \gamma_5 S^{\dagger}(\mathbf{x}, t; 0), \qquad \tilde{\Pi}_{\tau} =_{\mathbf{x}, \mathbf{y}} \gamma_5 S(\mathbf{x}, t; \mathbf{y}, \tau) \Gamma_{\mathcal{O}}' S(\mathbf{y}, \tau; 0) \gamma_5 S^{\dagger}(\mathbf{x}, t; 0)
$$

- System looks like (n-1) pions + 1 "kaon"
	- Can be written as products of traces of two matrices [WD & B Smigielski, arXiv:1103.4362]

Double ratio

- Define ratio to extract matrix elements $R^{(n)}(t,\tau) = \frac{C_3^{(n)}(t;\tau)}{2}$ $C_2^{(n)}(t)$ $t\gg\tau$ \longrightarrow 1 $\frac{1}{E_{n\pi}}\langle n|\pi^+|\mathcal{O}^{44}|n|\pi^+\rangle$
- Double ratio

$$
\frac{R^{(n)}(t,\tau)}{R^{(1)}(t,\tau)} \longrightarrow \frac{m_{\pi} \langle n \pi^+ | \mathcal{O}^{44} | n \pi^+ \rangle}{E_{n\pi} \langle \pi^+ | \mathcal{O}^{44} | \pi^+ \rangle} \longrightarrow \frac{E_{n\pi} \langle x \rangle_{n\pi^+}}{m_{\pi} \langle x \rangle_{\pi^+}}
$$

- No need to renormalise operator!
- Allows investigation of ratio of moments
- Focus on momentum fraction: \mathcal{O}^{44}

Double ratio

Pionic EMC effect

LC momentum fraction carried by quarks in a pion in a dense medium *c.f.* in free space

Outlook

- Light nuclei can be calculated from QCD
	- Work needed to get to physical masses
- Simple nuclear matrix elements are harder but not that much harder than spectroscopy
	- High moments of PDFs: new ideas need testing
- Ultimately I hope we can study PDFs of nuclei in QCD
	- which might take a few years ...

[FIN]

thanks to

Silas Beane, Emmanuel Chang, Saul Cohen, Parikshit Junnarkar, Huey-wen Lin, Tom Luu, Kostas Orginos, Assumpta Parreño, Martin Savage, Andre Walker-Loud

