Short Distance Studies of the Deuteron

Werner Boeglin Florida International University Miami

Contents

- Introduction
- Low Q² results
- Angular distributions
- Missing momentum dependences
- Lightcone momentum distribution
- A_{LT} measurements
- Future Plans
- Summary

Introduction: Role of the Deuteron

- Key system to investigate the (repulsive) core of the NN interaction.
- Basis for SRC (structure) studies
- Prime nucleus to test NN models
- Structure needs to be understood in detail at all length scales

Momentum Distribution

virtually no experimental d(e,ep)n data exist for $p_m > 0.5$ GeV/c without large contributions of FSI, MEC and IC

Problems

- Reaction dynamics:
 - how does the photon interact with a deeply bound nucleon ?
 - what is the EM current structure ?
- Final State Interactions
 - high Q² : eikonal approximations valid ?
- Deuteron wave function
 - can one probe NN wave function at small distances ?
 - can one find evidence for new degrees of freedom ?
 - important for the interpretation of DIS data

All these problems are interconnected New, high Q² data are necessary for progress!

$$D(e,e')$$

$$\frac{d\sigma}{d\Omega} = \sigma_{Mott} \left[A(Q^2) + B(Q^2) \tan^2(\theta/2) \right]$$

$$A = G_C^2 + \frac{2}{3} \eta G_M^2 + \frac{8}{9} \eta^2 G_Q^2$$

$$B = \frac{4}{3} \eta (1+\eta) G_M^2$$

$$G_C \text{ Charge form factor}$$

$$T_{20} = -\frac{\frac{8}{9}\eta^2 G_Q^2 + \frac{8}{3}\eta G_C G_Q + \frac{2}{3}\eta G_M^2 \left[\frac{1}{2} + (1+\eta)\tan^2(\theta/2)\right]}{\sqrt{2}\left[A + B \tan^2(\theta/2)\right]}$$

 $\eta = Q^2/4M_D^2$

Review Articles:

- M.Garcon and J.W. van Orden Adv.Nucl.Phys.26(2001)293
- R. Gilman and F. Gross, J. Phys. G: Nucl. Part. Phys. 28 (2002) R37–R116
- R.J.Holt and R. Gilman http://arxiv.org/abs/1205.5827v1

Jefferson Lab Users Group Meeting, June 2012

D(e,e') summary:

- NR models cannot describe the form factors up to the highest Q² (RC are very important)
- Indications of dimensional scaling exist.
- Relativistic models successfully describe Deuteron form factors
- MEC contributions are very important
- *ρ*πγ exchange current important and not well constrained

Experimental Goal:

Obtain data closely related to the deuteron wave function (momentum distribution) with a minimum of "other contributions" such as FSI, MEC, IC etc.

Ideally 'measure' the momentum distribution \Rightarrow study the d(e,e'p) reaction

Missing Momentum Dependences

At high Q² FSI as Rescattering

IA Amplitude (real):

Rescattering Amplitude (at high energy mostly imaginary):

Total scattering amplitude: $A = A_I + iA_R$ Cross Section: $\sigma \sim |A|^2 = |A_I + iA_R|^2$

$$\sigma \sim |A_{I}|^{2} - 2|A_{I}||A_{R}| + |A_{R}|^{2}$$
$$R = \frac{\sigma}{\sigma_{I}} = 1 - 2\frac{|A_{I}||A_{R}|}{|A_{I}|^{2}} + \frac{|A_{R}|^{2}}{|A_{I}|^{2}}$$

2/20/2013

JLAB: CLAS and Hall A

CLAS

- Simultaneous measurement of kinematics
- focus on Q² dependence
- e6 running period
- Q² = 2, 3, 4, 5 (GeV/c)²
- Further analysis possible :Data Mining

Hall A

- $Q^2 = 0.8$, 2.1 and 3.5 (GeV/c)² : constant for each set
- p_{miss} = 0.2, 0.4 and 0.5 GeV/c : angular distribution
- $20^{\circ} \leq \theta_{pq} \leq 140^{\circ}$
- angular range for each p_{miss} dependent on kinematics

CLAS

Data: Egyian et al. (CLAS) PRL 98 (2007)

Calculation M. Sargsian

Calculations: M. Sargsian

 $p_m = 100 \text{ MeV/c}$

 $p_m = 400 \text{ MeV/c}$

 $p_m = 200 \text{ MeV/c}$

Summary of angular distributions At $Q^2 = 3.5 (GeV/c)^2$

$$R = \frac{\sigma}{\sigma_{PWIA}}$$

 σ Is experimental or calculated cross section

WB et al. PRL 107 (2011) 262501

Lower Q²

Thesis H. Khanal

Preliminary

= 2.1

Double Ratios

Re-scattering increasing with Q²

Extraction of $\rho(\alpha, p_t)$

- attempt to extract $\rho(\alpha, P_T)$ from experimental data
- Theoretical foundation:

Relativistic Description of the Deuteron, L.L Frankfurt and M. Strikman, Nuclear Physics **B148** (1979) 107

High-Energy Phenomena, Short-Range Nuclear Structure and QCD, L.L Frankfurt and M. Strikman, Physics Reports **76**, (1981) 215

Advantages of working on LC:

- at high Q², FSI is mostly transverse α is approx. conserved by FSI
- $\rho(\alpha)$ is very little affected by re-scattering
- at high energies: $N\overline{N}$ become important but
- unimportant on LC (photon energy is 0)
- $\rho(\alpha)$ necessary for interpretation of DIS data of nuclei

$$F_{2d}(x) = \sum_{N} \int_{x}^{2} F_{2N}(\frac{x}{\alpha})\rho(\alpha)\frac{d\alpha}{\alpha}$$

Light Cone Variables

Light cone variables for experimentalists:

4-vector:
$$V = (V^{\circ}, \vec{V})$$
 light cone: $V = (V^{+}, V^{-}, \vec{V}_{T})$
 $V^{\pm} = V^{\circ} \pm V_{z}$
Lorentz Transformation
along z-axis:
 $V^{\pm} = e^{\psi}V^{\pm}$ $\psi = \frac{1}{2}\ln\left(\frac{1+\beta}{1-\beta}\right)$
= scalar multiplication
Important property $\frac{V^{\pm}}{V^{\pm}}$ boost invariant

Deuteron Momentum Distributions on the Light Cone (LC)

LC momentum $p^- = E - p_z$

LC momentum fraction

$$\alpha = A \frac{p_i^-}{P_A^-}$$

analogous to "x" for quark distributions

$\boldsymbol{\alpha}$ is frame independent for boosts along the z-axis

LC cross section $\frac{d\sigma}{dE'_e d\Omega_e d\Omega_p} = K \sigma^{LC}_{eN}(\alpha, p_t) \rho(\alpha, p_t)$

Spectator (neutron) momentum fraction $\alpha_s = 2 \frac{E_s - p_s^z}{M_D}$

remember in lab:
$$P_D^- = M_D$$
 and $A = 2$

Proton momentum fraction $\alpha = 2 - \alpha_s$

LC momentum distribution
$$\rho(\alpha, p_t) = \frac{|\Psi_d(k)|^2 E_k}{2 - \alpha}$$

 $k = \sqrt{\frac{M_N^2 + p_t^2}{\alpha_s(2 - \alpha_s)} - M_N^2}$ $E_k = \sqrt{M_n^2 + p_t^2}$

k relative nucleon momentum in *np* system in light cone

Normalization:
$$\int \rho(\alpha) \frac{d\alpha}{\alpha} 2\pi p_t dp_t = 1$$

LC Momentum sum rule

$$\int \alpha \rho(\alpha) \frac{d\alpha}{\alpha} 2\pi p_t dp_t = 1$$

2/20/2013

$\boldsymbol{\alpha}$ conservation as function of nucleon momenta

Contours of k = const

 $P_T(GeV/c)$

2/20/2013

Experimental $\rho(\alpha, p_t)$ distributions

- Determine d(e,e'p)n cross section for each α_s, p_t bin
- Divide by $K\sigma_{eN}^{LC}$
- Problem: phase space acceptance
- Results should be as independent as possible of phase space cut
- Missing information due to cuts

Phase Space Coverage at $Q^2 = 3.5$

20% cut

2.5% cut

 $\int \rho(\alpha, P_T) 2\pi P_T dP_T \approx \sum \rho(\alpha, P_T) 2\pi P_T \Delta P_T$

Interpolating missing data

Fit function:
$$\rho(\alpha) = \gamma \rho_{LC}(\alpha^*) e^{-(\delta_{s,l}(\alpha - A))^2}$$

 $\alpha^* = 1 + \beta(\alpha - A)$
Parameters: $\alpha, \beta, \gamma, \delta_{s,l}, A$
use δ_s for $\alpha < A$

use δ_l for $\alpha > A$

Calculated using model: $\rho_{LC}(\alpha)$ (e.g. Paris WF)

20% cut

2.5% cut

2/20/2013

$\rho(\alpha)$ using fit interpolation

20% cut

2.5% cut

 $_{T}dP_{T}$

Experimental $|\psi(k)|^2$ distributions

- Determine d(e,e'p)n cross section for each θ_{nq}, p_m bin
- Divide by $K\sigma_{eN}^{LC}$
- Calculate $|\Psi_d(k)|^2$

Rotational Invariance

2/20/2013

Response Functions

At low $Q^2 A_{LT}$ is well understood

WB et al. Phys. Rev C78 054001 (2008)

Future Experiment at 12 GeV

- Determine cross sections at missing momenta up to 1 GeV/c
- Measure at well defined kinematic settings
- Selected kinematics to minimize contributions from FSI
- Selected kinematics to minimize effects of delta excitation

Measurements in Hall C

Beam: Energy: 11 GeV Current: 80µA

Electron arm fixed at: SHMS at $p_{cen} = 9.32 \text{ GeV/c}$ $\theta_e = 11.68^\circ$ $Q^2 = 4.25 \text{ (GeV/c)}^2$ x = 1.35

Vary proton arm to measure : $p_m = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 \text{ GeV/c}$ HMS 1.96 d p_{cen} d 2.3 geV/c Angles: 63.5° e θ_p e 53.1

Target: 15 cm LHD

FSI Reduction

Reduction of FSI: $\sigma \sim |A_I|^2 - 2|A_I||A_R| + |A_R|^2$

Rescattering determined by slope factor:

$$f_{s} = e^{-\frac{b}{2}k_{t}^{2}}$$

$$k_{t} = p_{m} \sin(\theta_{p_{m}q})$$

$$b \sim 6(GeV / c)^{-2}$$

$$f_{s} \text{ relatively flat up to } k_{t} \approx 0.5(GeV / c)$$

$$\Rightarrow p_{m} \approx 0.8(GeV / c)$$

both terms are equal \Rightarrow interference and rescattering cancel

- b determined by nucleon size
- cancellation due to imaginary rescattering amplitude
- valid only for high energy (GEA)

1

Angular Distributions up to $p_m = 1 \text{GeV/c}$

Expected Results

- \checkmark Measured cross sections for p_m up to 1 GeV/c
- \checkmark Errors: dominated by statistics: 7% $\,$ 20% $\,$
- ✓ Estimated systematic error H5 %
- ✓ Very good theoretical support available
- \checkmark JLAB uniquely suited for high $p_{\rm m}$ study
- ✓ Good coincidence commissioning experiment
- ✓ 21 days of beam time

2/20/2013

Summary

• High Q² d(e,e' p)n can be described using generalized

eikonal approximation for $Q^2 > 2 \text{ GeV/c}$

- There is a window to study the Deuteron momentum distribution, CD Bonn seems OK
- current analysis of lower Q² data (H.Khanal thesis) soon complete
- first attempt to extract α distributions, Paris seems OK
- increase kinematics coverage for α determination
- high R_{LT} at high P_T cannot be reproduced
- 12 GeV: very high missing (up to 1GeV/c) momenta