Interaction *vs* correlation effects in many-body systems

Omar Benhar

INFN and Department of Physics "Sapienza" Universita di Roma ` I-00185 Roma, Italy

Workshop on Nuclear Structure and Dynamics at Short Distances INT, Seattle, February 13, 2013

K ロ K K @ K K B K K B K (B K

 \star Defining correlations: quite an elusive issue

- \triangleright correlations in the absence of interaction
- \triangleright interaction without correlations
- \star Theoretical description of correlations
	- \triangleright particle and hole propagation in interacting many-body systems
- \star Empirical evidence of nucleon-nucleon correlations
	- \triangleright nucleon knockout processes
	- \triangleright Final State Interactions (FSI) in inclusive processes
	- \triangleright the EMC effect

 \star Summary & Outlook

Defining correlations

- \star Consider a system of N interacting particle described by the wave function $\Psi(x_1, \ldots, x_N)$, with $x_i \equiv (\mathbf{r}_i, \sigma_i)$
- \star Probability of finding particles $1, \ldots, n$ at positions $\mathbf{r}_1, \ldots, \mathbf{r}_n$

$$
\rho^{(n)}(\mathbf{r}_1,\ldots,\mathbf{r}_n)=\frac{N!}{(N-n)!}\sum_{\sigma_1,\ldots,\sigma_N}\int d\mathbf{r}_{n+1}\ldots d\mathbf{r}_N\,|\Psi(x_1,\ldots,x_N)|^2
$$

 \star Particles 1 and 2 are correlated if

$$
\rho^{(2)}(\mathbf{r}_1, \mathbf{r}_2) \neq \rho^{(1)}(\mathbf{r}_1)\rho^{(1)}(\mathbf{r}_2)
$$

 \star The quantity

$$
g(\mathbf{r}_1, \mathbf{r}_2) = \frac{\rho^{(2)}(\mathbf{r}_1, \mathbf{r}_2)}{\rho^{(1)}(\mathbf{r}_1)\rho^{(1)}(\mathbf{r}_2)}
$$

provides a measure of correlations in coordinate space

The archetype corelated system: the Van der Waals liquid

 \star Equation of state at particle density ρ and temperature *^T*

$$
P = \frac{\rho T}{1 - \rho b} - a \rho^2 ,
$$

- \triangleright *b* ∝ *d*³ is the "excluded" volume"
- . *^a* [∼] integral of the attractive part of the interaction
- \star The *full* Van der Waals potential provides a good description of atomic systems. Hovever, its use in perturbation theory involves non trivial problems.

Correlations in the non interacting Fermi gas

 \star Enter Pauli's principle. Consider the ground state of a translationally invariant fermion system at density $\rho = N/V = k_F^3/3\pi^2$

$$
\Psi_0(x_1,\ldots,x_N)=\frac{1}{N!}\ \det\left[\phi_{\alpha_i}(x_i)\right]\ ,\ \ \phi_{\alpha_i}(x_i)=\frac{1}{V^{1/2}}\ e^{i\mathbf{k}\cdot\mathbf{r}_i}\ \chi_{\sigma_i}\ ,\ \ |\mathbf{k}_i|
$$

 \triangleright Statistical correlations are described by the function $(r = |{\bf r}_1 - {\bf r}_2|)$

$$
g_{FG}(r) = \frac{\rho^{(2)}(r)}{\rho^2} = 1 - \frac{1}{2}\ell^2(k_F r)
$$

$$
\ell(x) = 3\frac{\sin x - x\cos x}{x^3}
$$

- \star Bottom line: correlations are best defined in coordinate space.
- \star To see this, consider the non interacting Fermi gas again. The joint probability of finding two particles with momenta \mathbf{k}_1 and \mathbf{k}_2 is

$$
n_{FG}(\mathbf{k}_1, \mathbf{k}_2) = \theta(k_F - |\mathbf{k}_1|)\theta(k_F - |\mathbf{k}_2|) \left[1 - \frac{1}{N}\frac{\rho}{2} (2\pi)^3 \delta(\mathbf{k}_1 - \mathbf{k}_2)\right]
$$

? *In the absence of long range order*, a similar result holds true in interacting systems

$$
n(\mathbf{k}_1, \mathbf{k}_2) = n(\mathbf{k}_1)n(\mathbf{k}_2) [1 + O(1/N)]
$$

 \star In momentum space, non trivial correlations effects on $n(k_1, k_2)$ vanish in the $N \to \infty$ limit. However, correlations strongly affect the behaviour of $n(\mathbf{k})$ at $|\mathbf{k}| > k_F$.

Interaction without correlation: the mean field picture

 \star Dynamical correlations are induced by two-body interactions described by the potential v_{ii} appearing in the N-particle hamiltonian

$$
H = \sum_{i=1}^{N} -\frac{\nabla_i^2}{2m} + \sum_{j>i=1}^{N} v_{ij},
$$

 \star The mean field approximation is based on the replacements

$$
\sum_{j>i=1}^{N} v_{ij} \rightarrow \sum_{i=1}^{N} U_i \quad , \quad H \rightarrow \sum_{i=1}^{N} h_i = \sum_{i=1}^{N} \left(-\frac{\nabla_i^2}{2m} + U_i \right)
$$

implying

$$
H|\Psi_0\rangle = E_0|\Psi_0\rangle \rightarrow h_i|\phi_i\rangle = \epsilon_i|\phi_i\rangle
$$

 \star Within the mean field approximation

$$
E_0 = \sum_{i \in \{F\}} \epsilon_i , \quad \Psi(x_1, \dots, x_N) = \det[\phi_i(x_i)]
$$

$$
\rho^{(2)}(\mathbf{r}_1, \mathbf{r}_2) = \sum_{i} \phi_i^{\dagger}(\mathbf{r}_1) \phi_j^{\dagger}(\mathbf{r}_2) \left[\phi_i(\mathbf{r}_1) \phi_j(\mathbf{r}_2) - \phi_j(\mathbf{r}_1) \phi_i(\mathbf{r}_2) \right]
$$

- \star The mean field approach provides a remarkably accurate description of a variety of properties of interacting many-body systems. However, one should keep in mind that
	- \triangleright dynamical correlations are not taken into acount

ⁱ,*j*∈{*F*}

- \triangleright including their effects as corrections to the mean field approximation may be highly misleading, as the definition of the mean field itself is model dependent
- \star Theoretical studies aimed at pinning down the role of correlations should be carried out within *ab initio* many body approaches

ρ

Model independent determination of correlations

 \star Definition of Green's function

 $iG(x - x') = \langle 0|T[\hat{\psi}(x)\hat{\psi}^{\dagger}(x')]|0\rangle$

After Fourier transformation ($\eta = 0^+$)

$$
G(\mathbf{k},E) = \sum_{n} \left\{ \frac{|\langle n_{(N+1)}(\mathbf{k})|a_{\mathbf{k}}^{\dagger}|0_{N}\rangle|^{2}}{E - (E_{n} - E_{0}) + i\eta} + \frac{|\langle n_{(N-1)}(-\mathbf{k})|a_{\mathbf{k}}|0_{N}\rangle|^{2}}{E + (E_{n} - E_{0}) - i\eta} \right\}
$$

$$
= G_{p}(\mathbf{k},E) + G_{h}(\mathbf{k},E) = \int dE' \left[\frac{P_{p}(\mathbf{k},E')}{E - E' + i\eta} + \frac{P_{h}(\mathbf{k},E')}{E + E' - i\eta} \right]
$$

 \star Spectral functions of hole and particle states

$$
P_h(\mathbf{k}, E) = \sum_n |\langle n_{(N-1)}(\mathbf{k})|a_{\mathbf{k}}|0_N\rangle|^2 \delta(E - E_n + E_0) = \frac{1}{\pi} \operatorname{Im} G_h(\mathbf{k}, E)
$$

$$
P_p(\mathbf{k}, E) = \sum_n |\langle n_{(N+1)}(\mathbf{k})|a_{\mathbf{k}}^\dagger|0_N\rangle|^2 \delta(E + E_n - E_0) = \frac{1}{\pi} \operatorname{Im} G_p(\mathbf{k}, E)
$$

Analytic structure of the Green's function

 \star In interacting systems, the Green's function (e.g. for hole states) can be written in terms of the particle self energy $\Sigma(k, E)$

$$
G_h(\mathbf{k}, E) = \frac{1}{E - |\mathbf{k}|^2 / 2m - \Sigma(\mathbf{k}, E)}
$$

- ? Landau's quasiparticle picture: isolate contributions of ¹*^h* (*bound*) intermediate states, exhibiting poles at energies ϵ_k , given by $\epsilon_k = |\mathbf{k}|^2 / 2m + \text{Re }\Sigma(\mathbf{k}, \epsilon_k)$, as Im $\Sigma(\mathbf{k}, E) \to 0$ (Fermi surface)
- \star The resulting expression is

$$
G_h(\mathbf{k}, E) = \frac{Z_k}{E - \epsilon_k - i Z_k \operatorname{Im} \Sigma(\mathbf{k}, e_k)} + G_h^B(\mathbf{k}, E)
$$

where $Z_k = |\langle -\mathbf{k} | a_{\mathbf{k}} | 0 \rangle|^2$, and $G_h^B(\mathbf{k}, E)$ is a smooth contribution, arising
from $2h - 1p$, $3h - 2p$ (continuum) intermediate states from $2h - 1p$, $3h - 2p$, . . . (*continuum*) intermediate states

Correlated Basis Functions (CBF) approach

 \star Correlated states obtained from Fermi gas states through the transformation

$$
|n\rangle = \frac{F}{\langle n_{FG} | F^{\dagger} F | n_{FG} \rangle} | n_{FG} \rangle \quad , \quad F = S \prod_{j>i} f_{ij}
$$

 \star The two-nucleon correlation operator reflects the complexity of the nucleon-nucleon (NN) force [spin-isospin (ST) dependent, non central]

$$
f_{ij} = \sum_{TS} [f_{TS}(r_{ij}) + \delta_{S1} f_{Tt}(r_{ij}) S_{ij}] P_{TS}
$$

*P*_{*TS*} : spin – isospin projectors, $S_{ij} = \sigma_i^{\alpha} \sigma_j^{\beta} \left(3r_{ij}^{\alpha} r_{ij}^{\beta} - \delta^{\alpha \beta} \right)$

 \star Shapes of f_{TS} , f_{tT} determined from minimization of ground state energy

 \star Split the hamiltonian according to

 $H = H_0 + H_I$

 $\langle m|H_0|n\rangle = \delta_{mn}\langle m|H|n\rangle$, $\langle m|H_I|n\rangle = (1 - \delta_{mn})\langle m|H|n\rangle$

 \star If correlated states have large overlaps with the eigenstates of the hamiltonian, the matrix elements of H_I are small and perturbation theory can be used to obtain, e.g., the ground state from

$$
\widetilde{|0\rangle} = \sum_{m} (-)^{m} \left(\frac{H_{I} - \Delta E_{0}}{H_{0} - E_{0}^{V}} \right)^{m} |0\rangle
$$

$$
\Delta E_{0} = E_{0}^{V} - E_{0} = \langle 0|H|0\rangle - E_{0}
$$

Hole spectral function of nuclear matter from CBF

$$
P_h(\mathbf{k}, E) = \frac{1}{\pi} \frac{Z_k^2 \operatorname{Im} \Sigma(\mathbf{k}, \epsilon_k)}{[E - \mathbf{k}^2 / 2m - \operatorname{Re} \Sigma(\mathbf{k}, E)]^2 + [Z_k \operatorname{Im} \Sigma(\mathbf{k}, \epsilon_k)]^2} + P_h^B(\mathbf{k}, E)
$$

Spectral function of infinite nuclear matter

 \star Results obtained using CBF perturbation theory and the U14+TNI hamiltonian

 \star The correlation contribution can be identified by its distinctive energy dependence

Momentum distribution and spectroscopic factors

 \star In analogy with the spectral function, the momentum distribution can be split into quasi particle (pole) and and correlation (continuum) contributions

$$
n(\mathbf{k}) = \int dE P(\mathbf{k}, E) = Z_k \theta(k_F - |\mathbf{k}|) + \int dE P_B(\mathbf{k}, E) = Z_k \theta(k_F - |\mathbf{k}|) + n_B(\mathbf{k})
$$

Exploiting the (near) universality of correlations

 \star Local density approximation

 $P(k, E) = P_{MF}(k, E) + P_{corr}(k, E)$

 \Rightarrow $P_{MF}(\mathbf{k}, E) \rightarrow$ from $(e, e'p)$ data

$$
P_{MF}(\mathbf{k}, E) = \sum_{n} Z_n |\phi_n(\mathbf{k})|^2 F_n(E - E_n)
$$

 \triangleright *P*_{corr}(\mathbf{p}, E) \rightarrow from uniform nuclear matter calculations at different densities:

$$
P_{corr}(\mathbf{k}, E) = \int d^3r \, \rho_A(r) \, P_{corr}^{NM}(\mathbf{k}, E; \rho = \rho_A(r))
$$

- \star Widely and successfully employed to analize (*e*, *e'*) data at beam
energies $\approx 1 GeV$ energies ∼ 1*GeV*
- \star Warnings: model dependence, chance of double counting

Theory vs data ($E_e = 1.3$ GeV, $\theta_e = 37.5^\circ$)

 \star Note: calculations involve no adjustable parameters

 \star The measured x-section can be described, except in the *dip* region, between the quasi elastic and ∆-production peaks, and the low enrgy loss tail, where FSI (not included) play a role Ω

Correlation effects on the nuclear response

 \star Consider scattering of a scalar probe, for simplicity

$$
\frac{d\sigma}{d\Omega d\omega} \propto S(\mathbf{q}, \omega) = \sum_{n} \langle 0 | \rho_{\mathbf{q}}^{\dagger} | n \rangle \langle n | \rho_{\mathbf{q}} | 0 \rangle \delta(E_0 + \omega - E_n)
$$

$$
\rho_{\mathbf{q}} = \sum_{\mathbf{k}} a_{\mathbf{k}+\mathbf{q}}^{\dagger} a_{\mathbf{k}} \quad , \quad H|0\rangle = E_0|0\rangle \quad , \quad H|n\rangle = E_n|n\rangle
$$

 \star Rewrite the response in the form

$$
S(\mathbf{q}, \omega) = \sum_{n} \left| \sum_{k} \langle n | a_{\mathbf{k}+\mathbf{q}}^{\dagger} a_{\mathbf{k}} | 0 \rangle \right|^{2} \delta(\omega + E_{0} - E_{n})
$$

$$
= \int \frac{dt}{2\pi} e^{i(\omega + E_{0})t} \sum_{\mathbf{p}, \mathbf{k}} \langle 0 | a_{\mathbf{p}+\mathbf{q}} a_{\mathbf{p}}^{\dagger} e^{-iHt} a_{\mathbf{k}+\mathbf{q}}^{\dagger} a_{\mathbf{k}} | 0 \rangle
$$

 \star *S*(q, ω) can be expressed in terms of interactions and Green functions describing nucleons in particle and hole states

Effects of interactions on the nuclear response

- \star In the absence of correlations, the only possible final states are one particle-one hole states
- \star For example, according to the Fermi gas model

$$
M_n = \langle n | \sum_{\mathbf{k}} a_{\mathbf{k}+\mathbf{q}}^{\dagger} a_{\mathbf{k}} | 0 \rangle \to M_k = 1 \times \theta(k_F - |\mathbf{k}|) \theta(|\mathbf{k} + \mathbf{q}| - k_F)
$$

$$
S(\mathbf{q}, \omega) = \sum_{\mathbf{k}} |M_k|^2 \delta(\omega + e_0(\mathbf{k}) - e_0(\mathbf{k} + \mathbf{q})) \quad , \quad e_0(\mathbf{k}) = \frac{\mathbf{k}^2}{2m}
$$

 \star Inclusion of interactions, through the replacement of Fermi gas states with CBF states, leads to a quenching of the transition matrix elements M_k and to a modification of the single particle spectrum $e_0(\mathbf{k})$

Correlations & interaction effects

- \star Isospin symmetric nuclear natter at equilibrium density
- \triangleright Correlations

 M_{ph} < 1

 \triangleright Mean field

 $m \rightarrow m^{\star} =$

 $\sqrt{1}$ *k* $\left(\frac{de}{dk}\right)^{-1}$

Correlation & interaction effects on the response

 \star (A), (B), (C) → |q| = 0.3, 1.8, 3.0 fm⁻¹
2.5

 QQ

Empirical evidence of correlation effects

Energy dependence of the spectroscopic strengths of shell model states
of $\frac{208 \, Pb}{\text{m}}$ measured in high resolution (e e'n) experiments at NIKHEFof ²⁰⁸*Pb*, measured in high resolution (*e*, *e'p*) experiments at NIKHEF-K

 \star Theory: CBF nuclear matter results corrected for surface effects

Measured correlation strength

- \star The correlation strength in the 2p2h sector has been measured by the JLAB E97-006 Collaboration using a carbon target
- \star Strong energy-momentum correlation: $E \sim E_{thr} + \frac{A-2}{A-1}$ $\frac{A-2}{A-1}$ $\frac{\mathbf{k}^2}{2n}$ 2*m*

 \star Measured correlation strength 0.61 \pm 0.06, to be compared with the theoretical predictions 0.64 (CBF) and 0.56 (G-Matrix)

FSI in the impulse approximation regime

At momentum transfer $|q|^{-1}$ >> $2\pi/d$, *d* being the average interparticle
separation distance separation distance

$$
S(\mathbf{q}, \omega) = \int d^3k dE P_h(\mathbf{k}, E) P_p(\mathbf{k} + \mathbf{q}, \omega - E)
$$

- \triangleright *P_h* \rightarrow many-body theory
- \rightarrow *P_p* \rightarrow many-body theory + eikonal approximation (OB, arXiv:1301.3357)
- \star The struck particle travels along a straight trajectory with constant speed v. Its propagation is described by the Green's function $(p = |k + q|)$

$$
G(\mathbf{r}_{\perp}, z) = -\frac{i}{\mathrm{v}} \delta(\mathbf{r}_{\perp}) \theta(z) \exp\left[i p z - \frac{i}{\mathrm{v}} \int_0^z d\zeta \ V(\zeta)\right]
$$

with

$$
V(\zeta) = \langle 0 | \sum_{j=2}^{N} \Gamma_{\mathbf{p}}(\mathbf{r}_{1j} + \hat{\mathbf{z}} \zeta) | 0 \rangle
$$

Correlation effects in FSI

 \star The interaction is described by the Fourier transform of the scattering amplitude

$$
\Gamma_{\mathbf{p}}(\mathbf{r}) = -\frac{2\pi}{m} \int \frac{d^3k}{(2\pi)^3} e^{-i\mathbf{k}\cdot\mathbf{r}} f_{\mathbf{p}}(\mathbf{k}) .
$$

with

$$
f_p(\mathbf{k}) = \frac{p}{4\pi} \sigma_p(\alpha_p + i) e^{-\beta_p \mathbf{k}^2}
$$

 \star FSI are driven by the quantity

$$
V(\zeta) = \int d^3r \, g(r) \, \Gamma_p(\mathbf{r} + \hat{\mathbf{z}} \zeta)
$$

 \star Under the assumptions underlying the eikonal approximation, correlations in coordinate space strongly affect the energy dependence of the spectral function.

 \star Consider the simple case $\alpha_p = \beta_p = 0$, i.e.

Im
$$
\Gamma_p(\mathbf{r}) = -\frac{1}{2}\rho v \sigma_p \delta(\mathbf{r})
$$

The corresponding eikonal phase is

 \star After Fourier transformation, the *z*-dependence of *W* leads to a specific energy dependence of the eikonal spectral fun[cti](#page-24-0)[on](#page-26-0) Ω

Preliminary results

 \star Isospin symmetric nuclear matter at equilibrium density

- \star Main elements of the calculation
 \star medium modified nucleon-nuc
	- . medium modified nucleon-nucleon cross setctions
	- \triangleright nucleon radial distribution function, $g(r)$

Nuclear binding, correlations and the EMC effect

 \star The analysis of the dependence of the slope of the EMC ratio on the average nucleon removal energy, defined as

$$
\langle E \rangle = \int d^3k dE P(\mathbf{k}, E)
$$

requires a level of accuracy not yet achieved for nuclei with $A > 3$

- \star Green's Function Monte Carlo (GFMC) calculations provide the ground state energies, E_0 and the expectation values of the kinetic energy operator, $\langle T \rangle$, of nuclei with $A \leq 12$, obtained from state-of-the-art nuclear hamiltonian
- \star The corresponding average removal energies can be calculated using the GFMC results and the Koltun sum rule, stating that (up to a small correction arising from the three-body potential)

$$
\frac{E_0}{A} = \frac{1}{2} \left[\frac{A-2}{A-1} \langle T \rangle - \langle E \rangle \right]
$$

 \star The slope is analyzed in terms of the variable

 $\tilde{y} = v - |\mathbf{q}|$

that can be interpreted as the longitudinal momentum of the struck particle in the target rest frame. Note that \tilde{y} is trivially related to Nachtmann's variable through $\tilde{y} = -\xi/m$.

OB & I. Sick arXiv:1207.4595

That Benhar (INFN, Roma)

- \star The data shows an excellent correlation with $\langle E \rangle$
- \star The analysis includes the ratio obtained from the extrapolated nuclear matter data. The corresponding removal energy is obtained from the values of E_0 and $\langle T \rangle$ resulting from the CBF calculation of Akmal & Pandharipande
- \star The values of $\langle E \rangle$ employed in the analysis are significantly larger than those used in similar studies. For example, in Carbon the removal energy extracted from $(e, e'p)$ data, corresponding to the shell model states, is
 $\approx 25 \text{ MeV}$ to be compared to the GEMC result $\approx 52 \text{ MeV}$ \sim 25 MeV, to be compared to the GFMC result ~ 52 MeV
- \star The large values of $\langle E \rangle$ are to be ascribed to strong nucleon-nucleon correlations, leading to the excitation of nucleons to states of high removal energy *and* high momentum

- \star It is long known that correlation effects in nuclei are large. Back in 1952 AD, Blatt & Weiskopf pointed out that:
	- \triangleright "The limitation of any independent particle model lies in its inability to encompass the correlation between the positions and spins of the various particles in the system"
- \star While being best defined in coordinate space, correlations manifest themselves in a distinctive energy dependence of the Green's functions.
- \star Pinning down pure correlation effetcs in a model independent fashion requires the calculation of the Green's function within ab initio many-body approaches.
- \star There is ample empirical evidence of important correlation effects from electron-nucleus scattering data. However, the definition of correlation observables remains somewhat elusive.

 QQ

イロト イ押ト イヨト イヨ